Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5377-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-5377-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The short-term combined effects of temperature and organic matter enrichment on permeable coral reef carbonate sediment metabolism and dissolution
Centre for Coastal Biogeochemistry, School of Environment, Science,
and Engineering, Military Road Southern Cross University, Lismore 2480
NSW,
Australia
Kai G. Schulz
Centre for Coastal Biogeochemistry, School of Environment, Science,
and Engineering, Military Road Southern Cross University, Lismore 2480
NSW,
Australia
Laura Stoltenberg
Centre for Coastal Biogeochemistry, School of Environment, Science,
and Engineering, Military Road Southern Cross University, Lismore 2480
NSW,
Australia
Bradley D. Eyre
Centre for Coastal Biogeochemistry, School of Environment, Science,
and Engineering, Military Road Southern Cross University, Lismore 2480
NSW,
Australia
Related authors
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Richards Kittu, Joaquín Ortíz-Cortes, and Kai Georg Schulz
Biogeosciences, 23, 137–153, https://doi.org/10.5194/bg-23-137-2026, https://doi.org/10.5194/bg-23-137-2026, 2026
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested calcium- and silicate-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Falilu O. Adekunbi, Michaël Grelaud, Gerald Langer, Lucian O. Chukwu, Marta Alvarez, Shakirudeen Odunuga, Kai G. Schulz, and Patrizia Ziveri
Biogeosciences, 22, 7865–7880, https://doi.org/10.5194/bg-22-7865-2025, https://doi.org/10.5194/bg-22-7865-2025, 2025
Short summary
Short summary
This study is the first to explore seasonal changes in coccolithophores, microscopic algae important for ocean life and the carbon cycle, off the coast of Nigeria. Their abundance and diversity increased during the rainy season, driven by shifts in the Intertropical Convergence Zone. Despite regional differences, these coastal communities show patterns similar to other parts of the world, revealing possible shared environmental pressures.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Cited articles
Alongi, D. M. and McKinnon, A. D.: The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf, Mar. Pollut. Bull., 51, 239–252, 2005.
Andersson, A. J.: A fundamental paradigm for coral reef carbonate sediment dissolution, Front. Mar. Sci., 2, 52, https://doi.org/10.3389/fmars.2015.00052, 2015.
Ashton, G. V., Morley, S. A., Barnes, D. K. A., Clark, M. S., and Peck, L. S.: Warming by 1° C Drives Species and Assemblage Level Responses in Antarctica's Marine Shallows, Curr. Biol., 2698–2705, https://doi.org/10.1016/j.cub.2017.07.048, 2017.
Atkinson, M. J.: Biogeochemistry of nutrients, in Coral Reefs: An Ecosystem in Transition, Springer Netherlands, Dordrecht, 199–206, 2011.
Bahr, K. D., Jokiel, P. L., and Rodgers, K. S.: Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs, Limnol. Oceanogr.-Meth., 14, 338–342, https://doi.org/10.1002/lom3.10093, 2016.
Bell, P. R. F.: Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon, Water Res., 26, 553–568, https://doi.org/10.1016/0043-1354(92)90228-V, 1992.
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. R., and Long, S. P.: Improved temperature response functions for models of Rubisco-limited photosynthesis, Plant Cell Environ., 24, 253–259, https://doi.org/10.1046/j.1365-3040.2001.00668.x, 2001.
Chanson, M. and Millero, F. J.: Effect of filtration on the total alkalinity of open-ocean seawater, Limnol. Oceanogr.-Meth., 5, 293–295, https://doi.org/10.4319/lom.2007.5.293, 2007.
Clarke, A.: Costs and consequences of evolutionary temperature adaptation, Trends Ecol. Evol., 18, 573–581, https://doi.org/10.1016/j.tree.2003.08.007, 2003.
Cohen, A. L. and Holcomb, M.: Why corals care about ocean acidification Uncovering the mechanism, Oceanography, 22, 118–127, https://doi.org/10.5670/oceanog.2009.102, 2009.
Cyronak, T., Santos, I. R., and Eyre, B. D.: Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection, Geophys. Res. Lett., 40, 4876–4881, https://doi.org/10.1002/grl.50948, 2013a.
Cyronak, T., Santos, I. R., McMahon, A., and Eyre, B. D.: Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification, Limnol. Oceanogr., 58, 131–143, https://doi.org/10.4319/lo.2013.58.1.0131, 2013b.
Cyronak, T. and Eyre, B. D.: The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments, Mar. Chem., 183, 1–12, https://doi.org/10.1016/j.marchem.2016.05.001, 2016.
Díaz-ortega, G. and Hernández-Delgado, E. a: Unsustainable Land-Based Source Pollution in a Climate of Change: A Roadblock to the Conservation and Recovery of Elkhorn Coral Acropora palmata (Lamarck 1816), Nat. Resour., 5, 561–581, https://doi.org/10.4236/nr.2014.510050, 2014.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. Pt. I, 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization, 2007.
Ducklow, H. W. and Mitchell, R.: Composition of mucus released by coral reef coelenterates, Limnol. Oceanogr., 24, 706–714, https://doi.org/10.4319/lo.1979.24.4.0706, 1979.
Edinger, E. N., Jompa, J., Limmon, G. V, Widjatmoko, W., and Risk, M. J.: Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time, Mar. Pollut. Bull., 36, 617–630, https://doi.org/10.1016/S0025-326X(98)00047-2, 1998.
Eyre, B. D., Glud, R. N., and Patten, N.: Mass coral spawning: A natural large-scale nutrient addition experiment, Limnol. Oceanogr., 53, 997–1013, https://doi.org/10.4319/lo.2008.53.3.0997, 2008.
Eyre, B. D., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M.: Metabolism of different benthic habitats and their contribution to the carbon budget of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia), Biogeochemistry, 102, 87–110, https://doi.org/10.1007/s10533-010-9424-7, 2011.
Eyre, B. D., Santos, I. R., and Maher, D. T.: Seasonal, daily and diel N2 effluxes in permeable carbonate sediments, Biogeosciences, 10, 2601–2615, https://doi.org/10.5194/bg-10-2601-2013, 2013.
Eyre, B. D., Andersson, A. J., and Cyronak, T.: Benthic coral reef calcium carbonate dissolution in an acidifying ocean, Nature Climate Change, 4, 969–976, https://doi.org/10.1038/nclimate2380, 2014.
Eyre, B. D., Oakes, J. M., and Middelburg, J. J.: Fate of microphytobenthos nitrogen in subtropical subtidal sediments: A 15N pulse-chase study, Limnol. Oceanogr., 61, 2108–2121, https://doi.org/10.1002/lno.10356, 2016.
Fabricius, K. E.: Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis, Mar. Pollut. Bull., 50, 125–146, https://doi.org/10.1016/j.marpolbul.2004.11.028, 2005.
Ferguson, A., Eyre, B., and Gay, J.: Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 33, 137–154, https://doi.org/10.3354/ame033137, 2003.
Ferrier-Pagès, C., Leclercq, N., Jaubert, J., and Pelegrí, S. P.: Enhancement of pico- and nanoplankton growth by coral exudates, Aquat. Microb. Ecol., 21, 203–209, https://doi.org/10.3354/ame021203, 2000.
Frommlet, J. C., Sousa, M. L., Alves, A., Vieira, S. I., Suggett, D. J., and Serôdio, J.: Coral symbiotic algae calcify ex hospite in partnership with bacteria, P. Natl. Acad. Sci. USA, 112, 6158–6163, https://doi.org/10.1073/pnas.1420991112, 2015.
Furnas, M., Mitchell, A., Skuza, M., and Brodie, J.: In the other 90 %: Phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon, Mar. Pollut. Bull., 51, 253–265, 2005.
Glud, R. N., Eyre, B. D., and Patten, N.: Biogeochemical responses to mass coral spawning at the Great Barrier Reef: Effects on respiration and primary production, Limnol. Oceanogr., 53, 1014–1024, https://doi.org/10.4319/lo.2008.53.3.1014, 2008.
Grigg, R. W.: Coral reefs in an urban embayment in Hawaii: a complex case history controlled by natural and anthropogenic stress, Coral Reefs, 14, 253–266, https://doi.org/10.1007/BF00334349, 1995.
Guillard, R. R. L.: Culture of Phytoplankton for Feeding Marine Invertebrates, in Culture of Marine Invertebrate Animals, Springer US, Boston, MA, 29–60, 1975.
Hancke, K. and Glud, R. N.: Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities, Aquat. Microb. Ecol., 37, 265–281, https://doi.org/10.3354/ame037265, 2004.
Hancke, K., Sorrell, B. K., Chresten Lund-Hansen, L., Larsen, M., Hancke, T., and Glud, R. N.: Effects of temperature and irradiance on a benthic microalgae community: A combined two-dimensional oxygen and fluorescence imaging approach, Limnol. Oceanogr., 59, 1599–1611, https://doi.org/10.4319/lo.2014.59.5.1599, 2014.
Huettel, M. and Gust, G.: Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows, Mar. Ecol.-Prog. Ser., 82, 187–197, https://doi.org/10.3354/meps082187, 1992.
IPCC: Summary for policymakers, Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY USA, 2013.
Johnson, M. D. and Carpenter, R. C.: Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing, J. Exp. Mar. Biol. Ecol., 434–435, 94–101, https://doi.org/10.1016/j.jembe.2012.08.005, 2012.
Koop, K., Booth, D., Broadbent, A., Brodie, J., Bucher, D., Capone, D., Coll, J., Dennison, W., Erdmann, M., Harrison, P., Hoegh-Guldberg, O., Hutchings, P., Jones, G. B., Larkum, A. W. D., O'Neil, J., Steven, A., Tentori, E., Ward, S., Williamson, J., and Yellowlees, D.: ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions, Mar. Pollut. Bull., 42, 91–120, https://doi.org/10.1016/S0025-326X(00)00181-8, 2001.
Lantz, C. A., Carpenter, R. C., and Edmunds, P. J.: Calcium carbonate (CaCO3) sediment dissolution under elevated concentrations of carbon dioxide (CO2) and nitrate (NO3−), J. Exp. Mar. Biol. Ecol., 495, 48–56, https://doi.org/10.1016/j.jembe.2017.05.014, 2017.
Lantz, C. A., Schulz, K. G., Stoltenberg, L., and Eyre, B. D.: Gross primary production, respiration, and net calcification in coral reef sediments of Heron Island Lagoon, Australia, determined by in situ benthic chamber incubations, https://doi.org/10.1594/PANGAEA.883559, 2017.
Lavigne, H. and Gattuso, J.P.: Package “seacarb';: seawater carbonate chemistry with R, v. 2.4. 8, edited by: R Development Core Team, available at: see https://cran.r-project.org/web/packages/seacarb/index.html (last access: 1 November 2016), 2013.
Lee, K. and Millero, F. J.: Thermodynamic studies of the carbonate system in seawater, Deep-Sea Res. Pt. I, 42, 2035–2061, https://doi.org/10.1016/0967-0637(95)00077-1, 1995.
Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: Warming of the World Ocean, Science, 287, 2225–2229, https://doi.org/10.1126/science.287.5461.2225, 2000.
López-Urrutia, Á. and Morán, X. A. G.: Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling, Ecology, 88, 817–822, https://doi.org/10.1890/06-1641, 2007.
Maher, D. T., Santos, I. R., Leuven, J. R. F. W., Oakes, J. M., Erler, D. V., Carvalho, M. C., and Eyre, B. D.: Novel Use of Cavity Ring-down Spectroscopy to Investigate Aquatic Carbon Cycling from Microbial to Ecosystem Scales, Environ. Sci. Technol., 47, 12938–12945, https://doi.org/10.1021/es4027776, 2013.
Mallela, J. and Perry, C. T.: Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica, Coral Reefs, 26, 129–145, https://doi.org/10.1007/s00338-006-0169-7, 2007.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.: Measurement of the apparent dissociation constatns of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical relationships for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344, https://doi.org/10.1016/S0967-0637(96)00101-X, 1997.
Moriarty, D. J. W., Pollard, P. C., and Hunt, W. G.: Temporal and spatial variation in bacterial production in the water column over a coral reef, Mar. Biol., 85, 285–292, https://doi.org/10.1007/BF00393249, 1985.
Muehllehner, N., Langdon, C., Venti, A., and Kadko, D.: Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): Evidence for seasonal dissolution, Global Biogeochem. Cy., 30, 661–688, https://doi.org/10.1002/2015GB005327, 2016.
Odum, H. T. and Odum, E. P.: Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll, Ecol. Monogr., 25, 291–320, https://doi.org/10.2307/1943285, 1955.
Orlando, J. L. and Yee, S. H.: Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services, Estuar. Coast., 40, 359–375, https://doi.org/10.1007/s12237-016-0167-0, 2017.
Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.: Projecting coral reef futures under global warming and ocean acidification, Science, 333, 418–422, https://doi.org/10.1126/science.1204794, 2011.
Rabalais, N. N., Turner, R. E., Díaz, R. J., and Justić, D.: Global change and eutrophication of coastal waters, ICES J. Mar. Sci., 66, 1528–1537, https://doi.org/10.1093/icesjms/fsp047, 2009.
Rabouille, C., Mackenzie, F. T., and Ver, L. M.: Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean, Geochim. Cosmochim. Ac., 65, 3615–3641, https://doi.org/10.1016/S0016-7037(01)00760-8, 2001.
Robinson, C.: Plankton gross production and respiration in the shallow water hydrothermal systems of Miles, Aegean Sea, J. Plankton Res., 22, 887–906, https://doi.org/10.1093/plankt/22.5.887, 2000.
Roelfsema, R. T. C. M. and Roelfsema, R. T. C. M.: Spatial distribution of benthic microalgae on coral reefs determined by remote sensing, Coral Reefs, 21, 264–274, https://doi.org/10.1007/s00338-002-0242-9, 2002.
Salmond, J., Loder, J., Roelfsema, C., Host, R., and Passenger, J.: Reef Check Australia 2015 Heron Reef Health Report, Reef Check Foundation Ltd., Brisbane, 2015.
Shaw, E. C., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J.: Intraspecific variability in the response to ocean warming and acidification in the scleractinian coral Acropora pulchra, Mar. Biol., 163, 210, https://doi.org/10.1007/s00227-016-2986-8, 2016.
Tait, L. W. and Schiel, D. R.: Impacts of Temperature on Primary Productivity and Respiration in Naturally Structured Macroalgal Assemblages, PLoS One, 8, e74413, https://doi.org/10.1371/journal.pone.0074413, 2013.
Trnovsky, D., Stoltenberg, L., Cyronak, T., and Eyre, B.D.: Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments, Front. Mar. Sci., 3, 211, https://doi.org/10.3389/fmars.2016.00211, 2016.
Weston, N. B. and Joye, S. B.: Temperature-driven decoupling of key phases of organic matter degradation in marine sediments, P. Natl. Acad. Sci. USA, 102, 17036–17040, https://doi.org/10.1073/pnas.0508798102, 2005.
Wiencke, C., Rahmel, J., Karsten, U., Weykam, G. and Kirst, G. O.: Photosynthesis of marine macroalgae from Antarctica: Light and temperature requirements, Bot. Act., 106, 78–87, https://doi.org/10.1111/j.1438-8677.1993.tb00341.x, 1993.
Wild, C., Huettel, M., Klueter, A., Kremb, S. G., Rasheed, M. Y. M., and Jørgensen, B. B.: Coral mucus functions as an energy carrier and particle trap in the reef ecosystem, Nature, 428, 66–70, https://doi.org/10.1038/nature02344, 2004a.
Wild, C., Rasheed, M., Werner, U., Franke, U., Johnstone, R., and Huettel, M.: Degradation and mineralization of coral mucus in reef environments, Mar. Ecol.-Prog. Ser., 267, 159–171, https://doi.org/10.3354/meps267159, 2004b.
Wild, C., Rasheed, M., Jantzen, C., Cook, P., Struck, U., Huettel, M., and Boetius, A.: Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea, Mar. Ecol.-Prog. Ser., 298, 69–78, https://doi.org/10.3354/meps298069, 2005.
Wilkinson, C. R.: Microbial ecology on a coral reef, Search, 18, 31–33, 1987.
Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M., Gorham, E., and Davidson, E.: Biotic feedbacks in the warming of the earth, Clim. Change, 40, 495–518, https://doi.org/10.1023/A:1005345429236, 1998.
Yamano, H., Miyajima, T., and Koike, I.: Importance of foraminifera for the formation and maintenance of a coral sand cay: Green Island, Australia, Coral Reefs, 19, 51–58, https://doi.org/10.1007/s003380050226, 2000.
Yeakel, K. L., Andersson, A. J., Bates, N. R., Noyes, T. J., Collins, A., and Garley, R.: Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. P. Natl. Acad. Sci. USA, 112, 14512–14517, https://doi.org/10.1073/pnas.1507021112, 2015.
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., and Montoya, J. M.: Warming alters the metabolic balance of ecosystems, Philos. T. R. Soc. B, 365, 2117–2126, https://doi.org/10.1098/rstb.2010.0038, 2010.
Short summary
This study examined the combined effect of seawater warming and organic matter enrichment on coral reef sediment metabolism. Sediments under control conditions were net autotrophic and net calcifying. Warming shifted the sediment to net heterotrophy and net dissolution, while organic matter enrichment increased net production and net calcification. When combined, the effects of each treatment were counterbalanced and sediment metabolism did not significantly differ from control treatments.
This study examined the combined effect of seawater warming and organic matter enrichment on...
Altmetrics
Final-revised paper
Preprint