Articles | Volume 10, issue 4
https://doi.org/10.5194/bg-10-2583-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-10-2583-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment
K. Wuttig
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, Düsternbrooker Weg 20, 24105 Kiel, Germany
T. Wagener
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, Düsternbrooker Weg 20, 24105 Kiel, Germany
Université d'Aix-Marseille, CNRS/INSU, IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, 13288 Marseille, France
M. Bressac
Laboratoire d'Océanographie de Villefranche-sur-Mer, CNRS-INSU, UMR 7093, Observatoire Océanologique, 06230, Villefranche-sur-Mer, France
Université Pierre et Marie Curie - Paris 6, UMR7093, LOV, Observatoire Océanologique, Villefranche-sur-Mer, France
A. Dammshäuser
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, Düsternbrooker Weg 20, 24105 Kiel, Germany
P. Streu
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, Düsternbrooker Weg 20, 24105 Kiel, Germany
Laboratoire d'Océanographie de Villefranche-sur-Mer, CNRS-INSU, UMR 7093, Observatoire Océanologique, 06230, Villefranche-sur-Mer, France
Université Pierre et Marie Curie - Paris 6, UMR7093, LOV, Observatoire Océanologique, Villefranche-sur-Mer, France
P. L. Croot
GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, Düsternbrooker Weg 20, 24105 Kiel, Germany
now at: Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway (NUIG), Galway, Ireland
Related authors
No articles found.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Kyle R. Frischkorn, Andreas Krupke, Cécile Guieu, Justine Louis, Mónica Rouco, Andrés E. Salazar Estrada, Benjamin A. S. Van Mooy, and Sonya T. Dyhrman
Biogeosciences, 15, 5761–5778, https://doi.org/10.5194/bg-15-5761-2018, https://doi.org/10.5194/bg-15-5761-2018, 2018
Short summary
Short summary
Trichodesmium is a keystone genus of marine cyanobacteria that is estimated to supply nearly half of the ocean’s fixed nitrogen, fuelling primary productivity and the cycling of carbon and nitrogen in the ocean. In our study we characterize Trichodesmium ecology across the western tropical South Pacific using gene and genome sequencing and geochemistry. We detected genes for phosphorus reduction, providing a mechanism for the noted importance of this organism in the ocean's phosphorus cycle.
Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster
Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, https://doi.org/10.5194/bg-15-4215-2018, 2018
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
A. N. Schwier, C. Rose, E. Asmi, A. M. Ebling, W. M. Landing, S. Marro, M.-L. Pedrotti, A. Sallon, F. Iuculano, S. Agusti, A. Tsiola, P. Pitta, J. Louis, C. Guieu, F. Gazeau, and K. Sellegri
Atmos. Chem. Phys., 15, 7961–7976, https://doi.org/10.5194/acp-15-7961-2015, https://doi.org/10.5194/acp-15-7961-2015, 2015
Short summary
Short summary
The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect, we deployed mesocosms in the Mediterranean Sea for several weeks during both winter pre-bloom and summer oligotrophic conditions and subjected them to various levels of CO2. We observed larger effects due to the differences between a pre-bloom and oligotrophic environment than due to CO2 levels.
E. Pulido-Villena, A.-C. Baudoux, I. Obernosterer, M. Landa, J. Caparros, P. Catala, C. Georges, J. Harmand, and C. Guieu
Biogeosciences, 11, 5607–5619, https://doi.org/10.5194/bg-11-5607-2014, https://doi.org/10.5194/bg-11-5607-2014, 2014
C. Guieu, C. Ridame, E. Pulido-Villena, M. Bressac, K. Desboeufs, and F. Dulac
Biogeosciences, 11, 5621–5635, https://doi.org/10.5194/bg-11-5621-2014, https://doi.org/10.5194/bg-11-5621-2014, 2014
K. Desboeufs, N. Leblond, T. Wagener, E. Bon Nguyen, and C. Guieu
Biogeosciences, 11, 5581–5594, https://doi.org/10.5194/bg-11-5581-2014, https://doi.org/10.5194/bg-11-5581-2014, 2014
C. Ridame, J. Dekaezemacker, C. Guieu, S. Bonnet, S. L'Helguen, and F. Malien
Biogeosciences, 11, 4783–4800, https://doi.org/10.5194/bg-11-4783-2014, https://doi.org/10.5194/bg-11-4783-2014, 2014
M. Bressac, C. Guieu, D. Doxaran, F. Bourrin, K. Desboeufs, N. Leblond, and C. Ridame
Biogeosciences, 11, 1007–1020, https://doi.org/10.5194/bg-11-1007-2014, https://doi.org/10.5194/bg-11-1007-2014, 2014
C. Guieu, F. Dulac, C. Ridame, and P. Pondaven
Biogeosciences, 11, 425–442, https://doi.org/10.5194/bg-11-425-2014, https://doi.org/10.5194/bg-11-425-2014, 2014
C. Ridame, C. Guieu, and S. L'Helguen
Biogeosciences, 10, 7333–7346, https://doi.org/10.5194/bg-10-7333-2013, https://doi.org/10.5194/bg-10-7333-2013, 2013
V. Giovagnetti, C. Brunet, F. Conversano, F. Tramontano, I. Obernosterer, C. Ridame, and C. Guieu
Biogeosciences, 10, 2973–2991, https://doi.org/10.5194/bg-10-2973-2013, https://doi.org/10.5194/bg-10-2973-2013, 2013
Related subject area
Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
Aerosol trace element solubility and deposition fluxes over the polluted, dusty Mediterranean and Black Sea basins
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Global analysis of the controls on seawater dimethylsulfide spatial variability
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Concentrations of dissolved dimethyl sulfide (DMS), methanethiol and other trace gases in context of microbial communities from the temperate Atlantic to the Arctic Ocean
Marine nitrogen fixation as a possible source of atmospheric water-soluble organic nitrogen aerosols in the subtropical North Pacific
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
On physical mechanisms enhancing air–sea CO2 exchange
Winter season Southern Ocean distributions of climate-relevant trace gases
How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study
Identifying the biological control of the annual and multi-year variations in South Atlantic air–sea CO2 flux
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem
Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean
Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification
Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment
On the role of climate modes in modulating the air–sea CO2 fluxes in eastern boundary upwelling systems
Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean
Constraints on global oceanic emissions of N2O from observations and models
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis
Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Rachel Ursula Shelley, Alexander Roberts Baker, Max Thomas, and Sam Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2667, https://doi.org/10.5194/egusphere-2024-2667, 2024
Short summary
Short summary
The fractions of trace elements in atmospheric particles over the Mediterranean and Black seas that are soluble have been measured. These soluble fractions can affect the growth of microorganisms in the ocean and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the soluble element loads found in the Mediterranean surface waters and influence the balance between nitrogen and phosphorus there.
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024, https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Short summary
High frequency pCO2 measurements reveal net neutral CO2 flux in a mesohaline reach of the Chesapeake Bay. Net off-gassing to the atmosphere begins in June when water temperatures rise above ~26ºC, continuing through November when temperatures fall below ~10ºC. Dissolved CO2 concentrations follow day–night cycles and are especially pronounced in warm waters. From December through May, the river is largely an uninterrupted sink for CO2 (i.e. CO2 is drawn out of the atmosphere into the river).
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Lukas Eickhoff, Maddalena Bayer-Giraldi, Naama Reicher, Yinon Rudich, and Thomas Koop
Biogeosciences, 20, 1–14, https://doi.org/10.5194/bg-20-1-2023, https://doi.org/10.5194/bg-20-1-2023, 2023
Short summary
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Short summary
Long-term monitoring is needed to detect changes in our environment. Time series of ocean carbon have aided our understanding of seasonal cycles and provided evidence for ocean acidification. Data gaps are inevitable, yet no standard method for filling gaps exists. We present a regression approach here and compare it to seven other common methods to understand the impact of different approaches when assessing seasonal to climatic variability in ocean carbon.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
N. Precious Mongwe, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, https://doi.org/10.5194/bg-15-2851-2018, 2018
Short summary
Short summary
Here we analyze seasonal cycle of CO2 biases in 10 CMIP5 models in the SO. We find two main model biases; exaggeration of primary production such that biologically driven DIC changes mainly regulates FCO2 variability, and an overestimation of the role of solubility, such that changes in temperature dominantly drive FCO2 seasonal changes to an extent of opposing biological CO2 uptake in spring. CMIP5 models show greater zonal homogeneity in the seasonal cycle of FCO2 than observational products.
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
Short summary
To bridge the missing links between variable marine elemental stoichiometry, phytoplankton physiology and carbon cycling, we embed four environmentally controlled stoichiometric models into a five-box ocean model. As predicted each model varied in its influence on the biological pump. Surprisingly, we found that variation can lead to nonlinear controls on atmospheric CO2 and carbon export, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro
Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, https://doi.org/10.5194/bg-15-2361-2018, 2018
Short summary
Short summary
The Southern Ocean accounts for a large portion of the variability in oceanic CO2 uptake. However, the drivers of these changes are not understood due to a lack of observations. In this study, we used an ensemble of gap-filling methods to estimate surface CO2. We found that winter was a more important driver of longer-term variability driven by changes in wind stress. Summer variability of CO2 was driven primarily by increases in primary production.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Alizée Roobaert, Goulven G. Laruelle, Peter Landschützer, and Pierre Regnier
Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, https://doi.org/10.5194/bg-15-1701-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Cited articles
Aguilar-Islas, A. M., Resing, J. A., and Bruland, K. W.: Catalytically enhanced spectrophotometric determination of manganese in seawater by flow-injection analysis with a commercially available resin for on-line preconcentration, Limnol. Oceanogr. Meth., 4, 105–113, https://doi.org/10.4319/lom.2006.4.105, 2006.
Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., 120, 4–13, https://doi.org/10.1016/j.marchem.2008.09.003, 2010.
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on aerosol iron solubility, Geophys. Res. Lett., 33, L17608, https://doi.org/10.1029/2006gl026557, 2006.
Baker, A. R., Jickells, T. D., Witt, M., and Linge, K. L.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the atlantic ocean, Mar. Chem., 98, 43–58, https://doi.org/10.1016/j.marchem.2005.06.004, 2006.
Balistrieri, L., Brewer, P. G., and Murray, J. W.: Scavenging residence times of trace-metals and surface-chemistry of sinking particles in the deep ocean, Deep-Sea Res., 28, 101–121, https://doi.org/10.1016/0198-0149(81)90085-6, 1981.
Bergquist, B. A., Wu, J., and Boyle, E. A.: Variability in oceanic dissolved iron is dominated by the colloidal fraction, Geochim. Cosmochim. Acta, 71, 2960–2974, 2007.
Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbiere, A., Durand, I., Ebersbach, F., Fuda, J. L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefevre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y. H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., and Wagener, T.: Effect of natural iron fertilization on carbon sequestration in the southern ocean, Nature, 446, 1070–1071, 2007.
Bonnet, S. and Guieu, C.: Dissolution of atmospheric iron in seawater, Geophys. Res. Lett., 31, L03303, https://doi.org/10.1029/2003gl018423, 2004.
Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in the western mediterranean sea: A 1-year survey, J. Geophys. Res.-Oceans, 111, C09010, https://doi.org/10.1029/2005jc003213, 2006.
Boyd, P. W., Watson, A., Law, C. S., Abraham, E., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., Croot, P. L., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tannenberger, K., Turner, S., Waite, A., and Zeldis, J.: Mesoscale iron fertilisation elevates phytoplankton stocks in the polar southern ocean, Nature, 407, 695–702, 2000.
Boyle, E. A., Chapnick, S. D., Bai, X. X., and Spivack, A.: Trace-metal enrichments in the mediterranean-sea, Earth Planet. Sci. Lett., 74, 405–419, https://doi.org/10.1016/s0012-821x(85)80011-x, 1985.
Bressac, M. and Guieu, C.: Organic complexation versus scavenging: What really happens to new atmospheric iron in the ocean surface?, Global Biogeochem. Cy., in revision, 2013.
Bressac, M., Guieu, C., Doxaran, D., Bourrin, F., Obolensky, G., and Grisoni, J.-M.: A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters, Geo-Mar. Lett., 32, 153–164, https://doi.org/10.1007/s00367-011-0269-4, 2012.
Bressac, M., Guieu, C., Doxoran, D., Bourrin, F., Leblond, N., and Ridame, C.: Quantification of the lithogenic carbon pump following a dust event, Biogeosciences (BG), in preparation, 2013.
Bruland, K. W., Franks, R. P., Knauer, G. A., and Martin, J. H.: Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea-water, Anal. Chimica Acta, 105, 233–245, https://doi.org/10.1016/s0003-2670(01)83754-5, 1979.
Brust, J. and Waniek, J. J.: Atmospheric dust contribution to deep-sea particle fluxes in the subtropical northeast atlantic, Deep-Sea Res. Pt. I, 57, 988–998, https://doi.org/10.1016/j.dsr.2010.04.011, 2010.
Brust, J., Schulz-Bull, D. E., Leipe, T., Chavagnac, V., and Waniek, J. J.: Descending particles: From the atmosphere to the deep ocean-a time series study in the subtropical ne atlantic, Geophys. Res. Lett., 38, L06603, https://doi.org/10.1029/2010gl045399, 2011.
Buck, C. S., Landing, W. M., Resing, J. A., and Lebon, G. T.: Aerosol iron and aluminum solubility in the northwest pacific ocean: Results from the 2002 ioc cruise, Geochem. Geophy. Geosy., 7, Q04m07, https://doi.org/10.1029/2005gc000977, 2006.
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Noguchi Aita, M., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Caschetto, S. and Wollast, R.: Vertical distribution of dissolved aluminium in the mediterranean sea, Mar. Chem., 7, 141–155, https://doi.org/10.1016/0304-4203(79)90006-9, 1979.
Chou, L. and Wollast, R.: Biogeochemical behavior and mass balance of dissolved aluminum in the western mediterranean sea, Deep Sea Research Part II: Topical Studies in Oceanography, 44, 741–768, https://doi.org/10.1016/s0967-0645(96)00092-6, 1997.
Copin-Montegut, G., Courau, P., and Nicolas, E.: Distribution and transfer of trace elements in the western mediterranean, Mar. Chem., 18, 189–195, https://doi.org/10.1016/0304-4203(86)90007-1, 1986.
Croot, P. L. and Heller, M. I.: The importance of kinetics and redox in the biogeochemical cycling of iron in the surface ocean, Frontiers in Microbiology, 3, 219, https://doi.org/10.3389/fmicb.2012.00219, 2012.
Croot, P. L. and Johansson, M.: Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (tac), Electroanalysis, 12, 565–576, 2000.
Croot, P. L., Bowie, A. R., Frew, R. D., Maldonado, M., Hall, J. A., Safi, K. A., La Roche, J., Boyd, P. W., and Law, C. S.: Retention of dissolved iron and feii in an iron induced southern ocean phytoplankton bloom, Geophys. Res. Lett., 28, 3425–3428, https://doi.org/10.1029/2001gl013023, 2001.
Croot, P. L., Streu, P., and Baker, A. R.: Short residence time for iron in surface seawater impacted by atmospheric dry deposition from saharan dust events, Geophys. Res. Lett., 31, L23S08, https://doi.org/10.1029/2004gl020153, 2004.
Croot, P. L., Passow, U., Assmy, P., Jansen, S., and Strass, V. H.: Surface active substances in the upper water column during a southern ocean iron fertilization experiment (eifex), Geophys. Res. Lett., 34, L03612, https://doi.org/10.1029/2006gl028080, 2007.
Cutter, G. A., Andersson, P., Codispoti, L., Croot, P. L., Francois, R., Lohan, M., Obata, H., and Rutgers van der Loeff, M.: Sampling and Sample-handling Protocols for GEOTRACES Cruises: http://www.geotraces.org/libraries/documents/Intercalibration/Cookbook.pdf, 2010.
Dammshäuser, A., Wagener, T., and Croot, P. L.: Surface water dissolved aluminum and titanium: Tracers for specific time scales of dust deposition to the atlantic?, Geophys. Res. Lett., 38, L24601, https://doi.org/10.1029/2011gl049847, 2011.
Danielsson, L.-G., Magnusson, B., and Westerlund, S.: An improved metal extraction procedure for the determination of trace metals in sea water by atomic absorption spectrometry with electrothermal atomization, Analyt. Chimica Acta, 98, 47–57, https://doi.org/10.1016/s0003-2670(01)83237-2, 1978.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou, M.: The atmospheric input of trace species to the world ocean, Glob. Biogeochem. Cy., 5, 193–259, https://doi.org/10.1029/91gb01778, 1991.
Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L., and Landry, M.: Experimental determination of the organic carbon flux from open-ocean surface waters, Nature, 389, 951–954, 1997.
Fischer, A. C., Kroon, J. J., Verburg, T. G., Teunissen, T., and Wolterbeek, H. T.: On the relevance of iron adsorption to container materials in small-volume experiments on iron marine chemistry: 55Fe-aided assessment of capacity, affinity and kinetics, Mar. Chem., 107, 533–546, 2007.
Giovagnetti, V., Brunet, C., Conversano, F., Tramontano, F., Obernosterer, I., Ridame, C., and Guieu, C.: Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: A mesocosm experiment in the mediterranean sea, Biogeosciences Discuss., 9, 19199–19243, https://doi.org/10.5194/bgd-9-19199-2012, 2012.
Gledhill, M. and Buck, K. N.: The organic complexation of iron in the marine environment: A review, Front. Microbiol., 3, https://doi.org/10.3389/fmicb.2012.00069, 2012.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of seawater analysis, Verlag Chemie, Weinheim, 1983.
Guerzoni, S., Molinaroli, E., Rossini, P., Rampazzo, G., Quarantotto, G., de Falco, G., and Cristini, S.: Role of desert aerosol in metal fluxes in the mediterranean area, Chemosphere, 39, 229–246, https://doi.org/10.1016/s0045-6535(99)00105-8, 1999.
Guieu, C., Duce, R., and Arimoto, R.: Dissolved input of manganese to the ocean: Aerosol source, J. Geophys. Res., 99, 18789–18800, 1994.
Guieu, C., Loye-Pilot, M. D., and Ridame, C.: DUNE –a Dust experiment in a low Nutrient, low Chlorophyll Ecosystem – Quantifying the role of atmospheric input on marine ecosystem using large clean mesocosms, SOLAS Newsletter, 9, 36–37, 2009.
Guieu, C., Dulac, F., Desboeufs, K., Wagener, T., Pulido-Villena, E., Grisoni, J.-M., Louis, F., Ridame, C., Blain, S., Brunet, C., Nguyen, E. B., Tran, S., Labiadh, M., and Dominici, J.-M.: Large clean mesocosms and simulated dust deposition: A new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs, Biogeosciences, 7, 2765–2784, https://doi.org/10.5194/bg-7-2765-2010, 2010.
Guieu, C., Dulac, F., Ridame, C., and Pondaven, P.: Introduction to the DUNE project: a DUst experiment in a low Nutrient, low chlorophyll Ecosystem, Biogeosciences (BG), in preparation, 2013.
Heller, M. I. and Croot, P. L.: Kinetics of superoxide reactions with dissolved organic matter in tropical Atlantic surface waters near Cape Verde (TENATSO), J. Geophys. Res., 115, C12038, https://doi.org/10.1029/2009jc006021, 2010.
Herut, B., Zohary, T., Krom, M. D., Mantoura, R. F. C., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., and Frede Thingstad, T.: Response of east mediterranean surface water to saharan dust: On-board microcosm experiment and field observations, Deep-Sea Res. Pt. II, 52, 3024–3040, https://doi.org/10.1016/j.dsr2.2005.09.003, 2005.
Honeyman, B. D. and Santschi, P. H.: Coupling adsorption and particle aggregation: Laboratory studies of "colloidal pumping" using iron-59fe-labeled hematite, Environ. Sci. Technol., 25, 1739–1747, https://doi.org/10.1021/es00022a010, 1991.
Honeyman, B. D., Balistieri, L. S., and Murray, J. W.: Oceanic trace metal scavenging: The importance of particle concentration, Deep-Sea Res., 35, 227–246, 1988.
Hunter, K. A.: The adsorptive properties of sinking particles in the deep ocean, Deep-Sea Res., 30, 669–675, 1983.
Hydes, D. J. and Liss, P. S.: Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters, Analyst, 101, 922–931, 1976.
Hydes, D. J., de Lange, G. J., and de Baar, H. J. W.: Dissolved aluminium in the mediterranean, Geochim. Cosmochim. Acta, 52, 2107–2114, https://doi.org/10.1016/0016-7037(88)90190-1, 1988.
Jickells, T. D.: The inputs of dust derived elements to the sargasso sea; a synthesis, Mar. Chem., 68, 5–14, 1999.
Jickells, T., Church, T., Veron, A., and Arimoto, R.: Atmospheric inputs of manganese and aluminum to the sargasso sea and their relation to surface-water concentrations, Mar. Chem., 46, 283–292, https://doi.org/10.1016/0304-4203(94)90083-3, 1994.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Johnson, K. S., Elrod, V., Fitzwater, S., Plant, J., Boyle, E., Bergquist, B., Bruland, K., Aguilar-Islas, A., Buck, K., Lohan, M., Smith, G. J., Sohst, B., Coale, K., Gordon, M., Tanner, S., Measures, C., Moffett, J., Barbeau, K., King, A., Bowie, A., Chase, Z., Cullen, J., Laan, P., Landing, W., Mendez, J., Milne, A., Obata, H., Doi, T., Ossiander, L., Sarthou, G., Sedwick, P., Van den Berg, S., Laglera-Baquer, L., Wu, J.-f., and Cai, Y.: Developing standards for dissolved iron in seawater, Eos Trans. AGU, 88, 2007.
Journet, E., Desboeufs, K. V., Caquineau, S., and Colin, J.-L.: Mineralogy as a critical factor of dust iron solubility, Geophys. Res. Lett., 35, L07805, https://doi.org/10.1029/2007gl031589, 2008.
Klinkhammer, G. P.: Determination of manganese in sea water by flameless atomic absorption spectrometry after preconcentration with 8-hydroxyquinoline in chloroform, Analytical Chemistry, 52, 117–120, https://doi.org/10.1021/ac50051a028, 1980.
Kremling, K. and Petersen, H.: The distribution of zinc, cadmium, copper, manganese and iron in waters of the open mediterranean sea, Meteor Forschungsergeb Reihe A/B, 23, 5–14, 1981.
Laghdass, M., Blain, S., Besseling, M., Catala, P., Guieu, C., and Obernosterer, I.: Effects of saharan dust on the microbial community during a large in situ mesocosm experiment in the nw mediterranean sea, Aquat. Microb. Ecol., 62, 201–213, https://doi.org/10.3354/Ame01466, 2011.
Landing, W. M. and Paytan, A.: Marine chemistry special issue: Aerosol chemistry and impacts on the ocean, Mar. Chem., 120, 1–3, https://doi.org/10.1016/j.marchem.2010.04.001, 2010.
Liu, X. and Millero, F. J.: The solubility of iron in seawater, Mar. Chem., 77, 43–54, 2002.
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of global primary production in the ocean from satellite radiometer data, J. Plankt. Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
Mackenzie, F. T., Stoffyn, M., and Wollast, R.: Aluminum in seawater: Control by biological activity, Science, 199, 680–682, https://doi.org/10.1126/science.199.4329.680, 1978.
Measures, C. I., Sato, T., Vink, S., Howell, S., and Li, Y. H.: The fractional solubility of aluminium from mineral aerosols collected in hawaii and implications for atmospheric deposition of biogeochemically important trace elements, Mar. Chem., 120, 144–153, https://doi.org/10.1016/j.marchem.2009.01.014, 2010.
Mendez, J., Guieu, C., and Adkins, J.: Atmospheric input of manganese and iron to the ocean: Seawater dissolution experiments with saharan and north american dusts, Mar. Chem., 120, 34–43, https://doi.org/10.1016/j.marchem.2008.08.006, 2010.
Millot, C.: Circulation in the western mediterranean sea, Journal of Marine Systems, 20, 423–442, https://doi.org/10.1016/s0924-7963(98)00078-5, 1999.
Moffett, J. W.: The importance of microbial Mn oxidation in the upper ocean: a comparison of the Sargasso Sea and equatorial Pacific, Deep-Sea Res. Pt. I, 44, 1277–1291, https://doi.org/10.1016/s0967-0637(97)00032-0, 1997.
Moore, J. K., Doney, S. C., Lindsay, K., Mahowald, N., and Michaels, A. F.: Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition, Tellus B, 58, 560–572, 2006.
Moran, S. B. and Moore, R. M.: Temporal variations in dissolved and particulate aluminum during a spring bloom, Estuarine, Coastal and Shelf Science, 27, 205–215, https://doi.org/10.1016/0272-7714(88)90090-x, 1988.
Morgan, J. J.: Kinetics of reaction between o2 and mn(ii) species in aqueous solutions, 69, 35–48, https://doi.org/10.1016/j.gca.2004.06.013,, 2005.
Morley, N. H., Burton, J. D., Tankere, S. P. C., and Martin, J. M.: Distribution and behaviour of some dissolved trace metals in the western mediterranean sea, Deep-Sea Res. Pt. II, 44, 675–691, https://doi.org/10.1016/s0967-0645(96)00098-7, 1997.
Nealson, K. H., Tebo, B. M., Rosson, R. A., and Allen, I. L.: Occurrence and mechanisms of microbial oxidation of manganese, in: Advances in applied microbiology, Academic Press, 279–318, 1988.
Noble, A. E., Saito, M. A., Maiti, K., and Benitez-Nelson, C. R.: Cobalt, manganese, and iron near the hawaiian islands: A potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals, Deep-Sea Res. Pt. II, 55, 1473–1490, https://doi.org/10.1016/j.dsr2.2008.02.010, 2008.
Obata, H., Shitashima, K., Isshik, K., and Nakayama, E.: Iron, manganese and aluminum in upper waters of the western south pacific ocean and its adjacent seas, J. Oceanogr., 64, 233–245, 2008.
Pulido-Villena, E., Baudoux, A.-C., Obernosterer, I., Catala, P., and Guieu, C.: Enhanced carbon remineralization by the microbial food web after dust deposition: Results from a mesocosm study, Biogeosciences Discuss., in preparation, 2013.
Roitz, J. S. and Bruland, K. W.: Determination of dissolved manganese(II) in coastal and estuarine waters by differential pulse cathodic stripping voltammetry, Analyt. Chimica Acta, 344, 175–180, https://doi.org/10.1016/s0003-2670(97)00041-x, 1997.
Saito, M. A. and Moffett, J. W.: Temporal and spatial variability of cobalt in the atlantic ocean, Geochim. Cosmochim. Acta, 66, 1943–1953, https://doi.org/10.1016/s0016-7037(02)00829-3, 2002.
Sañudo-Wilhelmy, S. A., Rivera-Duarte, I., and Russell Flegal, A.: Distribution of colloidal trace metals in the san francisco bay estuary, Geochim. Cosmochim. Acta, 60, 4933–4944, https://doi.org/10.1016/s0016-7037(96)00284-0, 1996.
Sarthou, G. and Jeandel, C.: Seasonal variations of iron concentrations in the ligurian sea and iron budget in the western mediterranean sea, Mar. Chem., 74, 115–129, 2001.
Sedwick, P. N., Sholkovitz, E. R., and Church, T. M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the sargasso sea, Geochem. Geophy. Geosy., 8, Q10Q06, https://doi.org/10.1029/2007gc001586, 2007.
Sherrell, R. M. and Boyle, E. A.: Zinc, chromium, vanadium and iron in the mediterranean sea, Deep-Sea Res. Pt. A, 35, 1319–1334, https://doi.org/10.1016/0198-0149(88)90085-4, 1988.
Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R., and Powell, C. F.: Fractional solubility of aerosol iron: Synthesis of a global-scale data set, Geochim. Cosmochim. Acta, 89, 173–189, https://doi.org/10.1016/j.gca.2012.04.022, 2012.
Spokes, L. J., and Jickells, T. D.: Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater, Aquat. Geochem., 1, 355–374, https://doi.org/10.1007/bf00702739, 1996.
Statham, P. J., Burton, J. D., and Hydes, D. J.: Cd and Mn in the Alboran Sea and adjacent North Atlantic: geochemical implications for the Mediterranean, Nature, 313, 565–567, 1985.
Stumm, W. and Morgan, J. J.: Aquatic chemistry, Wiley-Interscience, New York, 1022 pp., 1996.
Sunda, W. G. and Huntsman, S. A.: Microbial oxidation of manganese in a north carolina estuary, Anglais, 32, 552–564, 1987.
Sunda, W. G. and Huntsman, S. A.: Effect of sunlight on redox cycles of manganese in the southwestern sargasso sea, Deep-Sea Res. Pt. A, 35, 1297–1317, 1988.
Sunda, W. G. and Huntsman, S. A.: Diel cycles in microbial manganese oxidation and manganese redox speciation in coastal waters of the bahama-islands, Limnol. Oceanogr., 35, 325–338, 1990.
Turekian, K. K.: The fate of metals in the oceans, Geochim. Cosmochim. Acta, 41, 1139–1144, https://doi.org/10.1016/0016-7037(77)90109-0, 1977.
van den Berg, C. M. G., Boussemart, M., Yokoi, K., Prartono, T., and Campos, M. L. A. M.: Speciation of aluminium, chromium and titanium in the nw mediterranean, Mar. Chem., 45, 267–282, https://doi.org/10.1016/0304-4203(94)90074-4, 1994.
van den Berg, C. M. G.: Evidence for organic complexation of iron in seawater, Mar. Chem., 50, 139–157, 1995.
von Langen, P. J., Johnson, K. S., Coale, K. H., and Elrod, V. A.: Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations, Geochim. Cosmochim. Acta, 61, 4945–4954, https://doi.org/10.1016/s0016-7037(97)00355-4, 1997.
Wagener, T., Pulido-Villena, E., and Guieu, C.: Dust iron dissolution in seawater: Results from a one-year time-series in the mediterranean sea, Geophys. Res. Lett., 35, L16601, https://doi.org/10.1029/2008GL034581, 2008.
Wagener, T., Guieu, C., and Leblond, N.: Effects of dust deposition on iron cycle in the surface mediterranean sea: Results from a mesocosm seeding experiment, Biogeosciences, 7, 3769–3781, https://doi.org/10.5194/bg-7-3769-2010, 2010.
Ye, Y., Wagener, T., Völker, C., Guieu, C., and Wolf-Gladrow, D. A.: Dust deposition: Iron source or sink? A case study, Biogeosciences, 8, 2107–2124, https://doi.org/10.5194/bg-8-2107-2011, 2011.
Yeats, P. A. and Strain, P. M.: The oxidation of manganese in seawater: Rate constants based on field data, Estuarine, Coast. Shelf Sci., 31, 11–24, 1990.
Yoon, Y. Y., Martin, J. M., and Cotte, M. H.: Dissolved trace metals in the western mediterranean sea: Total concentration and fraction isolated by c18 sep-pak technique, Mar. Chem., 66, 129–148, https://doi.org/10.1016/s0304-4203(99)00033-x, 1999.
Zhuang, G., Yi, Z., Duce, R. A., and Brown, P. R.: Chemistry of iron in marine aerosols, Global Biogeochem. Cy., 6, 161–173, https://doi.org/10.1029/92gb00756, 1992.
Altmetrics
Final-revised paper
Preprint