Articles | Volume 14, issue 1
https://doi.org/10.5194/bg-14-229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia
Southern Cross University School of Environment, Science and
Engineering, Lismore, New South Wales, Australia
Marine Ecology Research Centre, Southern Cross University, Lismore,
New South Wales, Australia
Centre for Coastal Biogeochemistry, Southern Cross University,
Lismore, New South Wales, Australia
Graham B. Jones
Southern Cross University School of Environment, Science and
Engineering, Lismore, New South Wales, Australia
Marine Ecology Research Centre, Southern Cross University, Lismore,
New South Wales, Australia
Elisabeth S. M. Deschaseaux
Southern Cross University School of Environment, Science and
Engineering, Lismore, New South Wales, Australia
Marine Ecology Research Centre, Southern Cross University, Lismore,
New South Wales, Australia
Centre for Coastal Biogeochemistry, Southern Cross University,
Lismore, New South Wales, Australia
Bradley D. Eyre
Southern Cross University School of Environment, Science and
Engineering, Lismore, New South Wales, Australia
Centre for Coastal Biogeochemistry, Southern Cross University,
Lismore, New South Wales, Australia
Related authors
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Cited articles
Andreae, M. O. and Raemdonck, H.: Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view, Science, 221, 744–747, 1983.
Ayers, G. P. and Gillett, R. W.: DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry, J. Sea Res., 43, 275–286, 2000.
Ayers, G. P., Ivey, J. P., and Gillett, R. W.: Coherence between seasonal cycles of dimethylsulphide, methanesulphonate and sulphate in marine air, Nature, 329, 404–406, 1991.
Ayers, G. P., Gillett, R. W., Ivey, J. P., Schäfer, B., and Gabric, A.: Short-term variability in marine atmospheric dimethylsulfide concentration, Geophys. Res. Lett., 22, 2513–2516, 1995.
Barnard, W. R., Andreae, M. O., Watkins, W. E., Bingemer, H., and Georgii, H.-W.: The flux of dimethylsulfide from the oceans to the atmosphere, J. Geophys. Res., 87, 8787–8793, 1982.
Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed, Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013.
Broadbent, A. D. and Jones, G. B.: DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef, Mar. Freshwater Res., 55, 849–855, 2004.
Broadbent, A. and Jones, G.: Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at One Tree Reef lagoon, Environ. Chem., 3, 260–267, 2006.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.
Chen, G., Davis, D., Kasibhatla, P., Bandy, A., Thornton, D., and Blake, D.: A mass-balance/photochemical assessment of DMS sea-to-air flux as inferred from NASA GTE PEM-West A and B observations, J. Geophys. Res., 104, 5471–5482, 1999.
Cheskis, S., Atar, E., and Amirav, A.: Pulsed-flame photometer: A novel gas chromatography detector, Anal. Chem., 65, 539–555, 1993.
Clarke, A. D., Varner, J. L., Eisele, F., Mauldin, R. L., Tanner, D., and Litchy, M.: Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE1, J. Geophys. Res., 103, 16397–16409, 1998.
Deschaseaux, E. S. M., Jones, G. B., Deseo, M. A., Shepherd, K. M., Kiene, R. P., Swan, H. B., Harrison, P. L., and Eyre, B. D.: Effects of environmental factors on dimethylated sulphur compounds and their potential role in the antioxidant system of the coral holobiont, Limnol. Oceanogr., 59, 758–768, 2014.
Eyre, B. D., Santos, I. R., and Maher, D. T.: Seasonal, daily and diel N2 effluxes in permeable carbonate sediments, Biogeosciences, 10, 2601–2615, https://doi.org/10.5194/bg-10-2601-2013, 2013.
Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, San Diego, USA, 2000.
Fischer, E. and Jones, G.: Atmospheric dimethylsulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching, Biogeochemistry, 110, 31–46, 2012.
Harrison, E. L., Veron, F., Ho, D. T., Reid, M. C., Orton, P., and McGillis, W. R.: Nonlinear interaction between rain- and wind-induced air-water gas exchange, J. Geophys. Res., 117, 1–16, 2012.
Ho, D. T. and Wanninkhof, R.: Air-sea gas exchange in the North Atlantic: 3He/SF6 experiment during GasEx-98, Tellus B, 68, 30198, https://doi.org/10.3402/tellusb.v68.30198, 2016.
Hopkins, F. E., Bell, T. G., Yang, M., Suggett, D. J., and Steinke, M.: Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere, Scientific Reports, 6, 36031, 2016.
Huebert, B. J., Blomquist, B. W., Yang, M. X., Archer, S. D., Nightingale, P. D., Yelland, M. J., Stephens, J., Pascal, R. W., and Moat, B. I.: Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind speed range, Geophys. Res. Lett., 37, 1–5, 2010.
Hutchings, P., Kingsford, M. J., and Hoegh-Guldberg, O.: The Great Barrier Reef: Biology, Environment and Management, CSIRO Publishing, Collingwood, Victoria, 2008.
Johnson, R. H., Ciesielski, P. E., and Cotturone, J. A.: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool, J. Atmos. Sci., 58, 2729–2750, 2001.
Jones, G. B. and Trevena, A. J.: The influence of coral reefs on atmospheric dimethylsulphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas, Mar. Freshwater Res., 56, 85–93, 2005.
Kirst, G. O.: Osmotic adjustment in phytoplankton and macro-algae: the use of dimethylsulfoniopropionate (DMSP), in: Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, edited by: Kiene, R. P., Visscher, P. T., Keller, M. D., and Kirst, G. O., Plenum Press, New York, 1996.
Kittler, P., Swan, H., and Ivey, J.: An indicating oxidant scrubber for the measurement of atmospheric dimethylsulphide, Atmos. Environ. A-Gen., 26, 2661–2664, 1992.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, 1–17, 2011.
Lawson, S., Galbally, I., Dunne, E., and Gras, J.: Measurement of VOCs in marine air at Cape Grim using proton transfer reaction-mass spectrometry (PTR-MS), in: Baseline Atmospheric Program Australia 2007–2008, edited by: Derek, N. and Krummel, P. B., Commonwealth of Australia, Melbourne, 2011.
MacKellar, M. C., McGowan, H. A., Phinn, S. R., and Soderholm, J. S.: Observations of the surface energy fluxes and boundary-layer structure over Heron Reef, Great Barrier Reef, Australia, Bound.-Lay. Meteorol., 146, 319–340, 2013.
McGowan, H. A., Sturman, A. P., MacKellar, M. C., Wiebe, A. H., and Neil, D. T.: Measurements of the local energy balance over a coral reef flat, Heron Island, southern Great Barrier reef, Australia, J. Geophys. Res., 115, 1–12, 2010.
Modini, R. L., Ristovski, Z. D., Johnson, G. R., He, C., Surawski, N., Morawska, L., Suni, T., and Kulmala, M.: New particle formation and growth at a remote, sub-tropical coastal location, Atmos. Chem. Phys., 9, 7607–7621, https://doi.org/10.5194/acp-9-7607-2009, 2009.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via oceanic phytoplankton sulphur emissions, Nature, 480, 51–56, 2011.
Rohrer, F. and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442, 184–187, 2006.
Saltzman, E. S., King, D. B., Holmen, K., and Leck, C.: Experimental determination of the diffusion coefficient of dimethylsulfide in water, J. Geophys. Res., 98, 16481–16486, 1993.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons Inc, New York, 1998.
Shon, Z.-H., Kim, K.-H., Swan, H., Lee, G., and Kim, Y.-K.: DMS photochemistry during the Asian dust-storm period in the Spring of 2001: model simulations vs. field observations, Chemosphere, 58, 149–161, 2005.
Stefels, J.: Physiological aspects of the production and conversion of DMSP in marine algae and higher plants, J. Sea Res., 43, 183–197, 2000.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1988.
Swan, H. B., Ivey, J. P., Jones, G. B., and Eyre, B. D.: The validation and measurement uncertainty of an automated gas chromatograph for marine studies of atmospheric dimethylsulfide, Anal. Meth., 7, 3893–3902, 2015.
Swan, H. B., Crough, R. W., Vaattovaara, P., Jones, G. B., Deschaseaux, E. S. M., Eyre, B. D., Milijevic, B., and Ristovski, Z. D.: Dimethyl sulfide and other biogenic organic compound emissions from branching coral and reef seawater: Potential sources of secondary aerosol over the Great Barrier Reef, J. Atmos. Chem., 73, 303–328, 2016a.
Swan, H. B., Deschaseaux, E. S. M., Jones, G. B., and Eyre, B. D.: Quantification of dimethylsulfoniopropionate (DMSP) in Acropora spp. of reef-building coral using mass spectrometry with deuterated internal standard, Anal. Bioanal. Chem., https://doi.org/10.1007/s00216-016-0141-5, online first, 2016b.
Swan, H. B.: Data from: Atmospheric dimethylsulfide surface concentrations at Heron Island (23.44° S, 151.91° E) on the southern Great Barrier Reef during 6–20 March 2012, and 18 July–5 August 2013, Southern Cross University, https://doi.org/10.4226/47/58781bbfca619, 2017.
Thimijan, R. W. and Royal, H. D.: Photometric, radiometric and quantum light units of measure: A review of procedures for interconversion, HortScience, 18, 818–822, 1982.
Vaattovaara, P., Swan, H. B., Jones, G. B., Deschaseaux, E., Miljevic, B., Laaksonen, A., and Ristovski, Z. D.: The contribution of sulfate and oxidized organics in climatically important ultrafine particles at a coral reef environment, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 7, 720–724, 2013.
Vaisala: Humidity Conversion Formulas, Vaisala Oyj Helsinki, Finland, 2013.
Wang, Q., Lenschow, D. H., Pan, L., Schillawski, R. D., Kok, G. L., Prevot, A. S. H., Laursen, K., Russell, L. M., Bandy, A. R., Thornton, D. C., and Suhre, K.: Characteristics of the marine boundary layers during two Lagrangian measurement periods. 2. Turbulence structure, J. Geophys. Res., 104, 21767–21784, 1999.
Wild, C., Huettel, M., Klueter, A., Kremb, S. G., Rasheed, M. Y. M., and Jorgensen, B. B.: Coral mucus functions as an energy carrier and particle trap in the reef ecosystem, Nature, 428, 66–70, 2004.
Yang, M., Blomquist, B. W., Fairall, C. W., Archer, S. D., and Huebert, B. J.: Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements from SO GasEx compared to temperate and tropical regions, J. Geophys. Res., 116, 1–17, 2011.
Short summary
We measured the sulfur gas dimethylsulfide (DMS) in marine air at a coral cay on the Great Barrier Reef. DMS is well known to be released from the world's oceans, but environmental evidence of coral reefs releasing DMS has not been clearly demonstrated. We showed the coral reef can sometimes release DMS to the air, which was seen as spikes above the DMS released from the ocean. The DMS from the reef supplements the DMS from the ocean to assist formation of clouds that influence local climate.
We measured the sulfur gas dimethylsulfide (DMS) in marine air at a coral cay on the Great...
Altmetrics
Final-revised paper
Preprint