Articles | Volume 12, issue 23
Biogeosciences, 12, 7057–7070, 2015
https://doi.org/10.5194/bg-12-7057-2015
Biogeosciences, 12, 7057–7070, 2015
https://doi.org/10.5194/bg-12-7057-2015

Research article 07 Dec 2015

Research article | 07 Dec 2015

Carbon dynamics in boreal peatlands of the Yenisey region, western Siberia

E. D. Schulze et al.

Related authors

Dissolved organic carbon vertical movement and carbon accumulation in West Siberian peatlands
Evgeny A. Zarov, Elena D. Lapshina, Iris Kuhlmann, and Ernst-Detlef Schulze
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-211,https://doi.org/10.5194/bg-2021-211, 2021
Preprint under review for BG
Short summary
The climate benefit of carbon sequestration
Carlos A. Sierra, Susan E. Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Biogeosciences, 18, 1029–1048, https://doi.org/10.5194/bg-18-1029-2021,https://doi.org/10.5194/bg-18-1029-2021, 2021
Short summary
A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes
K. Naudts, J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert
Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015,https://doi.org/10.5194/gmd-8-2035-2015, 2015
Short summary
Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: a method and its application to wildfires in Siberia
I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaiser, and E.-D. Schulze
Atmos. Chem. Phys., 14, 10383–10410, https://doi.org/10.5194/acp-14-10383-2014,https://doi.org/10.5194/acp-14-10383-2014, 2014
Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns
E. V. Berezin, I. B. Konovalov, P. Ciais, A. Richter, S. Tao, G. Janssens-Maenhout, M. Beekmann, and E.-D. Schulze
Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013,https://doi.org/10.5194/acp-13-9415-2013, 2013

Related subject area

Biogeochemistry: Soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021,https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
SOC stabilization mechanisms and temperature sensitivity in old terraced soils
Pengzhi Zhao, Daniel J. Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-205,https://doi.org/10.5194/bg-2021-205, 2021
Revised manuscript accepted for BG
Short summary
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021,https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021,https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021,https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary

Cited articles

Aravena, R., Warner, B. G., Charman, D. J., Belyea, L. R., Marthur, S. P., and Dinel, H.: Carbon isotope composition of deep carbon gases in an ombrogenous peatland, Northwetern Ontario, Canada, Radiocarbon, 35, 271–276, 1993.
Arkhipov, S. A.: Kompleksnaya paleogeografichaskaya rekonstruktsiya dlya epokhi 20–18 tys. l. n. (Environments 20 000 to 18 000 yr BP), in: Razvitie landshaftov I klimata Severnoy Evrazii. Pozdniy pleystotsen–golotsen, elementy prognoza. Vyp.1. Regionalnaya paleogeografiya (Evolution of landscapes and climates of the Northern Eurasia. Late Pleistocene–Holocene elements of prognosis. I. Regional paleogeography), edited by: Velichko, A. A., Nauk, Moscow, 37–41, 1993.
Arkhipov, S. A., Volkova, V. S., Zolnikov, I. D. Zykina, V. S., and Sibir, Z.: West Siberia, in: Izmenemie klimata i landshaftov za poslednie 65 vln. let (Climate and Environment Changes During the Last 65 Million Years), edited by: Velichko, A. A. and Nechaev, V. P., GEOS, Moscow, 84–109, 1999.
Arneth, A., Kurbatova, Ju., Kolle, O., Shibistova, O. B., Lloyd, J., Vygodskaya, N. N., and Schulze, E.-D.: Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog. II. Intersesonal and interannual variability of CO2 fluxes, Tellus B, 54, 514–530, 2002.
Astakhov, V. I.: Problema poslednego oledeneniya Zapadnoi Sibiri (Problem of the last glaciation of West Siberia), in Razvitie landshaftov I klimata Severnoy Evrazii. Pozdniy pleystotsen–golotsen, elementy prognoza. Vyp.1. Regionalnaya paleogeografiya (Evolution of landscapes and climates of the Northern Eurasia. Late Pleistocene–Holocene elements of prognosis. I. Regional paleogeography), edited by: Velichko, A. A., Nauk, Moscow, 41–44, 1993.
Download
Short summary
At the eastern border of the West Siberian Plain, south of permafrost, peat started to accumulate 15000 years ago. Peat accumulated as fen peat at a constant rate of 0.2 mm yr-1 and 0.01 kgC m-2 yr-1. Over the last 2000 years, the bogs have changed into Sphagnum mires, accumulating about 0.1 kgC m-2 yr-1 until the present. The high accumulation rate of peat in unfrozen mires indicates that thawing of permafrost peat may change northern peatlands into long-lasting carbon sinks.
Altmetrics
Final-revised paper
Preprint