Articles | Volume 11, issue 12
https://doi.org/10.5194/bg-11-3323-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-3323-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland
B. A. Hungate
Department of Biological Sciences and Center for Ecosystem Science Society, Northern Arizona University, Flagstaff, AZ 86011, USA
B. D. Duval
Department of Biological Sciences and Center for Ecosystem Science Society, Northern Arizona University, Flagstaff, AZ 86011, USA
US Dairy Forage Research Center, USDA-ARS, Madison, WI 53706, USA
P. Dijkstra
Department of Biological Sciences and Center for Ecosystem Science Society, Northern Arizona University, Flagstaff, AZ 86011, USA
D. W. Johnson
Department of Environmental and Resource Sciences, University of Nevada-Reno, Reno, NV 89557, USA
M. E. Ketterer
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
P. Stiling
Department of Biology, University of South Florida, Tampa, FL, USA
W. Cheng
Faculty of Agriculture, Yamagata University, 1–23, Wakaba-cho, Tsuruoka, Yamagata, 997-8555, Japan
J. Millman
Horace Mann Bronx Campus, Bronx NY 10471, USA
A. Hartley
Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965-6565, USA
D. B. Stover
Department of Energy, Office of Biological and Environmental Research, US Department of Energy, Washington, DC 20585, USA
Related authors
No articles found.
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
E. M. Stacy, S. C. Hart, C. T. Hunsaker, D. W. Johnson, and A. A. Berhe
Biogeosciences, 12, 4861–4874, https://doi.org/10.5194/bg-12-4861-2015, https://doi.org/10.5194/bg-12-4861-2015, 2015
Short summary
Short summary
In the southern parts of the Sierra Nevada in California, we investigated erosion of carbon and nitrogen from low-order catchments. We found that eroded sediments were OM rich, with a potential for significant gaseous and dissolved loss of OM during transport or after depositional in downslope or downstream depositional landform positions.
C. Pearson, R. Schumer, B. D. Trustman, K. Rittger, D. W. Johnson, and D. Obrist
Biogeosciences, 12, 3665–3680, https://doi.org/10.5194/bg-12-3665-2015, https://doi.org/10.5194/bg-12-3665-2015, 2015
Short summary
Short summary
Snowpack and precipitation samples were collected along two elevation gradients in the Tahoe Basin during winter and spring from 2011 to 2014 to evaluate spatial and temporal deposition patterns of nitrogen, phosphorus, and mercury. Study results reflect the highly dynamic nature of snowpack chemical storage, while basin-wide estimates identify snowpack chemical loading from atmospheric deposition as a substantial source of nutrient and pollutant input to the Lake Tahoe watershed each year.
Related subject area
Biogeochemistry: Land
Implications of climate and litter quality for simulations of litterbag decomposition at high latitudes
Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models
Monitoring the impact of forest changes on carbon uptake with solar-induced fluorescence measurements from GOME-2A and TROPOMI for an Australian and Chinese case study
Technical note: Flagging inconsistencies in flux tower data
Relevance of near-surface soil moisture vs. terrestrial water storage for global vegetation functioning
High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide, methane, and nitrous oxide fluxes in the tundra
Long-term additions of ammonium nitrate to montane forest ecosystems may cause limited soil acidification, even in the presence of soil carbonate
Leaf carbon and nitrogen stoichiometric variation along environmental gradients
Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it
Scale variance in the carbon dynamics of fragmented, mixed-use landscapes estimated using model–data fusion
Seasonal controls override forest harvesting effects on the composition of dissolved organic matter mobilized from boreal forest soil organic horizons
Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century
Estimating oil-palm Si storage, Si return to soils, and Si losses through harvest in smallholder oil-palm plantations of Sumatra, Indonesia
Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties
Seasonal variation of mercury concentration of ancient olive groves of Lebanon
Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change
Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
Sun-induced fluorescence as a proxy for primary productivity across vegetation types and climates
Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set
Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling
Land Management Contributes significantly to observed Vegetation Browning in Syria during 2001–2018
MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas
Assessing the representation of the Australian carbon cycle in global vegetation models
Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework
Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites
First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region
The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments
Examining the sensitivity of the terrestrial carbon cycle to the expression of El Niño
Subalpine grassland productivity increased with warmer and drier conditions, but not with higher N deposition, in an altitudinal transplantation experiment
Reviews and syntheses: Impacts of plant-silica–herbivore interactions on terrestrial biogeochemical cycling
Implementation of nitrogen cycle in the CLASSIC land model
Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L.
A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lagged effects regulate the inter-annual variability of the tropical carbon balance
Spatial variations in terrestrial net ecosystem productivity and its local indicators
Nitrogen cycling in CMIP6 land surface models: progress and limitations
Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest
Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites
Summarizing the state of the terrestrial biosphere in few dimensions
Patterns and trends of the dominant environmental controls of net biome productivity
Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest
Dissolved organic carbon mobilized from organic horizons of mature and harvested black spruce plots in a mesic boreal region
Ideas and perspectives: Proposed best practices for collaboration at cross-disciplinary observatories
Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity
Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models
Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar
Theoretical uncertainties for global satellite-derived burned area estimates
Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model
How representative are FLUXNET measurements of surface fluxes during temperature extremes?
Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania
Elin Ristorp Aas, Inge Althuizen, Hui Tang, Sonya Geange, Eva Lieungh, Vigdis Vandvik, and Terje Koren Berntsen
Biogeosciences, 21, 3789–3817, https://doi.org/10.5194/bg-21-3789-2024, https://doi.org/10.5194/bg-21-3789-2024, 2024
Short summary
Short summary
We used a soil model to replicate two litterbag decomposition experiments to examine the implications of climate, litter quality, and soil microclimate representation. We found that macroclimate was more important than litter quality for modeled mass loss. By comparing different representations of soil temperature and moisture we found that using observed data did not improve model results. We discuss causes for this and suggest possible improvements to both the model and experimental design.
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024, https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Short summary
Soil carbon is the largest store of carbon on the land surface of Earth and is known to be particularly sensitive to climate change. Understanding this future response is vital to successfully meeting Paris Agreement targets, which rely heavily on carbon uptake by the land surface. In this study, the individual responses of soil carbon are quantified and compared amongst CMIP6 Earth system models used within the most recent IPCC report, and the role of soils in the land response is highlighted.
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024, https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Short summary
To keep the Paris agreement goals within reach, negative emissions are necessary. They can be achieved with mitigation techniques, such as reforestation, which remove CO2 from the atmosphere. While governments have pinned their hopes on them, there is not yet a good set of tools to objectively determine whether negative emissions do what they promise. Here we show how satellite measurements of plant fluorescence are useful in detecting carbon uptake due to reforestation and vegetation regrowth.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Prajwal Khanal, Anne J. Hoek Van Dijke, Timo Schaffhauser, Wantong Li, Sinikka J. Paulus, Chunhui Zhan, and René Orth
Biogeosciences, 21, 1533–1547, https://doi.org/10.5194/bg-21-1533-2024, https://doi.org/10.5194/bg-21-1533-2024, 2024
Short summary
Short summary
Water availability is essential for vegetation functioning, but the depth of vegetation water uptake is largely unknown due to sparse ground measurements. This study correlates vegetation growth with soil moisture availability globally to infer vegetation water uptake depth using only satellite-based data. We find that the vegetation water uptake depth varies across climate regimes and vegetation types and also changes during dry months at a global scale.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Thomas Baer, Gerhard Furrer, Stephan Zimmermann, and Patrick Schleppi
Biogeosciences, 20, 4577–4589, https://doi.org/10.5194/bg-20-4577-2023, https://doi.org/10.5194/bg-20-4577-2023, 2023
Short summary
Short summary
Nitrogen (N) deposition to forest ecosystems is a matter of concern because it affects their nutrient status and makes their soil acidic. We observed an ongoing acidification in a montane forest in central Switzerland even if the subsoil of this site contains carbonates and is thus well buffered. We experimentally added N to simulate a higher pollution, and this increased the acidification. After 25 years of study, however, we can see the first signs of recovery, also under higher N deposition.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
István Dunkl, Nicole Lovenduski, Alessio Collalti, Vivek K. Arora, Tatiana Ilyina, and Victor Brovkin
Biogeosciences, 20, 3523–3538, https://doi.org/10.5194/bg-20-3523-2023, https://doi.org/10.5194/bg-20-3523-2023, 2023
Short summary
Short summary
Despite differences in the reproduction of gross primary productivity (GPP) by Earth system models (ESMs), ESMs have similar predictability of the global carbon cycle. We found that, although GPP variability originates from different regions and is driven by different climatic variables across the ESMs, the ESMs rely on the same mechanisms to predict their own GPP. This shows that the predictability of the carbon cycle is limited by our understanding of variability rather than predictability.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences, 20, 3301–3327, https://doi.org/10.5194/bg-20-3301-2023, https://doi.org/10.5194/bg-20-3301-2023, 2023
Short summary
Short summary
Model–data fusion (MDF) allows us to combine ecosystem models with Earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to improve ecological fidelity of the calibrated models.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Britta Greenshields, Barbara von der Lühe, Felix Schwarz, Harold J. Hughes, Aiyen Tjoa, Martyna Kotowska, Fabian Brambach, and Daniela Sauer
Biogeosciences, 20, 1259–1276, https://doi.org/10.5194/bg-20-1259-2023, https://doi.org/10.5194/bg-20-1259-2023, 2023
Short summary
Short summary
Silicon (Si) can have multiple beneficial effects on crops such as oil palms. In this study, we quantified Si concentrations in various parts of an oil palm (leaflets, rachises, fruit-bunch parts) to derive Si storage estimates for the total above-ground biomass of an oil palm and 1 ha of an oil-palm plantation. We proposed a Si balance by identifying Si return (via palm fronds) and losses (via harvest) in the system and recommend management measures that enhance Si cycling.
Luisa Schmidt, Matthias Forkel, Ruxandra-Maria Zotta, Samuel Scherrer, Wouter A. Dorigo, Alexander Kuhn-Régnier, Robin van der Schalie, and Marta Yebra
Biogeosciences, 20, 1027–1046, https://doi.org/10.5194/bg-20-1027-2023, https://doi.org/10.5194/bg-20-1027-2023, 2023
Short summary
Short summary
Vegetation attenuates natural microwave emissions from the land surface. The strength of this attenuation is quantified as the vegetation optical depth (VOD) parameter and is influenced by the vegetation mass, structure, water content, and observation wavelength. Here we model the VOD signal as a multi-variate function of several descriptive vegetation variables. The results help in understanding the effects of ecosystem properties on VOD.
Nagham Tabaja, David Amouroux, Lamis Chalak, François Fourel, Emmanuel Tessier, Ihab Jomaa, Milad El Riachy, and Ilham Bentaleb
Biogeosciences, 20, 619–633, https://doi.org/10.5194/bg-20-619-2023, https://doi.org/10.5194/bg-20-619-2023, 2023
Short summary
Short summary
This study investigates the seasonality of the mercury (Hg) concentration of olive trees. Hg concentrations of foliage, stems, soil surface, and litter were analyzed on a monthly basis in ancient olive trees growing in two groves in Lebanon. Our study draws an adequate baseline for the eastern Mediterranean and for the region with similar climatic inventories on Hg vegetation uptake in addition to being a baseline for new studies on olive trees in the Mediterranean.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Short summary
Earth's drylands provide ecosystem services to many people and will likely be strongly affected by climate change, but it is quite challenging to monitor the productivity and water use of dryland plants with satellites. We developed and tested an approach for estimating dryland vegetation activity using machine learning to combine information from multiple satellite sensors. Our approach excelled at estimating photosynthesis and water use largely due to the inclusion of satellite soil moisture.
Mark Pickering, Alessandro Cescatti, and Gregory Duveiller
Biogeosciences, 19, 4833–4864, https://doi.org/10.5194/bg-19-4833-2022, https://doi.org/10.5194/bg-19-4833-2022, 2022
Short summary
Short summary
This study explores two of the most recent products in carbon productivity estimation, FLUXCOM gross primary productivity (GPP), calculated by upscaling local measurements of CO2 exchange, and remotely sensed sun-induced chlorophyll a fluorescence (SIF). High-resolution SIF data are valuable in demonstrating similarity in the SIF–GPP relationship between vegetation covers, provide an independent probe of the FLUXCOM GPP model and demonstrate the response of SIF to meteorological fluctuations.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Tiexi Chen, Renjie Guo, Qingyun Yan, Xin Chen, Shengjie Zhou, Chuanzhuang Liang, Xueqiong Wei, and Han Dolman
Biogeosciences, 19, 1515–1525, https://doi.org/10.5194/bg-19-1515-2022, https://doi.org/10.5194/bg-19-1515-2022, 2022
Short summary
Short summary
Currently people are very concerned about vegetation changes and their driving factors, including natural and anthropogenic drivers. In this study, a general browning trend is found in Syria during 2001–2018, indicated by the vegetation index. We found that land management caused by social unrest is the main cause of this browning phenomenon. The mechanism initially reported here highlights the importance of land management impacts at the regional scale.
Rahayu Adzhar, Douglas I. Kelley, Ning Dong, Charles George, Mireia Torello Raventos, Elmar Veenendaal, Ted R. Feldpausch, Oliver L. Phillips, Simon L. Lewis, Bonaventure Sonké, Herman Taedoumg, Beatriz Schwantes Marimon, Tomas Domingues, Luzmila Arroyo, Gloria Djagbletey, Gustavo Saiz, and France Gerard
Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, https://doi.org/10.5194/bg-19-1377-2022, 2022
Short summary
Short summary
The MODIS Vegetation Continuous Fields (VCF) product underestimates tree cover compared to field data and could be underestimating tree cover significantly across the tropics. VCF is used to represent land cover or validate model performance in many land surface and global vegetation models and to train finer-scaled Earth observation products. Because underestimation in VCF may render it unsuitable for training data and bias model predictions, it should be calibrated before use in the tropics.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 18, 2075–2090, https://doi.org/10.5194/bg-18-2075-2021, https://doi.org/10.5194/bg-18-2075-2021, 2021
Short summary
Short summary
Grassland ecosystem services like forage production and greenhouse gas storage in the soil depend on plant growth.
In an experiment in the mountains with warming treatments, we found that despite dwindling soil water content, the grassland growth increased with up to +1.3 °C warming (annual mean) compared to present temperatures. Even at +2.4 °C the growth was still larger than at the reference site.
This suggests that plant growth will increase due to global warming in the near future.
Bernice C. Hwang and Daniel B. Metcalfe
Biogeosciences, 18, 1259–1268, https://doi.org/10.5194/bg-18-1259-2021, https://doi.org/10.5194/bg-18-1259-2021, 2021
Short summary
Short summary
Despite growing recognition of herbivores as important ecosystem engineers, many major gaps remain in our understanding of how silicon and herbivory interact to shape biogeochemical processes. We highlight the need for more research particularly in natural settings as well as on the potential effects of herbivory on terrestrial silicon cycling to understand potentially critical animal–plant–soil feedbacks.
Ali Asaadi and Vivek K. Arora
Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, https://doi.org/10.5194/bg-18-669-2021, 2021
Short summary
Short summary
More than a quarter of the current anthropogenic CO2 emissions are taken up by land, reducing the atmospheric CO2 growth rate. This is because of the CO2 fertilization effect which benefits 80 % of global vegetation. However, if nitrogen and phosphorus nutrients cannot keep up with increasing atmospheric CO2, the magnitude of this terrestrial ecosystem service may reduce in future. This paper implements nitrogen constraints on photosynthesis in a model to understand the mechanisms involved.
Arianna Peron, Lisa Kaser, Anne Charlott Fitzky, Martin Graus, Heidi Halbwirth, Jürgen Greiner, Georg Wohlfahrt, Boris Rewald, Hans Sandén, and Thomas Karl
Biogeosciences, 18, 535–556, https://doi.org/10.5194/bg-18-535-2021, https://doi.org/10.5194/bg-18-535-2021, 2021
Short summary
Short summary
Drought events are expected to become more frequent with climate change. Along with these events atmospheric ozone is also expected to increase. Both can stress plants. Here we investigate to what extent these factors modulate the emission of volatile organic compounds (VOCs) from oak plants. We find an antagonistic effect between drought stress and ozone, impacting the emission of different BVOCs, which is indirectly controlled by stomatal opening, allowing plants to control their water budget.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Rui Cheng, Troy S. Magney, Debsunder Dutta, David R. Bowling, Barry A. Logan, Sean P. Burns, Peter D. Blanken, Katja Grossmann, Sophia Lopez, Andrew D. Richardson, Jochen Stutz, and Christian Frankenberg
Biogeosciences, 17, 4523–4544, https://doi.org/10.5194/bg-17-4523-2020, https://doi.org/10.5194/bg-17-4523-2020, 2020
Short summary
Short summary
We measured reflected sunlight from an evergreen canopy for a year to detect changes in pigments that play an important role in regulating the seasonality of photosynthesis. Results show a strong mechanistic link between spectral reflectance features and pigment content, which is validated using a biophysical model. Our results show spectrally where, why, and when spectral features change over the course of the season and show promise for estimating photosynthesis remotely.
Jarmo Mäkelä, Francesco Minunno, Tuula Aalto, Annikki Mäkelä, Tiina Markkanen, and Mikko Peltoniemi
Biogeosciences, 17, 2681–2700, https://doi.org/10.5194/bg-17-2681-2020, https://doi.org/10.5194/bg-17-2681-2020, 2020
Short summary
Short summary
We assess the relative magnitude of uncertainty sources on ecosystem indicators of the 21st century climate change on two boreal forest sites. In addition to RCP and climate model uncertainties, we included the overlooked model parameter uncertainty and management actions in our analysis. Management was the dominant uncertainty factor for the more verdant southern site, followed by RCP, climate and parameter uncertainties. The uncertainties were estimated with canonical correlation analysis.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Short summary
Soil respiration (Rs) is the flow of CO2 from the soil surface to the atmosphere and is one of the largest carbon fluxes on land. This study examined the effect of local basal area (tree area) on Rs in a coastal forest in eastern Maryland, USA. Rs measurements were taken as well as distance from soil collar, diameter, and species of each tree within a 15 m radius. We found that trees within 5 m of our sampling points had a positive effect on how sensitive soil respiration was to temperature.
Keri L. Bowering, Kate A. Edwards, Karen Prestegaard, Xinbiao Zhu, and Susan E. Ziegler
Biogeosciences, 17, 581–595, https://doi.org/10.5194/bg-17-581-2020, https://doi.org/10.5194/bg-17-581-2020, 2020
Short summary
Short summary
We examined the effects of season and tree harvesting on the flow of water and the organic carbon (OC) it carries from boreal forest soils. We found that more OC was lost from the harvested forest because more precipitation reached the soil surface but that during periods of flushing in autumn and snowmelt a limit on the amount of water-extractable OC is reached. These results contribute to an increased understanding of carbon loss from boreal forest soils.
Jason Philip Kaye, Susan L. Brantley, Jennifer Zan Williams, and the SSHCZO team
Biogeosciences, 16, 4661–4669, https://doi.org/10.5194/bg-16-4661-2019, https://doi.org/10.5194/bg-16-4661-2019, 2019
Short summary
Short summary
Interdisciplinary teams can only capitalize on innovative ideas if members work well together through collegial and efficient use of field sites, instrumentation, samples, data, and model code. Thus, biogeoscience teams may benefit from developing a set of best practices for collaboration. We present one such example from a the Susquehanna Shale Hills critical zone observatory. Many of the themes from our example are universal, and they offer insights useful to other biogeoscience teams.
Anne Alexandre, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, Jean-Charles Mazur, Monique Pierre, Frédéric Prié, Christine Vallet-Coulomb, Clément Outrequin, and Jacques Roy
Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, https://doi.org/10.5194/bg-16-4613-2019, 2019
Short summary
Short summary
This calibration study shows that despite isotope heterogeneity along grass leaves, the triple oxygen isotope composition of bulk leaf phytoliths can be estimated from the Craig and Gordon model, a mixing equation and a mean leaf water–phytolith fractionation exponent (lambda) of 0.521. The results strengthen the reliability of the 17O–excess of phytoliths to be used as a proxy of atmospheric relative humidity and open tracks for its use as an imprint of leaf water 17O–excess.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Marcos A. S. Scaranello, Michael Keller, Marcos Longo, Maiza N. dos-Santos, Veronika Leitold, Douglas C. Morton, Ekena R. Pinagé, and Fernando Del Bon Espírito-Santo
Biogeosciences, 16, 3457–3474, https://doi.org/10.5194/bg-16-3457-2019, https://doi.org/10.5194/bg-16-3457-2019, 2019
Short summary
Short summary
The coarse dead wood component of the tropical forest carbon pool is rarely measured. For the first time, we developed models for predicting coarse dead wood in Amazonian forests by using airborne laser scanning data. Our models produced site-based estimates similar to independent field estimates found in the literature. Our study provides an approach for estimating coarse dead wood pools from remotely sensed data and mapping those pools over large scales in intact and degraded forests.
James Brennan, Jose L. Gómez-Dans, Mathias Disney, and Philip Lewis
Biogeosciences, 16, 3147–3164, https://doi.org/10.5194/bg-16-3147-2019, https://doi.org/10.5194/bg-16-3147-2019, 2019
Short summary
Short summary
We estimate the uncertainties associated with three global satellite-derived burned area estimates. The method provides unique uncertainties for the three estimates at the global scale for 2001–2013. We find uncertainties of 4 %–5.5 % in global burned area and uncertainties of 8 %–10 % in the frequently burning regions of Africa and Australia.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Sophie V. J. van der Horst, Andrew J. Pitman, Martin G. De Kauwe, Anna Ukkola, Gab Abramowitz, and Peter Isaac
Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, https://doi.org/10.5194/bg-16-1829-2019, 2019
Short summary
Short summary
Measurements of surface fluxes are taken around the world and are extremely valuable for understanding how the land and atmopshere interact, and how the land can amplify temerature extremes. However, do these measurements sample extreme temperatures, or are they biased to the average? We examine this question and highlight data that do measure surface fluxes under extreme conditions. This provides a way forward to help model developers improve their models.
Friederike Gerschlauer, Gustavo Saiz, David Schellenberger Costa, Michael Kleyer, Michael Dannenmann, and Ralf Kiese
Biogeosciences, 16, 409–424, https://doi.org/10.5194/bg-16-409-2019, https://doi.org/10.5194/bg-16-409-2019, 2019
Short summary
Short summary
Mount Kilimanjaro is an iconic environmental asset under serious threat due to increasing human pressures and climate change constraints. We studied variations in the stable isotopic composition of carbon and nitrogen in plant, litter, and soil material sampled along a strong land-use and altitudinal gradient. Our results show that, besides management, increasing temperatures in a changing climate may promote carbon and nitrogen losses, thus altering the stability of Kilimanjaro ecosystems.
Cited articles
Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nat. Geosci., 3, 525–532, 2010.
Arnone, J. A.: Symbiotic N2 fixation in a high Alpine grassland: effects of four growing seasons of elevated CO2, Funct. Ecol., 13, 383–387, 1999.
Arnone, J. A. and Bohlen, P. J.: Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2, Oecologia, 116, 331–335, 1998.
Arnone III, J. A., and Gordon, J. C.: Effect of nodulation, nitrogen fixation, and carbon dioxide enrichment on the physiology, growth, and dry mass allocation of seedlings of Alnus rubra BONG, New Phytol., 116, 55–66, 1990.
Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitrification in grass swards is increased under elevated atmospheric CO2, Soil Biol. Biochem., 35, 729–732, 2003a.
Baggs, E. M., Richter, M., Hartwig, U. A., and Cadisch, G.: Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE), Glob. Change Biol., 9, 1214–1222, 2003b.
Benemann, J. R. and Valentine, R. C.: The pathways of nitrogen fixation, Adv. Microb. Physiol., 8, 59–104, 1972.
Billings, S. A., Schaeffer, S. M., and Evans, R. D.: Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon, Soil Biol. Biochem., 35, 643–649, 2003.
Carney, K. M., Hungate, B. A., Drake, B. G., and Megonigal, J. P.: Altered soil microbial community at elevated CO2 leads to loss of soil carbon, Proc. Natl. Acad. Sci. USA, 104, 4990–4995, 2007.
Carter, M.: Soil Sampling and Methods of Analysis, Lewis Publishing, Bocan Raton, Florida, 1993.
Cernusak, L. A., Winter, K., Martinez, C., Correa, E., Aranda, J., Garcia, M., Jaramillo, C., and Turner, B. L.: Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration, Plant Physiol., 157, 372–385, 2011.
Cheng, W., Sakai, H., Matsushima, M., Yagi, K., and Hasegawa, T.: Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels, Hydrobiologia, 656, 5–14, 2010.
Churkina, G., Brovkin, V., von Bloh, W., Trusilova, K., Jung, M., and Dentener, F.: Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming, Global Biogeochem. Cy., 23, GB4027, https://doi.org/10.1029/2008gb003291, 2009.
Czerny, J., Barcelos e Ramos, J., and Riebesell, U.: Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena, Biogeosciences, 6, 1865–1875, https://doi.org/10.5194/bg-6-1865-2009, 2009.
Dakora, F. D. and Drake, B. G.: Elevated CO2 stimulates associative N2 fixation in a C-3 plant of the Chesapeake Bay wetland, Plant Cell Environ., 23, 943–953, 2000.
Day, F. P., Schroeder, R. E., Stover, D. B., Brown, A. L. P., Butnor, J. R., Dilustro, J., Hungate, B. A., Dijkstra, P., Duval, B. D., Seiler, T. J., Drake, B. G., and Hinkle, C. R.: The effects of 11 year of CO2 enrichment on roots in a Florida scrub-oak ecosystem, New Phytologist, 200, 778–787, 2013.
Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal, D. M., Carrillo, Y., LeCain, D. R., Follett, R. F., and Williams, D. G.: Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland, New Phytologist, 196, 807–815, 2012.
Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D. A., Cundari, C. M., Johnson, D. P., Hungate, B. A., Hinkle, C. R., and Drake, B. G.: Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem, Glob. Change Biol., 8, 90–103, 2002.
Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E. S., Billings, S. A., Jackson, R. B., Johnsen, K. S., Lichter, J., McCarthy, H. R., McCormack, M. L., Moore, D. J. P., Oren, R., Palmroth, S., Phillips, R. P., Pippen, J. S., Pritchard, S. G., Treseder, K. K., Schlesinger, W. H., DeLucia, E. H., and Finzi, A. C.: Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2, Ecol. Lett., 14, 349–357, 2011.
Duval, B. D., Dijkstra, P., Drake, B. G., Johnson, D. W., Ketterer, M. E., Megonigal, J. P., and Hungate, B. A.: Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2, Plos One, 8, e64386, https://doi.org/10.1371/journal.pone.0064386, 2013.
Duval, B. D., Natali, S. M., and Hungate, B. A.: What constitutes plant available molybdenum in sandy acidic soils?, Communications in soil and plant analysis, in press, 2014.
Edwards, E. J., McCaffery, S., and Evans, J. R.: Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward, New Phytol, 169, 157–167, 2006.
Esser, G., Kattge, J., and Sakalli, A.: Feedback of carbon and nitrogen cycles enhances carbon sequestration in the terrestrial biosphere, Glob. Change Biol., 17, 819–842, 2011.
Faeth, S. H., Connor, E. F., and Simberloff, D.: Early leaf abscission – a neglected source of mortality for folivores, American Natural., 117, 409–415, 1981.
Feng, Z., Dyckmans, J., and Flessa, H.: Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia, Tree Physiology, 24, 323–330, 2004.
Gale, M. R. and Grigal, D. F.: Vertical root distributions of northern tree species in relation to successional status, Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 17, 829–834, 1987.
Garten, C. T., Jr., Classen, A. T., Norby, R. J., Brice, D. J., Weltzin, J. F., and Souza, L.: Role of N2-fixation in constructed old-field communities under different regimes of CO2, temperature, and water availability, Ecosystems, 11, 125–137, 2008.
Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., and Shevliakova, E.: Nitrogen cycling and feedbacks in a global dynamic land model, Global Biogeochem. Cy., 24, GB1001, https://doi.org/10.1029/2008gb003336, 2010.
Goldberg, S., Forster, H. S., and Godfrey, C. L.: Molybdenum adsorption on oxides, clay minerals, and soils, Soil Sci. Soc. Am. J., 60, 425–432, 1996.
Grunzweig, J. M. and Korner, C.: Differential phosphorus and nitrogen effects drive species and community responses to elevated CO2 in semi-arid grassland, Functional Ecol., 17, 766–777, 2003.
Gutschick, V. P.: A functional biology of crop plants, A functional biology of crop plants, 230 pp., 1987.
Hagedorn, F., Bucher, J. B., Tarjan, D., Rusert, P., and Bucher-Wallin, I.: Responses of N fluxes and pools to elevated atmospheric CO2 in model forest ecosystems with acidic and calcareous soils, Plant Soil, 224, 273–286, 2000.
Hagedorn, F., Hiltbrunner, D., Streit, K., Ekblad, A., Lindahl, B., Miltner, A., Frey, B., Handa, I. T., and Haettenschwiler, S.: Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities, Soil Biol. Biochem., 57, 390–400, 2013.
Hartwig, U. A., Luscher, A., Daepp, M., Blum, H., Soussana, J. F., and Nosberger, J.: Due to symbiotic N2 fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertile, mixed grassland, Plant Soil, 224, 43–50, 2000.
Hebeisen, T., Luscher, A., and Nosberger, J.: Effects of elevated atmospheric CO2 and nitrogen fertilisation on yield of Trifolium repens and Lolium perenne, Ac. Oecol.-Int. J. Ecol., 18, 277–284, 1997.
Hofmockel, K. S. and Schlesinger, W. H.: Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest, Soil Sci. Soc. Am. J., 71, 140–144, 2007.
Hoosbeek, M. R., Lukac, M., Velthorst, E., Smith, A. R., and Godbold, D. L.: Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales, Biogeosciences, 8, 353–364, https://doi.org/10.5194/bg-8-353-2011, 2011.
Hoque, M., Inubushi, K., Miura, S., Kobayashi, K., Kim, H.-Y., Okada, M., and Yabashi, S.: Biological dinitrogen fixation and soil microbial biomass carbon as influenced by free-air carbon dioxide enrichment (FACE) at three levels of nitrogen fertilization in a paddy field, Biol. Fertil. Soils, 34, 453–459, 2001.
Hulme, P. E.: Seedling herbivory in grassland – relative impact of vertebrate and invertebrate herbivores, J. Ecol., 82, 873–880, 1994.
Hulme, P. E.: Herbivores and the performance of grassland plants: A comparison of arthropod, mollusc and rodent herbivory, J. Ecol., 84, 43–51, 1996.
Hungate, B. A., Chapin, F. S., Zhong, H., Holland, E. A., and Field, C. B.: Stimulation of grassland nitrogen cycling under carbon dioxide enrichment, Oecologia, 109, 149–153, 1997a.
Hungate, B. A., Lund, C. P., Pearson, H. L., and Chapin, F. S.: Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland, Biogeochemistry, 37, 89–109, 1997b.
Hungate, B. A., Dijkstra, P., Johnson, D. W., Hinkle, C. R., and Drake, B. G.: Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak, Glob. Change Biol., 5, 781–789, 1999.
Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ketterer, M. E., Hymus, G. J., Hinkle, C. R., and Drake, B. G.: CO2 elicits long-term decline in nitrogen fixation, Science, 304, 1291–1291, 2004.
Hungate, B. A., Day, F. P., Dijkstra, P., Duval, B. D., Hinkle, C. R., Langley, J. A., Megonigal, J. P., Stiling, P. M., Johnon, D. W., and Drake, B. G.: Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland, New Phytologist, 200, 767–777, 2013a.
Hungate, B. A., Dijkstra, P., Wu, Z., Duval, B. D., Day, F. P., Johnson, D. W., Megonigal, J. P., Brown, A. L. P., and Garland, J. L.: Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland, New Phytologist, 200, 753–766, 2013b.
Hurlbert, S. H.: Pseudoreplication and the design of ecological field experiments, Ecol. Monogr., 54, 187–211, 1984.
Hutchinson, G. L. and Livingston, G. P.: Use of chamber systems to measure trace gas fluxes, Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, edited by: Harper, L. A., Mosier, A. R., Duxbury, J. M., Rolston, D. E., Peterson, G. A., Baenziger, P. S., Luxmoore, R. J., and Kral, D. M., 63–78, 1993.
Ineson, P., Coward, P. A., and Hartwig, U. A.: Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment, Plant Soil, 198, 89–95, 1998.
Jin, J., Tang, C., Armstrong, R., and Sale, P.: Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol, Plant Soil, 358, 86–99, 2012.
Johnson, D. W., Hungate, B. A., Dijkstra, P., Hymus, G., and Drake, B.: Effects of elevated carbon dioxide on soils in a Florida scrub oak ecosystem, J. Environ. Qual., 30, 501–507, 2001.
Johnson, D. W., Hungate, B. A., Dijkstra, P., Hymus, G., Hinkle, C. R., Stiling, P., and Drake, B. G.: The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest, Ecol. Applicat., 13, 1388–1399, 2003.
Johnson, D. W., Cheng, W., Joslin, J. D., Norby, R. J., Edwards, N. T., and Todd, D. E.: Effects of elevated CO2 on nutrient cycling in a sweetgum plantation, Biogeochemistry, 69, 379–403, 2004.
Kabata-Pendias, A.: Trace elements in soils and plants, CRC Press, Boca Raton, FL, USA, 2001.
Kammann, C., Mueller, C., Gruenhage, L., and Jaeger, H.-J.: Elevated CO2 stimulates N2O emissions in permanent grassland, Soil Biol. Biochem., 40, 2194–2205, 2008.
Khan, F. N., Lukac, M., Turner, G., and Godbold, D. L.: Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE), Soil Biol. Biochem., 40, 1716–1723, 2008.
Khan, F. N., Lukac, M., Miglietta, F., Khalid, M., and Godbold, D. L.: Tree exposure to elevated CO2 increases availability of soil phosphorus, Pakistan J. Botany, 43, 907–916, 2010.
Korner, C. and Arnone, J. A.: Responses to elevated carbon-dioxide in artificial tropical ecosystems, Science, 257, 1672–1675, 1992.
Kurina, L. M. and Vitousek, P. M.: Controls over the accumulation and decline of a nitrogen-fixing lichen, Stereocaulon vulcani, on young Hawaiian lava flows, J. Ecol., 87, 784–799, 1999.
Lagomarsino, A., Lukac, M., Godbold, D. L., Marinari, S., and De Angelis, P.: Drivers of increased soil respiration in a poplar coppice exposed to elevated CO2, Plant Soil, 362, 93–106, 2013.
Lam, S., Norton, R., Lin, E., Armstrong, R., and Chen, D.: Soil gas fluxes of N2O, CO2 and CH4 under elevated carbon dioxide under wheat in northern China, Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010, Congress Symposium 4: Greenhouse gases from soils, 216–219, 2010.
Lam, S. K., Hao, X., Lin, E., Han, X., Norton, R., Mosier, A. R., Seneweera, S., and Chen, D.: Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China, Biol. Fertil. Soils, 48, 603–606, 2012.
Langley, J. A., McKinley, D. C., Wolf, A. A., Hungate, B. A., Drake, B. G., and Megonigal, J. P.: Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2, Soil Biol. Biochem., 41, 54–60, 2009.
Law, C. S., Breitbarth, E., Hoffmann, L. J., McGraw, C. M., Langlois, R. J., LaRoche, J., Marriner, A., and Safi, K. A.: No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO2 in the South Pacific, Glob. Change Biol., 18, 3004–3014, 2012.
LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed, Ecology, 89, 371–379, 2008.
Lee, T. D., Tjoelker, M. G., Reich, P. B., and Russelle, M. P.: Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply, Plant Soil, 255, 475–486, 2003.
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Koerner, C.: Do global change experiments overestimate impacts on terrestrial ecosystems?, Trends Ecol. Evolut., 26, 236–241, 2011.
Li, J., Johnson, D. P., Dijkstra, P., Hungate, B. A., Hinkle, C. R., and Drake, B. G.: Elevated CO2 mitigates the adverse effects of drought on daytime net ecosystem CO2 exchange and photosynthesis in a Florida scrub-oak ecosystem, Photosynthetica, 45, 51–58, 2007a.
Li, J. H., Powell, T. L., Seiler, T. J., Johnson, D. P., Anderson, H. P., Bracho, R., Hungate, B. A., Hinkle, C. R., and Drake, B. G.: Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes: defoliation, net CO2 exchange and interactions with elevated CO2, Glob. Change Biol., 13, 1101–1113, 2007b.
Lindroth, R. L.: Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics, J. Chem. Ecol., 36, 2–21, 2010.
Liu, D., Clark, J. D., Crutchfield, J. D., and Sims, J. L.: Effect of pH of ammonium oxalate extracting solutions on prediction of plant available molybdenum in soil, Commun. Soil Sci. Plant Anal., 27, 2511–2541, 1996.
Luo, Y. Q., Hui, D. F., and Zhang, D. Q.: Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis, Ecology, 87, 53–63, 2006.
Ma, H. L., Zhu, H. G., Liu, G., Xie, Z. B., Wang, Y. L., Yang, L. X., and Zeng, Q.: Availability of soil nitrogen and phosphorus in a typical rice-wheat rotation system under elevated atmospheric CO2, Field Crops Res., 100, 44–51, 2007.
Millett, J., Godbold, D., Smith, A. R., and Grant, H.: N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment, Oecologia, 169, 541–552, 2012.
Mosier, A. R., Morgan, J. A., King, J. Y., LeCain, D., and Milchunas, D. G.: Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2, Plant Soil, 240, 201–211, 2002.
Natali, S. M., Sanudo-Wilhelmy, S. A., and Lerdau, M. T.: Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals, Ecosystems, 12, 715–727, 2009.
Niklaus, P. A., Leadley, P. W., Stocklin, J., and Korner, C.: Nutrient relations in calcareous grassland under elevated CO2, Oecologia, 116, 67–75, 1998.
Norby, R. J. and Sigal, L. L.: Nitrogen-fixation in the lichen Lobaria pulmonaria in elevated atmospheric carbon dioxide, Oecologia, 79, 566–568, 1989.
Otera, M., Kokubun, M., Tabei, H., Matsunami, T., Maekawa, T., and Okada, M.: Is yield enhancement by CO2 enrichment greater in genotypes with a higher capacity for nitrogen fixation?, Agr. Forest Meteorol., 151, 1385–1393, 2011.
Pepper, D. A., Eliasson, P. E., McMurtrie, R. E., Corbeels, M., ÅGren, G. I., StrÖMgren, M., and Linder, S.: Simulated mechanisms of soil N feedback on the forest CO2 response, Glob. Change Biol., 13, 1265–1281, https://doi.org/10.1111/j.1365-2486.2007.01342.x, 2007.
Phillips, R. L., Whalen, S. C., and Schlesinger, W. H.: Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem, Global Biogeochem. Cy., 15, 741–752, 2001.
Ritchie, M. E. and Tilman, D.: Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil, Ecology, 76, 2648–2655, 1995.
Robinson, D. and Conroy, J. P.: A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect, Soil Biol. Biochem., 31, 43–53, 1999.
Robinson, E. A., Ryan, G. D., and Newman, J. A.: A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables, New Phytologist, 194, 321–336, 2012.
Rogers, A., Ainsworth, E. A., and Leakey, A. D. B.: Will Elevated Carbon Dioxide Concentration Amplify the Benefits of Nitrogen Fixation in Legumes?, Plant Physiol., 151, 1009–1016, 2009.
Schäppi, B. and Körner, C.: In situ effects of elevated CO2 on the carbon and nitrogen status of alpine plants, Funct. Ecol., 11, 290–299, 1997.
Seiler, T. J., Rasse, D. P., Li, J., Dijkstra, P., Anderson, H. P., Johnson, D. P., Powell, T. L., Hungate, B. A., Hinkle, C. R., and Drake, B. G.: Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem, Glob. Change Biol., 15, 356–367, 2009.
Smart, D. R., Ritchie, K., Stark, J. M., and Bugbee, B.: Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity, Appl. Environ. Microbiol., 63, 4621–4624, 1997.
Smith, K. E., Runion, G. B., Prior, S. A., Rogers, H. H., and Torbert, H. A.: Effects of Elevated CO2 and Agricultural Management on Flux of Greenhouse Gases From Soil, Soil Science, 175, 349–356, 2010.
Smith, V. H.: Effects of nitrogen-phosphorus supply ratios on nitrogen-fixation in agricultural and pastoral ecosystems Biogeochemistry, 18, 19–35, 1992.
Soussana, J. F. and Hartwig, U. A.: The effects of elevated CO2 on symbiotic N2 fixation: A link between the carbon and nitrogen cycles in grassland ecosystems, Plant Soil, 187, 321–332, 1996.
Sposito, G.: The surface chemistry of soils, Oxford University Press, New York, 1984.
Sprent, J. I. and Raven, J. A.: Evolution of Nitrogen-Fixing Symbioses, Proceedings of the Royal Society of Edinburgh Section B-Biological Sciences, 85, 215–237, 1985.
Steven, B., Gallegos-Graves, L. V., Yeager, C. M., Belnap, J., Evans, R. D., and Kuske, C. R.: Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2, Environ. Microbiol., 14, 3247–3258, 2012.
Stiling, P. and Simberloff, D.: Leaf abscission – induced defense against pests or response to damage, Oikos, 55, 43–49, 1989.
Stiling, P. and Cornelissen, T.: How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance, Glob. Change Biol., 13, 1823–1842, 2007.
Stiling, P., Rossi, A. M., Hungate, B., Dijkstra, P., Hinkle, C. R., Knott, W. M., and Drake, B.: Decreased leaf-miner abundance in elevated CO2: Reduced leaf quality and increased parasitoid attack, Ecol. Appl., 9, 240–244, 1999.
Stiling, P., Cattell, M., Moon, D. C., Rossi, A., Hungate, B. A., Hymus, G., and Drake, B.: Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates, Glob. Change Biol., 8, 658–667, 2002.
Stiling, P., Moon, D., Hunter, M. D., Colson, J., Rossi, A., Hymus, G. J., and Drake, B. G.: Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest, Oecologia, 134, 82–87, 2003.
Stiling, P., Moon, D., Rossi, A., Hungate, B. A., and Drake, B.: Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities, Glob. Change Biol., 15, 1895–1902, 2009.
Streeter, J.: Inhibition of legume nodule formation and N2 fixation by nitrate, Crit. Rev. Plant Sci., 7, 1–23, 1988.
Temperton, V. M., Grayston, S. J., Jackson, G., Barton, C. V. M., Millard, P., and Jarvis, P. G.: Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment, Tree Physiology, 23, 1051–1059, 2003.
Thornley, J. H. M., and Cannell, M. G. R.: Dynamics of mineral N availability in grassland ecosystems under increased CO2: hypotheses evaluated using the Hurley Pasture Model, Plant Soil, 224, 153–170, 2000.
Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability, Global Biogeochem. Cy., 21, GB4018, https://doi.org/10.1029/2006gb002868, 2007.
van Groenigen, K. J., Six, J., Hungate, B. A., de Graaff, M. A., van Breemen, N., and van Kessel, C.: Element interactions limit soil carbon storage, Proc. Natl. Acad. Sci. USA, 103, 6571–6574, 2006.
van Groenigen, K. J., Osenberg, C. W., and Hungate, B. A.: Increased soil emissions of potent greenhouse gases under increased atmospheric CO2, Nature, 475, 214–121, 2011.
Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land and in the sea – how can it occur, Biogeochemistry, 13, 87–115, 1991.
Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., Howarth, R. W., Marino, R., Martinelli, L., Rastetter, E. B., and Sprent, J. I.: Towards an ecological understanding of biological nitrogen fixation, Biogeochemistry, 57, 1–45, 2002.
Vlek, P. L. G. and Lindsay, W. L.: Thermodynamic stability and solubility of molybdenum minerals in soils, Soil Sci. Soc. Am. J., 41, 42–46, 1977.
Williams, A. G. and Whitham, T. G.: Premature leaf abscission – an induced plant defense against gall aphids, Ecology, 67, 1619–1627, 1986.
Williams, R. J. P. and Fraústo da Silva, J. J. R.: JJRF The involvement of molybdenum in life, Biochem. Biophys. Res. Commun., 292, 293–299, 2002.
Yoneyama, T., Fujita, K., Yoshida, T., Matsumoto, T., Kambayashi, I., and Yazaki, J.: Variation in natural abundance of N-15 among plant-parts and in N-15-N-14 fractionation during N-2 fixation in the legume rhizobia symbiotic system, Plant Cell Physiol., 27, 791–799, 1986.
Zaehle, S. and Dalmonech, D.: Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks, Curr. Opinion Environ. Sustainabil., 3, 311–320, 2011.
Zanetti, S., Hartwig, U. A., Luscher, A., Hebeisen, T., Frehner, M., Fischer, B. U., Hendrey, G. R., Blum, H., and Nosberger, J.: Stimulation of symbiotic N2 fixation in Trifolium repens L under elevated atmospheric pCO2 in a grassland ecosystem, Plant Physiol., 112, 575–583, 1996.
Zhang, L., Wu, D., Shi, H., Zhang, C., Zhan, X., and Zhou, S.: Effects of Elevated CO2 and N Addition on Growth and N2 Fixation of a Legume Subshrub (Caragana microphylla Lam.) in Temperate Grassland in China, Plos One, 6, e26842, https://doi.org/10.1371/journal.pone.0026842, 2011.
Altmetrics
Final-revised paper
Preprint