Articles | Volume 13, issue 18
Biogeosciences, 13, 5405–5420, 2016
https://doi.org/10.5194/bg-13-5405-2016
Biogeosciences, 13, 5405–5420, 2016
https://doi.org/10.5194/bg-13-5405-2016

Research article 28 Sep 2016

Research article | 28 Sep 2016

Shift in the chemical composition of dissolved organic matter in the Congo River network

Thibault Lambert et al.

Related authors

Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-30,https://doi.org/10.5194/esd-2021-30, 2021
Preprint under review for ESD
Short summary
Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity
Alberto V. Borges, François Darchambeau, Thibault Lambert, Cédric Morana, George H. Allen, Ernest Tambwe, Alfred Toengaho Sembaito, Taylor Mambo, José Nlandu Wabakhangazi, Jean-Pierre Descy, Cristian R. Teodoru, and Steven Bouillon
Biogeosciences, 16, 3801–3834, https://doi.org/10.5194/bg-16-3801-2019,https://doi.org/10.5194/bg-16-3801-2019, 2019
Short summary
Along-stream transport and transformation of dissolved organic matter in a large tropical river
Thibault Lambert, Cristian R. Teodoru, Frank C. Nyoni, Steven Bouillon, François Darchambeau, Philippe Massicotte, and Alberto V. Borges
Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016,https://doi.org/10.5194/bg-13-2727-2016, 2016
Short summary
Sources of dissolved organic matter during storm and inter-storm conditions in a lowland headwater catchment: constraints from high-frequency molecular data
L. Jeanneau, M. Denis, A.-C. Pierson-Wickmann, G. Gruau, T. Lambert, and P. Petitjean
Biogeosciences, 12, 4333–4343, https://doi.org/10.5194/bg-12-4333-2015,https://doi.org/10.5194/bg-12-4333-2015, 2015
Short summary

Related subject area

Biogeochemistry: Rivers & Streams
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021,https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021,https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Spatial-temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine headwater stream
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-472,https://doi.org/10.5194/bg-2020-472, 2020
Revised manuscript accepted for BG
Short summary
Complex interactions of in-stream DOM and nutrient spiralling unravelled by Bayesian regression analysis
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-372,https://doi.org/10.5194/bg-2020-372, 2020
Revised manuscript accepted for BG
Short summary
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020,https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary

Cited articles

Baines, S. B. and Pace, M. L.: The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems, Limnol. Oceanogr., 36, 1078–1090, 1991.
Bano, N., Moran, M. A., and Hodson, R. E.: Photochemical formation of labile organic matter from two components of dissolved organic carbon in a freshwater wetland, Aquat. Microb. Ecol., 16, 95–102, 1998.
Battin, T. J.: Dissolved organic matter and its optical properties in a blackwater tributary of the upper Oricono river, Venezuela, Org. Geochem., 28, 561–569, 1998.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., and Sabater, F.: Biophys- ical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100, 2008.
Berggren, M., Lapierre, J.-F., and del Giorgio, P. A.: Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients, ISME J., 6, 984–993, https://doi.org/10.1038/ismej.2011.157, 2012.
Download
Short summary
This paper aims to investigate the spatial variability in dissolved organic matter (DOM) in terms of both concentration and composition in the Congo River network. Stable carbon isotopes and absorption and fluorescent properties of DOM were used as proxies for DOM composition. This study shows that DOM degradation within the Congo Basin results in the transition from aromatic to aliphatic DOM as well as the role of landscape and water residence time on this transition.
Altmetrics
Final-revised paper
Preprint