Articles | Volume 12, issue 10
https://doi.org/10.5194/bg-12-2995-2015
https://doi.org/10.5194/bg-12-2995-2015
Research article
 | 
21 May 2015
Research article |  | 21 May 2015

Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

X. Comas, N. Terry, L. Slater, M. Warren, R. Kolka, A. Kristiyono, N. Sudiana, D. Nurjaman, and T. Darusman

Related authors

Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021,https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Using hydrologic measurements to investigate free-phase gas ebullition in a Maine peatland, USA
C. E. Bon, A. S. Reeve, L. Slater, and X. Comas
Hydrol. Earth Syst. Sci., 18, 953–965, https://doi.org/10.5194/hess-18-953-2014,https://doi.org/10.5194/hess-18-953-2014, 2014

Related subject area

Biogeochemistry: Wetlands
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023,https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023,https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023,https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022,https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Cutting peatland CO2 emissions with water management practices
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022,https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary

Cited articles

Binley, A. and Kemna, A.: DC Resistivity and Induced Polarization Methods. In: Hydrogeophysics, edited by: Rubin, Y. and Hubbard, S. S., Water Science and Technology Library, Springer, New York, 2005.
Cameron, C. C., Esterle, J. S., and Curtis, A. P.: The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes, Int. J. Coal Geol., 12, 105–156, 1989.
Comas, X. and Slater, L.: Evolution of biogenic gasses in peat blocks inferred from non-invasive dielectric permittivity measurements, Water Resour. Res., 43, W05424, https://doi.org/10.1029/2006WR005562, 2007.
Comas, X. and Slater, L.: Non-Invasive Field-Scale Characterization of Gaseous-Phase Methane Dynamics in Peatlands Using the Ground Penetrating Radar (GPR) Method, in: Carbon Cycling in Northern Peatlands, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., American Geophysical Union (AGU), 2009.
Comas, X., Slater, L., and Reeve, A.: Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland, J. Hydrol., 295, 173–184, 2004.
Download
Short summary
We use a combination of hydrogeophysical methods and direct cores to better understand peatland thickness in Indonesia and estimate carbon storage in remote peatland systems where available information is limited. Results show that geophysical methods can help improve peat thickness accuracy (when compared to coring), and help identify certain features within the peat matrix such as organomineral horizons, wood layers or buttressed trees.
Altmetrics
Final-revised paper
Preprint