Articles | Volume 10, issue 11
Biogeosciences, 10, 7373–7393, 2013
https://doi.org/10.5194/bg-10-7373-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Improving constraints on biospheric feedbacks in Earth system...
Research article
18 Nov 2013
Research article
| 18 Nov 2013
Long-term trends in ocean plankton production and particle export between 1960–2006
C. Laufkötter et al.
Related authors
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021, https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Damiano Righetti, Meike Vogt, Niklaus E. Zimmermann, Michael D. Guiry, and Nicolas Gruber
Earth Syst. Sci. Data, 12, 907–933, https://doi.org/10.5194/essd-12-907-2020, https://doi.org/10.5194/essd-12-907-2020, 2020
Short summary
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Cara Nissen, Meike Vogt, Matthias Münnich, Nicolas Gruber, and F. Alexander Haumann
Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, https://doi.org/10.5194/bg-15-6997-2018, 2018
Short summary
Short summary
Using a regional ocean model, we find that coccolithophore biomass in the Southern Ocean is highest in the subantarctic in late summer when diatom growth becomes limited by silicate. We show that zooplankton grazing is crucial to explain phytoplankton biomass distributions in this area and conclude that assessments of future distributions should not only consider physical and chemical factors (temperature, light, nutrients, pH), but also interactions with other phytoplankton or zooplankton.
Elisa Lovecchio, Nicolas Gruber, and Matthias Münnich
Biogeosciences, 15, 5061–5091, https://doi.org/10.5194/bg-15-5061-2018, https://doi.org/10.5194/bg-15-5061-2018, 2018
Short summary
Short summary
We find that the ocean's flow on scales of a few tens to a few hundred km has a central role in the lateral redistribution of the organic carbon from the coast to the open ocean. Narrow coastal filaments drive the offshore flux of organic carbon and strongly enhance its availability up to 1000 km from the coast. Eddies extend the flux up to 2000 km offshore containing 30 % of the organic matter in the open waters. Resolving these scales is essential to capture the coastal/open ocean coupling.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yu Liu, Nicolas Gruber, and Dominik Brunner
Atmos. Chem. Phys., 17, 14145–14169, https://doi.org/10.5194/acp-17-14145-2017, https://doi.org/10.5194/acp-17-14145-2017, 2017
Short summary
Short summary
We analyze fossil fuel signals in atmospheric CO2 over Europe using a high-resolution atmospheric transport model and diurnal emission data. We find that fossil fuel CO2 accounts for more than half of the atmospheric CO2 variations, mainly at diurnal timescales. The covariance of diurnal emission and transport also leads to a substantial rectification effect. Thus, the consideration of diurnal emissions and high-resolution transport is paramount for accurately modeling the fossil fuel signal.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
R. Arruda, P. H. R. Calil, A. A. Bianchi, S. C. Doney, N. Gruber, I. Lima, and G. Turi
Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, https://doi.org/10.5194/bg-12-5793-2015, 2015
Short summary
Short summary
We investigate surface ocean pCO2 and air-sea CO2 fluxes climatological variability through biogeochemical modeling in the southwestern Atlantic Ocean. Surface ocean pCO2 spatio-temporal variability was found to be controlled mainly by temperature and Dissolved Inorganic Carbon (DIC). Biological production, physical transport and solubility are the main controlling processes. With different behaviors on subtropical and subantarctic open ocean, and on inner/outer continental shelves.
B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner
Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, https://doi.org/10.5194/acp-15-11147-2015, 2015
Short summary
Short summary
We present a detailed analysis of a new greenhouse gas measurement network
in the Swiss Plateau, situated between the Jura mountains and the Alps. We
find the network's measurements to be information rich and suitable
for studying surface carbon fluxes of the study region. However, we are
limited by the high-resolution (2km) atmospheric transport model's ability
to simulate meteorology at the individual measurement stations, especially
at those situated in rough terrain.
A. Jahn, K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady
Geosci. Model Dev., 8, 2419–2434, https://doi.org/10.5194/gmd-8-2419-2015, https://doi.org/10.5194/gmd-8-2419-2015, 2015
Short summary
Short summary
Carbon isotopes have been added to the ocean model of the Community Earth System Model version 1 (CESM1). This paper describes the details of how the abiotic 14C tracer and the biotic 13C and 14C tracers were added to the existing ocean model of the CESM. In addition, it shows the first results of the new model features compared to observational data for the 1990s.
J. Martinez-Rey, L. Bopp, M. Gehlen, A. Tagliabue, and N. Gruber
Biogeosciences, 12, 4133–4148, https://doi.org/10.5194/bg-12-4133-2015, https://doi.org/10.5194/bg-12-4133-2015, 2015
S. K. Lauvset, N. Gruber, P. Landschützer, A. Olsen, and J. Tjiputra
Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, https://doi.org/10.5194/bg-12-1285-2015, 2015
Short summary
Short summary
This paper utilizes the SOCATv2 data product to calculate surface ocean pH. The pH data are divided into 17 biomes, and a linear regression is used to derive the long-term trend of pH in each biome. The results are consistent with the trends observed at time series stations. The uncertainties are too large for a mechanistic understanding of the driving forces behind the trend, but there are indications that concurrent changes in chemistry create spatial variability.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
G. Turi, Z. Lachkar, and N. Gruber
Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, https://doi.org/10.5194/bg-11-671-2014, 2014
P. Landschützer, N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng
Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, https://doi.org/10.5194/bg-10-7793-2013, 2013
M. Vogt, T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. Le Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley, and Y. Yamanaka
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-17193-2013, https://doi.org/10.5194/bgd-10-17193-2013, 2013
Revised manuscript has not been submitted
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
A. Schmittner, N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and T. K. Westberry
Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, https://doi.org/10.5194/bg-10-5793-2013, 2013
E. T. Buitenhuis, M. Vogt, R. Moriarty, N. Bednaršek, S. C. Doney, K. Leblanc, C. Le Quéré, Y.-W. Luo, C. O'Brien, T. O'Brien, J. Peloquin, R. Schiebel, and C. Swan
Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, https://doi.org/10.5194/essd-5-227-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Y. Yara, M. Vogt, M. Fujii, H. Yamano, C. Hauri, M. Steinacher, N. Gruber, and Y. Yamanaka
Biogeosciences, 9, 4955–4968, https://doi.org/10.5194/bg-9-4955-2012, https://doi.org/10.5194/bg-9-4955-2012, 2012
Related subject area
Earth System Science/Response to Global Change: Climate Change
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Climate, land cover and topography: essential ingredients in predicting wetland permanence
Not all biodiversity rich spots are climate refugia
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Anthropogenic CO2-mediated freshwater acidification limits survival, calcification, metabolism, and behaviour in stress-tolerant freshwater crustaceans
Quantifying the role of moss in terrestrial ecosystem carbon dynamics in northern high latitudes
On the influence of erect shrubs on the irradiance profile in snow
Tolerance of tropical marine microphytobenthos exposed to elevated irradiance and temperature
Persistent impacts of the 2018 drought on forest disturbance regimes in Europe
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2
Effects of elevated CO2 and extreme climatic events on forage quality and in vitro rumen fermentation in permanent grassland
Cushion bog plant community responses to passive warming in southern Patagonia
Blue carbon stocks and exchanges along the California coast
Oceanic primary production decline halved in eddy-resolving simulations of global warming
Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model
Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees?
Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
Sensitivity of 21st-century projected ocean new production changes to idealized biogeochemical model structure
Ocean carbon uptake under aggressive emission mitigation
Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration
Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016
Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature
Technical note: Interpreting pH changes
Timing of drought in the growing season and strong legacy effects determine the annual productivity of temperate grasses in a changing climate
Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions
Ocean-related global change alters lipid biomarker production in common marine phytoplankton
Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef
Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia
Global climate response to idealized deforestation in CMIP6 models
Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
Ecosystem physio-phenology revealed using circular statistics
Understanding the uncertainty in global forest carbon turnover
Characterizing deepwater oxygen variability and seafloor community responses using a novel autonomous lander
Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Foraminiferal holobiont thermal tolerance under future warming – roommate problems or successful collaboration?
Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
Potential predictability of marine ecosystem drivers
Is deoxygenation detectable before warming in the thermocline?
Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis
Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean
Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003
Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?
Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection
Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment
Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile
A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification
Forest aboveground biomass stock and resilience in a tropical landscape of Thailand
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Jody Daniel, Rebecca C. Rooney, and Derek T. Robinson
Biogeosciences, 19, 1547–1570, https://doi.org/10.5194/bg-19-1547-2022, https://doi.org/10.5194/bg-19-1547-2022, 2022
Short summary
Short summary
The threat posed by climate change to prairie pothole wetlands is well documented, but gaps remain in our ability to make meaningful predictions about how prairie pothole wetlands will respond. We integrate aspects of topography, land cover/land use and climate to model the permanence class of tens of thousands of wetlands at the western edge of the Prairie Pothole Region.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Alex R. Quijada-Rodriguez, Pou-Long Kuan, Po-Hsuan Sung, Mao-Ting Hsu, Garett J. P. Allen, Pung Pung Hwang, Yung-Che Tseng, and Dirk Weihrauch
Biogeosciences, 18, 6287–6300, https://doi.org/10.5194/bg-18-6287-2021, https://doi.org/10.5194/bg-18-6287-2021, 2021
Short summary
Short summary
Anthropogenic CO2 is chronically acidifying aquatic ecosystems. We aimed to determine the impact of future freshwater acidification on the physiology and behaviour of an important aquaculture crustacean, Chinese mitten crabs. We report that elevated freshwater CO2 levels lead to impairment of calcification, locomotor behaviour, and survival and reduced metabolism in this species. Results suggest that present-day calcifying invertebrates could be heavily affected by freshwater acidification.
Junrong Zha and Qianlai Zhuang
Biogeosciences, 18, 6245–6269, https://doi.org/10.5194/bg-18-6245-2021, https://doi.org/10.5194/bg-18-6245-2021, 2021
Short summary
Short summary
This study incorporated moss into an extant biogeochemistry model to simulate the role of moss in carbon dynamics in the Arctic. The interactions between higher plants and mosses and their competition for energy, water, and nutrients are considered in our study. We found that, compared with the previous model without moss, the new model estimated a much higher carbon accumulation in the region during the last century and this century.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Sazlina Salleh and Andrew McMinn
Biogeosciences, 18, 5313–5326, https://doi.org/10.5194/bg-18-5313-2021, https://doi.org/10.5194/bg-18-5313-2021, 2021
Short summary
Short summary
The benthic diatom communities in Tanjung Rhu, Malaysia, were regularly exposed to high light and temperature variability during the tidal cycle, resulting in low photosynthetic efficiency. We examined the impact of high temperatures on diatoms' photosynthetic capacities, and temperatures beyond 50 °C caused severe photoinhibition. At the same time, those diatoms exposed to temperatures of 40 °C did not show any sign of photoinhibition.
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Short summary
Europe was affected by an extreme drought in 2018. We show that this drought has increased forest disturbances across Europe, especially central and eastern Europe. Disturbance levels observed 2018–2020 were the highest on record for 30 years. Increased forest disturbances were correlated with low moisture and high atmospheric water demand. The unprecedented impacts of the 2018 drought on forest disturbances demonstrate an urgent need to adapt Europe’s forests to a hotter and drier future.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Vincent Niderkorn, Annette Morvan-Bertrand, Aline Le Morvan, Angela Augusti, Marie-Laure Decau, and Catherine Picon-Cochard
Biogeosciences, 18, 4841–4853, https://doi.org/10.5194/bg-18-4841-2021, https://doi.org/10.5194/bg-18-4841-2021, 2021
Short summary
Short summary
Climate change can change vegetation characteristics in grasslands with a potential impact on forage chemical composition and quality, as well as its use by ruminants. Using controlled conditions mimicking a future climatic scenario, we show that forage quality and ruminant digestion are affected in opposite ways by elevated atmospheric CO2 and an extreme event (heat wave, severe drought), indicating that different factors of climate change have to be considered together.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Melissa A. Ward, Tessa M. Hill, Chelsey Souza, Tessa Filipczyk, Aurora M. Ricart, Sarah Merolla, Lena R. Capece, Brady C O'Donnell, Kristen Elsmore, Walter C. Oechel, and Kathryn M. Beheshti
Biogeosciences, 18, 4717–4732, https://doi.org/10.5194/bg-18-4717-2021, https://doi.org/10.5194/bg-18-4717-2021, 2021
Short summary
Short summary
Salt marshes and seagrass meadows ("blue carbon" habitats) can sequester and store high levels of organic carbon (OC), helping to mitigate climate change. In California blue carbon sediments, we quantified OC storage and exchange between these habitats. We find that (1) these salt marshes store about twice as much OC as seagrass meadows do and (2), while OC from seagrass meadows is deposited into neighboring salt marshes, little of this material is sequestered as "long-term" carbon.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Anna Katavouta and Richard G. Williams
Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, https://doi.org/10.5194/bg-18-3189-2021, 2021
Short summary
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Genevieve Jay Brett, Daniel B. Whitt, Matthew C. Long, Frank Bryan, Kate Feloy, and Kelvin J. Richards
Biogeosciences, 18, 3123–3145, https://doi.org/10.5194/bg-18-3123-2021, https://doi.org/10.5194/bg-18-3123-2021, 2021
Short summary
Short summary
We quantify one form of uncertainty in modeled 21st-century changes in phytoplankton growth. The supply of nutrients from deep to surface waters decreases in the warmer future ocean, but the effect on phytoplankton growth also depends on changes in available light, how much light and nutrient the plankton need, and how fast they can grow. These phytoplankton properties can be summarized as a biological timescale: when it is short, future growth decreases twice as much as when it is long.
Sean M. Ridge and Galen A. McKinley
Biogeosciences, 18, 2711–2725, https://doi.org/10.5194/bg-18-2711-2021, https://doi.org/10.5194/bg-18-2711-2021, 2021
Short summary
Short summary
Approximately 40 % of the CO2 emissions from fossil fuel combustion and cement production have been absorbed by the ocean. The goal of the UNFCCC Paris Agreement is to reduce humanity's emissions so as to limit global warming to no more than 2 °C, and ideally less than 1.5 °C. If we achieve this level of mitigation, the ocean's uptake of carbon will be strongly reduced. Excess carbon trapped in the near-surface ocean will begin to mix back to the surface and will limit additional uptake.
Alexander Koch, Chris Brierley, and Simon L. Lewis
Biogeosciences, 18, 2627–2647, https://doi.org/10.5194/bg-18-2627-2021, https://doi.org/10.5194/bg-18-2627-2021, 2021
Short summary
Short summary
Estimates of large-scale tree planting and forest restoration as a carbon sequestration tool typically miss a crucial aspect: the Earth system response to the increased land carbon sink from new vegetation. We assess the impact of tropical forest restoration using an Earth system model under a scenario that limits warming to 2 °C. Almost two-thirds of the carbon impact of forest restoration is offset by negative carbon cycle feedbacks, suggesting a more modest benefit than in previous studies.
Wei Min Hao, Matthew C. Reeves, L. Scott Baggett, Yves Balkanski, Philippe Ciais, Bryce L. Nordgren, Alexander Petkov, Rachel E. Corley, Florent Mouillot, Shawn P. Urbanski, and Chao Yue
Biogeosciences, 18, 2559–2572, https://doi.org/10.5194/bg-18-2559-2021, https://doi.org/10.5194/bg-18-2559-2021, 2021
Short summary
Short summary
We examined the trends in the spatial and temporal distribution of the area burned in northern Eurasia from 2002 to 2016. The annual area burned in this region declined by 53 % during the 15-year period under analysis. Grassland fires in Kazakhstan dominated the fire activity, comprising 47 % of the area burned but accounting for 84 % of the decline. A wetter climate and the increase in grazing livestock in Kazakhstan are the major factors contributing to the decline in the area burned.
Hangxiao Li, Tianpeng Xu, Jing Ma, Futian Li, and Juntian Xu
Biogeosciences, 18, 1439–1449, https://doi.org/10.5194/bg-18-1439-2021, https://doi.org/10.5194/bg-18-1439-2021, 2021
Short summary
Short summary
Few studies have investigated effects of ocean acidification and seasonal changes in temperature and day length on marine diatoms. We cultured a marine diatom under two CO2 levels and three combinations of temperature and day length, simulating different seasons, to investigate combined effects of these factors. Acidification had contrasting effects under different combinations, indicating that the future ocean may show different effects on diatoms in different clusters of factors.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Claudia Hahn, Andreas Lüscher, Sara Ernst-Hasler, Matthias Suter, and Ansgar Kahmen
Biogeosciences, 18, 585–604, https://doi.org/10.5194/bg-18-585-2021, https://doi.org/10.5194/bg-18-585-2021, 2021
Short summary
Short summary
While existing studies focus on the immediate effects of drought events on grassland productivity, long-term effects are mostly neglected. But, to conclude universal outcomes, studies must consider comprehensive ecosystem mechanisms. In our study, we found that the resistance of growth rates to drought in grasses varies across seasons, and positive legacy effects of drought indicate a high resilience. The high resilience compensates for immediate drought effects on grasses to a large extent.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Short summary
Our results show that ocean acidification, warming, increased light exposure and reduced nutrient availability significantly reduce the growth rate but increase particulate organic and inorganic carbon in cells in the coccolithophore Emiliania huxleyi, indicating biogeochemical consequences of future ocean changes on the calcifying microalga. Concurrent changes in nutrient concentrations and pCO2 levels predominantly affected E. huxleyi growth, photosynthetic carbon fixation and calcification.
Rong Bi, Stefanie M. H. Ismar-Rebitz, Ulrich Sommer, Hailong Zhang, and Meixun Zhao
Biogeosciences, 17, 6287–6307, https://doi.org/10.5194/bg-17-6287-2020, https://doi.org/10.5194/bg-17-6287-2020, 2020
Short summary
Short summary
Lipids provide crucial insight into the trajectory of ecological functioning in changing environments. We experimentally explore responses of lipid biomarker production in phytoplankton to projected changes in temperature, nutrients and pCO2. Differential responses of lipid biomarkers indicate rearrangements of cellular carbon pools under future ocean scenarios. Such variations in lipid biomarker production would have important impacts on marine ecological functions and biogeochemical cycles.
George Roff, Jennifer Joseph, and Peter J. Mumby
Biogeosciences, 17, 5909–5918, https://doi.org/10.5194/bg-17-5909-2020, https://doi.org/10.5194/bg-17-5909-2020, 2020
Short summary
Short summary
In recent decades, extensive mortality of reef-building corals throughout the Caribbean region has led to the erosion of reef frameworks and declines in biodiversity. Using field observations, models, and high-precision U–Th dating, we quantified changes in the structural complexity of coral reef frameworks over the past 2 decades. Structural complexity was stable at reef scales, yet bioerosion led to declines in small-scale microhabitat complexity with cascading effects on cryptic fauna.
Yota Harada, Rod M. Connolly, Brian Fry, Damien T. Maher, James Z. Sippo, Luke C. Jeffrey, Adam J. Bourke, and Shing Yip Lee
Biogeosciences, 17, 5599–5613, https://doi.org/10.5194/bg-17-5599-2020, https://doi.org/10.5194/bg-17-5599-2020, 2020
Short summary
Short summary
In 2015–2016, an extensive area of mangroves along ~ 1000 km of coastline in the Gulf of Carpentaria, Australia, experienced dieback as a result of a climatic extreme event that included drought conditions and low sea levels. Multiannual field campaigns conducted from 2016 to 2018 show substantial recovery of the mangrove vegetation. However, stable isotopes suggest long-lasting changes in carbon, nitrogen and sulfur cycling following the dieback.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Natalya D. Gallo, Kevin Hardy, Nicholas C. Wegner, Ashley Nicoll, Haleigh Yang, and Lisa A. Levin
Biogeosciences, 17, 3943–3960, https://doi.org/10.5194/bg-17-3943-2020, https://doi.org/10.5194/bg-17-3943-2020, 2020
Short summary
Short summary
Environmental exposure histories can affect organismal sensitivity to climate change and ocean deoxygenation. The natural variability of environmental conditions for nearshore deep-sea habitats is poorly known due to technological challenges. We develop and test a novel, autonomous, hand-deployable lander outfitted with environmental sensors and a camera system and use it to characterize high-frequency oxygen, temperature, and pH variability at 100–400 m as well as seafloor community responses.
Vincent Echevin, Manon Gévaudan, Dante Espinoza-Morriberón, Jorge Tam, Olivier Aumont, Dimitri Gutierrez, and François Colas
Biogeosciences, 17, 3317–3341, https://doi.org/10.5194/bg-17-3317-2020, https://doi.org/10.5194/bg-17-3317-2020, 2020
Short summary
Short summary
The coasts of Peru encompass the richest fisheries in the entire ocean. It is therefore very important for this country to understand how the nearshore marine ecosystem may evolve under climate change. Fine-scale numerical models are very useful because they can represent precisely the evolution of key parameters such as temperature, water oxygenation, and plankton biomass. Here we study the evolution of the Peruvian marine ecosystem in the 21st century under the worst-case climate scenario.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Doron Pinko, Sigal Abramovich, and Danna Titelboim
Biogeosciences, 17, 2341–2348, https://doi.org/10.5194/bg-17-2341-2020, https://doi.org/10.5194/bg-17-2341-2020, 2020
Short summary
Short summary
Future warming threatens many marine organisms; among these are large benthic foraminifera. These symbiont-bearing protists are major carbonate producers and ecosystem engineers. To assess the relative contribution of host and symbiont algae to the holobiont thermal tolerance, we evaluated the calcification rate and photosynthetic activity under future warming scenarios.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Didier G. Leibovici, Shaun Quegan, Edward Comyn-Platt, Garry Hayman, Maria Val Martin, Mathieu Guimberteau, Arsène Druel, Dan Zhu, and Philippe Ciais
Biogeosciences, 17, 1821–1844, https://doi.org/10.5194/bg-17-1821-2020, https://doi.org/10.5194/bg-17-1821-2020, 2020
Short summary
Short summary
Analysing the impact of environmental changes due to climate change, e.g. geographical spread of climate-sensitive infections (CSIs) and agriculture crop modelling, may require land surface modelling (LSM) to predict future land surface conditions. There are multiple LSMs to choose from. The paper proposes a multivariate spatio-temporal data science method to understand the inherent uncertainties in four LSMs and the variations between them in Nordic areas for the net primary production.
Joeran Maerz, Katharina D. Six, Irene Stemmler, Soeren Ahmerkamp, and Tatiana Ilyina
Biogeosciences, 17, 1765–1803, https://doi.org/10.5194/bg-17-1765-2020, https://doi.org/10.5194/bg-17-1765-2020, 2020
Short summary
Short summary
Marine micro-algae bind carbon dioxide, CO2. During their decay, snowflake-like aggregates form that sink, remineralize and transport organically bound CO2 to depth; this is referred to as the biological carbon pump. In our model study, we elucidate how variable aggregate composition impacts the global pattern of vertical carbon fluxes. Our mechanistic model approach advances the representation of the global biological carbon pump and promotes a more realistic projection under climate change.
Allan Buras, Anja Rammig, and Christian S. Zang
Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, https://doi.org/10.5194/bg-17-1655-2020, 2020
Short summary
Short summary
This study compares the climatic conditions and ecosystem response of the extreme European drought of 2018 with the previous extreme drought of 2003. Using gridded climate data and satellite-based remote sensing information, our analyses qualify 2018 as the new European record drought with wide-ranging negative impacts on European ecosystems. Given the observation of forest-legacy effects in 2019 we call for Europe-wide forest monitoring to assess forest vulnerability to climate change.
Sten Anslan, Mina Azizi Rad, Johannes Buckel, Paula Echeverria Galindo, Jinlei Kai, Wengang Kang, Laura Keys, Philipp Maurischat, Felix Nieberding, Eike Reinosch, Handuo Tang, Tuong Vi Tran, Yuyang Wang, and Antje Schwalb
Biogeosciences, 17, 1261–1279, https://doi.org/10.5194/bg-17-1261-2020, https://doi.org/10.5194/bg-17-1261-2020, 2020
Short summary
Short summary
Due to the high elevation, the Tibetan Plateau (TP) is affected more strongly than the global average by climate warming. As a result of increasing air temperature, several environmental processes have accelerated, such as melting glaciers, thawing permafrost and grassland degradation. We review several modern and paleoenvironmental changes forced by climate warming in the lake system of Nam Co to shape our understanding of global warming effects on current and future geobiodiversity.
Natalia Gnatiuk, Iuliia Radchenko, Richard Davy, Evgeny Morozov, and Leonid Bobylev
Biogeosciences, 17, 1199–1212, https://doi.org/10.5194/bg-17-1199-2020, https://doi.org/10.5194/bg-17-1199-2020, 2020
Short summary
Short summary
We analysed the ability of 34 climate models to reproduce main factors affecting the coccolithophore Emiliania huxleyi blooms in six Arctic and sub-Arctic seas. Furthermore, we proposed a procedure of ranking and selecting these models based on the model’s skill in reproducing 10 important oceanographic, meteorological, and biochemical variables in comparison with observation data and demonstrated that the proposed methodology shows a better result than commonly used all-model averaging.
M. Rosario Lorenzo, María Segovia, Jay T. Cullen, and María T. Maldonado
Biogeosciences, 17, 757–770, https://doi.org/10.5194/bg-17-757-2020, https://doi.org/10.5194/bg-17-757-2020, 2020
Short summary
Pritha Tutasi and Ruben Escribano
Biogeosciences, 17, 455–473, https://doi.org/10.5194/bg-17-455-2020, https://doi.org/10.5194/bg-17-455-2020, 2020
Short summary
Short summary
Vertical migration of zooplankton has rarely been studied under the effect of a variable community structure, which depending on the behavior and size of its groups can strongly alter the magnitude of C being actively taken to depth by migrants. Here, we address this issue in a highly productive upwelling system, where a high amount of zooplankton can daily move below the mixed layer despite presence of an extremely low–oxygen water and so contribute to a significant export of C to depth.
Frances E. Hopkins, Philip D. Nightingale, John A. Stephens, C. Mark Moore, Sophie Richier, Gemma L. Cripps, and Stephen D. Archer
Biogeosciences, 17, 163–186, https://doi.org/10.5194/bg-17-163-2020, https://doi.org/10.5194/bg-17-163-2020, 2020
Short summary
Short summary
We investigated the effects of ocean acidification (OA) on the production of climate active gas dimethylsulfide (DMS) in polar waters. We found that polar DMS production was unaffected by OA – in contrast to temperate waters, where large increases in DMS occurred. The regional differences in DMS response may reflect natural variability in community adaptation to ambient carbonate chemistry and should be taken into account in predicting the influence of future DMS emissions on Earth's climate.
Nidhi Jha, Nitin Kumar Tripathi, Wirong Chanthorn, Warren Brockelman, Anuttara Nathalang, Raphaël Pélissier, Siriruk Pimmasarn, Pierre Ploton, Nophea Sasaki, Salvatore G. P. Virdis, and Maxime Réjou-Méchain
Biogeosciences, 17, 121–134, https://doi.org/10.5194/bg-17-121-2020, https://doi.org/10.5194/bg-17-121-2020, 2020
Short summary
Short summary
Carbon stocks and dynamics are both uncertain in tropical forests, especially in Asia. We here quantify the carbon stock and recovery rate of a Thai landscape using airborne lidar and four decades of Landsat data. We show that the landscape has a high carbon stock despite its disturbance history and that secondary forests are accumulating carbon at high rate. Our study shows the potential synergy of remote sensing and field data to characterize the carbon dynamics of tropical forests.
Cited articles
Alheit, J. and Niquen, M.: Regime shifts in the Humboldt Current ecosystem, Progr. Oceanogr., 60, 201–222, https://doi.org/10.1016/j.pocean.2004.02.006, 2004.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cy., 22, 1–15, https://doi.org/10.1029/2007GB003154, 2008.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the Cmip5 Earth System Models, J. Climate, 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Antoine, D.: Bridging ocean color observations of the 1980s and 2000s in search of long-term trends, J. Geophys. Res., 110, C06009, https://doi.org/10.1029/2004JC002620, 2005.
Armstrong, R., Lee, C., Hedges, J., Honjo, S., and Wakeham, S.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2002.
Aumont, O.: An ecosystem model of the global ocean including Fe, Si, P colimitations, Global Biogeochem. Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003.
Barnard, M. R., Batten, S. D., Beaugrand, G., Buckland, C., Conway, D. V. P., Edwards, M., Finlayson, J., Gregory, L. W., Halliday, N. C., John, A. W. G., Johns, D. G., Johnson, A. D., Jonas, T. D., Lindley, J. A., Nyman, J., Pritchard, P., Reid, P. C., Richardson, A. J., Saxby, R. E., Sidey, J., Smith, M. A., Stevens, D. P., Taylor, C. M., Tranter, P. R. G., Walne, A. W., Wootton, M., Wotton, C. O. M., and Wright, J. C.: Continuous plankton records : Plankton atlas of the North Atlantic Ocean (1958–1999). II. Biogeographical charts, Mar. Ecol.-Prog. Ser., Supplement, 11–75, 2004.
Beaugrand, G.: The North Sea regime shift: Evidence, causes, mechanisms and consequences, Progr. Oceanogr., 60, 245–262, https://doi.org/10.1016/j.pocean.2004.02.018, 2004.
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A., and Edwards, M.: Reorganization of North Atlantic marine copepod biodiversity and climate., Science (New York, N.Y.), 296, 1692–4, https://doi.org/10.1126/science.1071329, 2002.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. a., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity., Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bopp, L., Monfray, P., Aumont, O., Dufresne, J., Le Treut, H., Madec, G., Terray, L., and Orr, J.: Potential impact of climate change on marine export production, Global Biogeochem. Cy., 15, 81–100, 2001.
Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of diatoms distribution to global warming and potential implications: A global model study, Geophys. Res. Lett., 32, 2–5, https://doi.org/10.1029/2005GL023653, 2005.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boyce, D. G., Lewis, M. R., and Worm, B.: Global phytoplankton decline over the past century, Nature, 466, 591–596, https://doi.org/10.1038/nature09268, 2010.
Boyd, P. W.: Beyond ocean acidification, Nat. Geosci., 4, 273–274, https://doi.org/10.1038/ngeo1150, 2011.
Boyd, P. W. and Doney, S. C.: Modelling regional responses by marine pelagic ecosystems to global climate change, Geophys. Res. Lett., 29, 1–4, https://doi.org/10.1029/2001GL014130, 2002.
Boyd, P. W., Doney, S. C., Strzepek, R., Dusenberry, J., Lindsay, K., and Fung, I.: Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response, Biogeosciences, 5, 847–864, https://doi.org/10.5194/bg-5-847-2008, 2008.
Buitenhuis, E., Le Quéré, C., Aumont, O., Beaugrand, G., Bunker, A., Hirst, A., Ikeda, T., O'Brien, T., Piontkovski, S., and Straile, D.: Biogeochemical fluxes through mesozooplankton, Global Biogeochem. Cy., 20, GB2003, https://doi.org/10.1029/2005GB002511, 2006.
Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le Quéré, C.: Biogeochemical fluxes through microzooplankton, Global Biogeochem. Cy., 24, GB4015, https://doi.org/10.1029/2009GB003601, 2010.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Capotondi, A., Alexander, M. a., Bond, N. a., Curchitser, E. N., and Scott, J. D.: Enhanced upper ocean stratification with climate change in the CMIP3 models, J. Geophys. Res., 117, C04031, https://doi.org/10.1029/2011JC007409, 2012.
Carr, M., Friedrichs, M., Schmeltz, M., Noguchiaita, M., Antoine, D., Arrigo, K., Asanuma, I., Aumont, O., Barber, R., and Behrenfeld, M.: A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Keihl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The Community Climate System Model Version 3 (CCSM3), J. Climate, 19, 2545–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Conkright, M., Locarnini, H., Garcia, T., O'Brien, T., Boyer, C., and Stephens, J.: World Ocean Atlas 2001: objective analyses, data statistics, and figures, documentation, Tech. rep., National Oceanographic Data Center, Silver Spring, 2001.
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Chapter 7: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007 The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univ. Press, United Kingdom and New York, NY, USA, 2007.
Doney, C.: Major challenges confronting marine biogeochemical modeling, Atlantic, 13, 705–714, 1999.
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation, J. Climate, 19, 3033–3054, https://doi.org/10.1175/JCLI3783.1, 2006.
Doney, S. C., Fabry, V. J., Feely, R. a., and Kleypas, J. a.: Ocean Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009a.
Doney, S. C., Lima, I., Moore, J. K., Lindsay, K., Behrenfeld, M. J., Westberry, T. K., Mahowald, N., Glover, D. M., and Takahashi, T.: Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data, J. Mar. Syst., 76, 95–112, https://doi.org/10.1016/j.jmarsys.2008.05.015, 2009b.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Global Biogeochem. Cy., 21, 1–16, https://doi.org/10.1029/2006GB002907, 2007.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000., Science (New York, N.Y.), 336, 455–8, https://doi.org/10.1126/science.1212222, 2012.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.: Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton, Limnol. Oceanogr., 57, 554–566, https://doi.org/10.4319/lo.2012.57.2.0554, 2012.
Edwards, M.: Long-term and regional variability of phytoplankton biomass in the Northeast Atlantic (1960–1995), ICES J. Mar. Sci., 58, 39–49, https://doi.org/10.1006/jmsc.2000.0987, 2001.
Edwards, M. and Richardson, A. J.: Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430, 881–4, https://doi.org/10.1038/nature02808, 2004.
Eppley, R.: Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063–1085, 1972.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. a., Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic phytoplankton, Science (New York, N.Y.), 305, 354–60, https://doi.org/10.1126/science.1095964, 2004.
Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean Acidification, Oceanography, 22, 36–47, 2009.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, 1998.
Gnanadesikan, A.: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity, Global Biogeochem. Cy., 18, GB4010, https://doi.org/10.1029/2003GB002097, 2004.
Graven, H. D., Gruber, N., Key, R., Khatiwala, S., and Giraud, X.: Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake, J. Geophys. Res., 117, C10005, https://doi.org/10.1029/2012JC008074, 2012.
Gregg, W. W.: Ocean primary production and climate: Global decadal changes, Geophys. Res. Lett., 30, 10–13, https://doi.org/10.1029/2003GL016889, 2003.
Gregg, W. and Casey, N.: Modeling coccolithophores in the global oceans, Deep-Sea Res. Pt. II, 54, 447–477, https://doi.org/10.1016/j.dsr2.2006.12.007, 2007.
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global change, Philos. T. R. Soc. A, 369, 1980–96, https://doi.org/10.1098/rsta.2011.0003, 2011.
Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buitenhuis, E. T., Aita, M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I., Sailley, S., and Doney, S. C.: Phytoplankton competition during the spring bloom in four Plankton Functional Type Models, Biogeosciences Discuss., 9, 18083–18129, https://doi.org/10.5194/bgd-9-18083-2012, 2012.
Head, E. J. H. and Pepin, P.: Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958–2006), J. Plankton Res., 32, 1633–1648, https://doi.org/10.1093/plankt/fbq090, 2010.
Henson, S. a., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., and Quartly, G. D.: A reduced estimate of the strength of the ocean's biological carbon pump, Geophys. Res. Lett., 38, L04606, https://doi.org/10.1029/2011GL046735, 2011.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Holling, C.: The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 45, 61 pp., 1965.
Hurrell, J. W., Kushnir, Y., and Visbeck, M.: The north Atlantic oscillation, Science, 291, 603–605, 2001.
Iglesias-Rodríguez, M. D.: Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids, Global Biogeochem. Cy., 16, 1–20, https://doi.org/10.1029/2001GB001454, 2002.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteor. Soc., 77, 437–470, 1996.
Kishi, M., Kashiwai, M., Ware, D., Megrey, B., Eslinger, D., Werner, F., Noguchiaita, M., Azumaya, T., Fujii, M., and Hashimoto, S.: NEMURO – a lower trophic level model for the North Pacific marine ecosystem, Ecol. Model., 202, 12–25, https://doi.org/10.1016/j.ecolmodel.2006.08.021, 2007.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001GB001765, 2002.
Large, W. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, 2004.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Le Quéré, C., Aumont, O., Monfray, P., and Orr, J.: Propagation of climatic events on ocean stratification, marine biology, and CO2: Case studies over the 1979-1999 period, J. Geophys. Res., 108, 3375, https://doi.org/10.1029/2001JC000920, 2003.
Le Quéré, C., Harrison, S. P., Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Da Cunha, L. C., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. a., Garcia, H. E., and Mishonov, a. V.: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155, 2009.
Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J.: Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res., 112, C10011, https://doi.org/10.1029/2006JC003706, 2007.
Mackas, D. L.: Does blending of chlorophyll data bias temporal trend?, Nature, 472, E4–E5, https://doi.org/10.1038/nature09951, 2011.
Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations*, Annu. Rev. Mar. Sci., 1, 245–278, https://doi.org/10.1146/annurev.marine.010908.163727, 2009.
Marinov, I., Doney, S. C., and Lima, I. D.: Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light, Biogeosciences, 7, 3941–3959, https://doi.org/10.5194/bg-7-3941-2010, 2010.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and reanalyses, J. Climate, 16, 4134–4143, 2003.
McClain, C. R., Feldman, G. C., and Hooker, S. B.: An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep-Sea Res. Pt. II, 51, 5–42, https://doi.org/10.1016/j.dsr2.2003.11.001, 2004.
Mcquatters-Gollop, A., Raitsos, D. E., Edwards, M., Pradhan, Y., Mee, L. D., Lavender, S. J., and Attril, M. J.: A long-term chlorophyll data set reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient trends, Limnol. Oceanogr., 52, 635–648, 2007.
McQuatters-Gollop, A., Reid, P. C., Edwards, M., Burkill, P. H., Castellani, C., Batten, S., Gieskes, W., Beare, D., Bidigare, R. R., Head, E., Johnson, R., Kahru, M., Koslow, J. A., and Pena, A.: Is there a decline in marine phytoplankton?, Nature, 472, E6–E7, https://doi.org/10.1038/nature09950, 2011.
Moore, J., Doney, S., Kleypas, J., Glover, D., and Fung, I.: An intermediate complexity marine ecosystem model for the global domain, Deep-Sea Res. Pt. II, 49, 403–462, https://doi.org/10.1016/S0967-0645(01)00108-4, 2002.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18, 1–21, https://doi.org/10.1029/2004GB002220, 2004.
Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K., Doney, S. C., Dutay, J.-C., Follows, M., Gruber, N., Joos, F., Lindsay, K., Maier-Reimer, E., Matear, R. J., Matsumoto, K., Monfray, P., Mouchet, A., Orr, J. C., Plattner, G.-K., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2), Global Biogeochem. Cy., 21, GB3007, https://doi.org/10.1029/2006GB002857, 2007.
Polovina, J. J., Howell, E. a., and Abecassis, M.: Ocean's least productive waters are expanding, Geophys. Res. Lett., 35, 2–6, https://doi.org/10.1029/2007GL031745, 2008.
Pomeroy, L. and Wiebe, W.: Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria, Aquatic Microbial Ecology, 23, 187–204, https://doi.org/10.3354/ame023187, 2001.
Raitsos, D. E.: Extending the SeaWiFS chlorophyll data set back 50 years in the Northeast Atlantic, Geophys. Res. Lett., 32, 2–5, https://doi.org/10.1029/2005GL022484, 2005.
Reid, P. C., Edwards, M., Hunt, H. G., and Warner, A. J.: Phytoplankton change in the North Atlantic, Nature, 391, p. 546, 1998.
Richardson, A. J. and Schoeman, D. S.: Climate impact on plankton ecosystems in the Northeast Atlantic., Science (New York, N.Y.), 305, 1609–12, https://doi.org/10.1126/science.1100958, 2004.
Riebesell, U., Körtzinger, A., and Oschlies, A.: Sensitivities of marine carbon fluxes to ocean change, P. Natl. Acad. Sci. USA, 106, 20602–20609, https://doi.org/10.1073/pnas.0813291106, 2009.
Rykaczewski, R. R. and Dunne, J. P.: A measured look at ocean chlorophyll trends, Nature, 472, E5–E6, https://doi.org/10.1038/nature09952, 2011.
Saba, V. S., Friedrichs, M. A. M., Carr, M.-E., Antoine, D., Armstrong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J. K., Morel, A., O'Reilly, J., Salihoglu, B., Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T. K., and Yool, A.: Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT, Global Biogeochem. Cy., 24, GB3020, https://doi.org/10.1029/2009GB003655, 2010.
Sailley, S., Vogt, M., Doney, S., Aita, M., Bopp, L., Buitenhuis, E., Hashioka, T., Lima, I., Le Quéré, C., and Yamanaka, Y.: Comparing food web structures and dynamics across a suite of global marine ecosystem models, Ecol. Model., 261–262, 43–57, https://doi.org/10.1016/j.ecolmodel.2013.04.006, 2013.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamis, Princeton University Press, Princeton, 2006.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S., and Stouffer, R.: Response of ocean ecosystems to climate warming, Global Biogeochem. Cy., 18, GB3003, https://doi.org/10.1029/2003GB002134, 2004.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates, Deep-Sea Res. Pt. II, 49, 1623–1644, https://doi.org/10.1016/S0967-0645(02)00004-8, 2002.
Schmittner, A., Oschlies, A., Matthews, H. D., and Galbraith, E. D.: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem. Cy., 22, GB1013, https://doi.org/10.1029/2007GB002953, 2008.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006), J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1, 2008.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Taucher, J. and Oschlies, A.: Can we predict the direction of marine primary production change under global warming?, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2010GL045934, 2011.
Vogt, M., Hashioka, T., Payne, M. R., Buitenhuis, E. T., Quéré, C. Le, Alvain, S., Aita, M. N., Bopp, L., Doney, S. C., Hirata, T., Lima, I., Sailley, S., and Yamanaka, Y.: The distribution, dominance patterns and ecological niches of plankton functional types in Dynamic Green Ocean Models and satellite estimates, Biogeosciences Discuss., 10, 17193–17247, https://doi.org/10.5194/bgd-10-17193-2013, 2013.
Volk, T. and Hoffert, M.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by: Sundquist, E. and Broecker, W., 99–110, American Geophysical Union, Wahington, DC, https://doi.org/10.1029/GM032p0099, 1985.
Weber, T. and Deutsch, C.: Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation, Nature, 489, 419–422, https://doi.org/10.1038/nature11357, 2012.
Wernand, M. R., van der Woerd, H. J., and Gieskes, W. W. C.: Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide, PLOS one, 8, e63766, https://doi.org/10.1371/journal.pone.0063766, 2013.
Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The Low-Resolution CCSM3, J. Climate, 19, 2545–2566, https://doi.org/10.1175/JCLI3744.1, 2006.
Zwiers, F. W. and von Storch, H.: Taking serial correlation into account in tests of the mean, J. Climate, 8, 336–351, 1995.
Altmetrics
Final-revised paper
Preprint