Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-3027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-15-3027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 226Ra–Ba relationship in the North Atlantic during GEOTRACES-GA01
Emilie Le Roy
CORRESPONDING AUTHOR
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
Virginie Sanial
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
now at: Department of Marine Science, University of Southern
Mississippi, Stennis Space Center, MS 39529, USA
Matthew A. Charette
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Pieter van Beek
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
François Lacan
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
Stéphanie H. M. Jacquet
Aix Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille,
France
Paul B. Henderson
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Marc Souhaut
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
Maribel I. García-Ibáñez
Instituto de Investigaciones Marinas (IIM, CSIC), Eduardo Cabello 6,
36208 Vigo, Spain
now at: Uni Research Climate, Bjerknes Centre for Climate Research,
Bergen 5008, Norway
Catherine Jeandel
LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie
Spatiales (Université de Toulouse, CNRS/CNES/IRD/UPS), Observatoire Midi
Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
Fiz F. Pérez
Instituto de Investigaciones Marinas (IIM, CSIC), Eduardo Cabello 6,
36208 Vigo, Spain
Géraldine Sarthou
Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539,
IUEM, Technopôle Brest Iroise, 29280 Plouzané, France
Related authors
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1388, https://doi.org/10.5194/egusphere-2024-1388, 2024
Short summary
Short summary
The study evaluated CO2-carbonate system dynamics in the North Atlantic Subpolar Gyre from 2009 to 2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of Ocean Acidification and improve our knowledge about its impact on marine ecosystems.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Daniel Broullón, Fiz F. Pérez, and María Dolores Doval
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-33, https://doi.org/10.5194/bg-2021-33, 2021
Publication in BG not foreseen
Short summary
Short summary
We created a weekly database of pH and total alkalinity in a coastal upwelling system between 1992 and 2019. This product is very relevant to analyze the natural variability and the anthropogenic influence in the CO2 system in order to gain knowledge about the drivers of the variability and the possible future conditions of the Ría de Vigo. Biological ocean acidification experiments can also take advantage of this product to better restrict its parameters.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Juan L. Herrera, Jose González, Fiz F. Pérez, Gabriel Rosón, and Ramiro A. Varela
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-45, https://doi.org/10.5194/essd-2020-45, 2020
Preprint withdrawn
Short summary
Short summary
Oceanic Acidification (OA) is a big concern linked to climate change. Project A.RIOS is creating a network to monitor OA at the Galician coast (NW Spain). Between 2017 and May 2019, we moored a pH recording device four times at the Ría de Vigo. We present the pH data collected along with other seawater variables. All the data is available at PANGEA (https://doi.pangaea.de/10.1594/PANGAEA.909933). We think that this data improves the Ría pH database by much.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Arthur Gourain, Hélène Planquette, Marie Cheize, Nolwenn Lemaitre, Jan-Lukas Menzel Barraqueta, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 16, 1563–1582, https://doi.org/10.5194/bg-16-1563-2019, https://doi.org/10.5194/bg-16-1563-2019, 2019
Short summary
Short summary
The GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe). Lithogenic sources appear to dominate the PFe cycle through margin and benthic inputs.
Jan-Lukas Menzel Barraqueta, Jessica K. Klar, Martha Gledhill, Christian Schlosser, Rachel Shelley, Hélène F. Planquette, Bernhard Wenzel, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, https://doi.org/10.5194/bg-16-1525-2019, 2019
Short summary
Short summary
We used surface water dissolved aluminium concentrations collected in four different GEOTRACES cruises to determine atmospheric deposition fluxes to the ocean. We calculate atmospheric deposition fluxes for largely under-sampled regions of the Atlantic Ocean and thus provide new constraints for models of atmospheric deposition. The use of the MADCOW model is of major importance as dissolved aluminium is analysed within the GEOTRACES project at high spatial resolution.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
Feifei Deng, Gideon M. Henderson, Maxi Castrillejo, Fiz F. Perez, and Reiner Steinfeldt
Biogeosciences, 15, 7299–7313, https://doi.org/10.5194/bg-15-7299-2018, https://doi.org/10.5194/bg-15-7299-2018, 2018
Short summary
Short summary
To better use Pa / Th to reconstruct deep water ventilation rate, we assessed controls on 230Th and 231Pa in the northern North Atlantic. With extended optimum multi-parameter analysis and CFC-based water-mass age, we found the imprint of young overflow water on Th and Pa and enhanced scavenging near the seafloor. A significantly higher advective loss of Pa to the south relative to Th in the Atlantic was estimated, supporting the use of Pa / Th for assessing basin-scale meridional transport.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Nolwenn Lemaitre, Frédéric Planchon, Hélène Planquette, Frank Dehairs, Debany Fonseca-Batista, Arnout Roukaerts, Florian Deman, Yi Tang, Clarisse Mariez, and Géraldine Sarthou
Biogeosciences, 15, 6417–6437, https://doi.org/10.5194/bg-15-6417-2018, https://doi.org/10.5194/bg-15-6417-2018, 2018
Short summary
Short summary
We investigated the surface particulate organic carbon export fluxes in the North Atlantic with the objective of better understanding the biological carbon pump. Our results highlighted that exports depended on the intensity and stage of the bloom, the phytoplankton size and community structures. After comparing with primary production, we concluded that, during our study, the North Atlantic behaves like most of the highly productive areas in the world's ocean, with a low export efficiency.
Jill N. Sutton, Gregory F. de Souza, Maribel I. García-Ibáñez, and Christina L. De La Rocha
Biogeosciences, 15, 5663–5676, https://doi.org/10.5194/bg-15-5663-2018, https://doi.org/10.5194/bg-15-5663-2018, 2018
Short summary
Short summary
The silicon stable isotope distribution determined from samples collected from the North Atlantic Ocean indicates that water mass subduction and circulation are the dominant processes controlling the distribution of dissolved silicon in this region. In addition, these data provide a clear view of the direct interaction between northern and southern water masses and the extent to which the silicon isotope composition of these silica-poor waters is influenced by hydrography.
Maxi Castrillejo, Núria Casacuberta, Marcus Christl, Christof Vockenhuber, Hans-Arno Synal, Maribel I. García-Ibáñez, Pascale Lherminier, Géraldine Sarthou, Jordi Garcia-Orellana, and Pere Masqué
Biogeosciences, 15, 5545–5564, https://doi.org/10.5194/bg-15-5545-2018, https://doi.org/10.5194/bg-15-5545-2018, 2018
Short summary
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
Jan-Lukas Menzel Barraqueta, Christian Schlosser, Hélène Planquette, Arthur Gourain, Marie Cheize, Julia Boutorh, Rachel Shelley, Leonardo Contreira Pereira, Martha Gledhill, Mark J. Hopwood, François Lacan, Pascale Lherminier, Geraldine Sarthou, and Eric P. Achterberg
Biogeosciences, 15, 5271–5286, https://doi.org/10.5194/bg-15-5271-2018, https://doi.org/10.5194/bg-15-5271-2018, 2018
Short summary
Short summary
In the North Atlantic and Labrador Sea, low aerosol deposition and enhanced primary productivity control the dissolved aluminium (dAl) surface distribution, while remineralization of particles seems to control the distribution at depth. DAl in the ocean allows us to indirectly quantify the amount of dust deposited to a given region for a given period. Hence, the study of its distribution, cycling, sources, and sinks is of major importance to improve aerosol deposition models and climate models.
Cheryl M. Zurbrick, Edward A. Boyle, Richard J. Kayser, Matthew K. Reuer, Jingfeng Wu, Hélène Planquette, Rachel Shelley, Julia Boutorh, Marie Cheize, Leonardo Contreira, Jan-Lukas Menzel Barraqueta, François Lacan, and Géraldine Sarthou
Biogeosciences, 15, 4995–5014, https://doi.org/10.5194/bg-15-4995-2018, https://doi.org/10.5194/bg-15-4995-2018, 2018
Short summary
Short summary
During a French cruise in the northern North Atlantic Ocean in 2014, seawater samples were collected for dissolved Pb and Pb isotope analysis. Lead concentrations were highest in subsurface water flowing out of the Mediterranean Sea. The recently formed Labrador Sea Water (LSW) is much lower in Pb concentration than older LSW found in the West European Basin. Comparison of North Atlantic data from 1981 to 2014 shows decreasing Pb concentrations down to ~ 2500 m depth.
Virginie Racapé, Patricia Zunino, Herlé Mercier, Pascale Lherminier, Laurent Bopp, Fiz F. Pérèz, and Marion Gehlen
Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, https://doi.org/10.5194/bg-15-4661-2018, 2018
Short summary
Short summary
This study of a model–data comparison investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. It reveals the key role played by Central Water for storing Cant in the subtropical region and for supplying Cant into the deep ocean. The Cant transfer to the deep ocean occurred mainly north of the OVIDE section, and just a small fraction was exported to the subtropical gyre within the lower MOC.
Nolwenn Lemaitre, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Stéphanie Jacquet, Maribel I. García-Ibáñez, Arthur Gourain, Marie Cheize, Laurence Monin, Luc André, Priya Laha, Herman Terryn, and Frank Dehairs
Biogeosciences, 15, 2289–2307, https://doi.org/10.5194/bg-15-2289-2018, https://doi.org/10.5194/bg-15-2289-2018, 2018
Short summary
Short summary
We present the particulate biogenic barium distributions in the North Atlantic for the first time with the objective of estimating mesopelagic carbon remineralisation fluxes. The remineralisation fluxes balanced or slightly exceeded the upper-ocean carbon export fluxes. This is a key result as the North Atlantic is generally assumed to be efficient in transferring carbon to the deep ocean, but during our study, the North Atlantic was characterized by a near-zero carbon sequestration efficiency.
Daniel Cossa, Lars-Eric Heimbürger, Fiz F. Pérez, Maribel I. García-Ibáñez, Jeroen E. Sonke, Hélène Planquette, Pascale Lherminier, Julia Boutorh, Marie Cheize, Jan Lukas Menzel Barraqueta, Rachel Shelley, and Géraldine Sarthou
Biogeosciences, 15, 2309–2323, https://doi.org/10.5194/bg-15-2309-2018, https://doi.org/10.5194/bg-15-2309-2018, 2018
Short summary
Short summary
We first report the mercury distribution in the water section across the subpolar and subtropical gyres of the North Atlantic Ocean (GEOTRACES-GA01 transect). It allows the characterisation of various seawater types in terms of mercury content and the quantification of mercury transport associated with the Atlantic Meridional Overturning Circulation. It shows the nutrient-like biogeochemical behaviour of mercury in this ocean.
Rachel U. Shelley, William M. Landing, Simon J. Ussher, Helene Planquette, and Geraldine Sarthou
Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, https://doi.org/10.5194/bg-15-2271-2018, 2018
Short summary
Short summary
In this study, we discuss the regional variability in the fractional solubility of trace elements (Al, Ti, Fe, Mn, Co, Ni, Cu, Zn, Cd, Pb) from aerosol samples collected during three cruises to the North Atlantic Ocean. We present data that provides a
solubility window, covering a conservative, lower limit to an upper limit, the maximum potentially soluble fraction, and discuss why this upper limit could be used to represent the biologically available fraction in some regions.
Maribel I. García-Ibáñez, Fiz F. Pérez, Pascale Lherminier, Patricia Zunino, Herlé Mercier, and Paul Tréguer
Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, https://doi.org/10.5194/bg-15-2075-2018, 2018
Friederike Fröb, Are Olsen, Fiz F. Pérez, Maribel I. García-Ibáñez, Emil Jeansson, Abdirahman Omar, and Siv K. Lauvset
Biogeosciences, 15, 51–72, https://doi.org/10.5194/bg-15-51-2018, https://doi.org/10.5194/bg-15-51-2018, 2018
Short summary
Short summary
On long timescales, the inventory of total dissolved inorganic carbon in the ocean is mainly driven by the increase in anthropogenic CO2 emitted to the atmosphere due to human activities. On short timescales, however, the anthropogenic signal can be masked by the variability in natural inorganic carbon, shown in this study based on Irminger Sea cruise data from 1991 to 2015. In order to estimate oceanic carbon budgets, we suggest jointly assessing natural, anthropogenic and total carbon.
Patricia Zunino, Pascale Lherminier, Herlé Mercier, Nathalie Daniault, Maribel I. García-Ibáñez, and Fiz F. Pérez
Biogeosciences, 14, 5323–5342, https://doi.org/10.5194/bg-14-5323-2017, https://doi.org/10.5194/bg-14-5323-2017, 2017
Short summary
Short summary
The heat content in the subpolar North Atlantic is in a new phase of long-term decrease from the mid-2000s, which intensified in 2013–2014. We focus on the pronounced heat content drop. In summer 2014, the MOC intensity was higher than the mean (2002–2012) and the heat transport was also relatively high. We show that the air–sea heat flux is responsible for most of the intense cooling. Concurrently, we observed freshwater content increase mainly explained by the air–sea freshwater flux.
Mohamed Ayache, Jean-Claude Dutay, Thomas Arsouze, Sidonie Révillon, Jonathan Beuvier, and Catherine Jeandel
Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, https://doi.org/10.5194/bg-13-5259-2016, 2016
Short summary
Short summary
An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. The use of a high-resolution regional oceanic model (1/12° of horizontal resolution) allows us to realistically simulate for the first time the Nd IC distribution in the Mediterranean Sea.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Maribel I. García-Ibáñez, Patricia Zunino, Friederike Fröb, Lidia I. Carracedo, Aida F. Ríos, Herlé Mercier, Are Olsen, and Fiz F. Pérez
Biogeosciences, 13, 3701–3715, https://doi.org/10.5194/bg-13-3701-2016, https://doi.org/10.5194/bg-13-3701-2016, 2016
Short summary
Short summary
We assessed the progressive acidification (pH decrease) of the North Atlantic waters from direct observations between 1991 and 2015. The greatest pH decreases were observed in surface and intermediate waters. We conclude that the observed pH decreases are a consequence of the oceanic uptake of anthropogenic CO2. In addition we find that they have been partially offset by alkalinity increases.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
A. R. Bowie, P. van der Merwe, F. Quéroué, T. Trull, M. Fourquez, F. Planchon, G. Sarthou, F. Chever, A. T. Townsend, I. Obernosterer, J.-B. Sallée, and S. Blain
Biogeosciences, 12, 4421–4445, https://doi.org/10.5194/bg-12-4421-2015, https://doi.org/10.5194/bg-12-4421-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilization.
F. Quéroué, G. Sarthou, H. F. Planquette, E. Bucciarelli, F. Chever, P. van der Merwe, D. Lannuzel, A. T. Townsend, M. Cheize, S. Blain, F. d'Ovidio, and A. R. Bowie
Biogeosciences, 12, 3869–3883, https://doi.org/10.5194/bg-12-3869-2015, https://doi.org/10.5194/bg-12-3869-2015, 2015
Short summary
Short summary
Dissolved Fe (dFe) concentrations were measured in the vicinity of the Kerguelen Islands. Direct island runoff, glacial melting, and resuspended sediments were identified as important inputs of dFe that could potentially fertilise the northern part of the plateau. Overall, heterogeneous sources of Fe over and off the plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.
L. Farías, L. Florez-Leiva, V. Besoain, G. Sarthou, and C. Fernández
Biogeosciences, 12, 1925–1940, https://doi.org/10.5194/bg-12-1925-2015, https://doi.org/10.5194/bg-12-1925-2015, 2015
S. H. M. Jacquet, F. Dehairs, D. Lefèvre, A. J. Cavagna, F. Planchon, U. Christaki, L. Monin, L. André, I. Closset, and D. Cardinal
Biogeosciences, 12, 1713–1731, https://doi.org/10.5194/bg-12-1713-2015, https://doi.org/10.5194/bg-12-1713-2015, 2015
V. Sanial, P. van Beek, B. Lansard, M. Souhaut, E. Kestenare, F. d'Ovidio, M. Zhou, and S. Blain
Biogeosciences, 12, 1415–1430, https://doi.org/10.5194/bg-12-1415-2015, https://doi.org/10.5194/bg-12-1415-2015, 2015
Short summary
Short summary
We investigated the origin and mechanisms of the natural iron fertilization that sustains a phytoplankton bloom downstream of the Kerguelen Islands. We used radium isotopes to trace the fate of shelf waters that may transport iron and other micronutrients towards offshore waters. We show that shelf waters are rapidly transferred offshore and may be transported across the polar front (PF). The PF may thus not be a strong physical barrier for chemical elements released by the shelf sediments.
P. van der Merwe, A. R. Bowie, F. Quéroué, L. Armand, S. Blain, F. Chever, D. Davies, F. Dehairs, F. Planchon, G. Sarthou, A. T. Townsend, and T. W. Trull
Biogeosciences, 12, 739–755, https://doi.org/10.5194/bg-12-739-2015, https://doi.org/10.5194/bg-12-739-2015, 2015
Short summary
Short summary
Trace metal analysis of suspended and settling particles and underlying sediment was undertaken to elucidate the source to sink progression of the particulate trace metal pool near Kerguelen Island (Southern Ocean). Findings indicate that the Kerguelen Plateau is a source of trace metals via resuspended shelf sediments, especially below the mixed layer. However, glacial/fluvial runoff into shallow coastal waters is an important mode of fertilisation to areas downstream of Kerguelen Island.
M. Zhou, Y. Zhu, F. d'Ovidio, Y.-H. Park, I. Durand, E. Kestenare, V. Sanial, P. Van-Beek, B. Queguiner, F. Carlotti, and S. Blain
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-6845-2014, https://doi.org/10.5194/bgd-11-6845-2014, 2014
Revised manuscript has not been submitted
P. Zunino, M. I. Garcia-Ibañez, P. Lherminier, H. Mercier, A. F. Rios, and F. F. Pérez
Biogeosciences, 11, 2375–2389, https://doi.org/10.5194/bg-11-2375-2014, https://doi.org/10.5194/bg-11-2375-2014, 2014
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
J. Bown, M. Boye, P. Laan, A. R. Bowie, Y.-H. Park, C. Jeandel, and D. M. Nelson
Biogeosciences, 9, 5279–5290, https://doi.org/10.5194/bg-9-5279-2012, https://doi.org/10.5194/bg-9-5279-2012, 2012
Related subject area
Biogeochemistry: Open Ocean
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Hydrological cycle amplification imposes spatial pattern on climate change response of ocean pH and carbonate chemistry
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Drivers of decadal trends of the ocean carbon sink in the past, present, and future in Earth system models
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Evaluation of CMIP6 Models Performance in Simulating Historical Biogeochemistry across Southern South China Sea
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth System Models
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
The impact of the South-East Madagascar Bloom on the oceanic CO2 sink
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Allison Hogikyan and Laure Resplandy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1189, https://doi.org/10.5194/egusphere-2024-1189, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, and not by the direct effect of warming on carbon chemistry and pH. This rainfall/evaporation effect opposes acidification in saltier parts of the ocean and enhances acidification in fresher regions.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Jens Terhaar
EGUsphere, https://doi.org/10.5194/egusphere-2024-773, https://doi.org/10.5194/egusphere-2024-773, 2024
Short summary
Short summary
Despite the ocean’s importance for the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 Models to understand drivers of decadal trends of the past, present and future ocean carbon sink. I show that 80 % of decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends of atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Winfred Marshal, Jing Xiang Chung, and Mohd Fadzil Bin Mohd Akhir
EGUsphere, https://doi.org/10.5194/egusphere-2024-72, https://doi.org/10.5194/egusphere-2024-72, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2947, https://doi.org/10.5194/egusphere-2023-2947, 2023
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to represent the primary production and sea-air CO2 flux in terms of climatology, seasonal cycle, and responses to climate variability.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-129, https://doi.org/10.5194/bg-2023-129, 2023
Revised manuscript accepted for BG
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean, using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and we analyzed its predictability, a strong O2-IPV connection and predictability for IPV in the tropical Pacific. This open new routes to monitor ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Cited articles
Antia, A. N., Bauerfeind, E., von Bodungen, B., and Zeller, U.: Abundance, encystment and sedimentation of acantharia during autumn 1990 in the East Greenland Sea, J. Plankton Res., 15, 99–114, https://doi.org/10.1093/plankt/15.1.99, 1993.
Bacon, M. P. and Anderson, R. F.: Distribution of thorium isotopes between dissolved and particulate forms in the deep sea, J. Geophys. Res.-Ocean., 87, 2045–2056, https://doi.org/10.1029/JC087iC03p02045, 1982.
Barnard, R. T., Batten, S., Beaugrand, G., Buckland, C., Conway, D. V. P., Edwards, M., Finlayson, J., Gregory, L. W., Halliday, N. C., John, A. W. G., Johns, D. G., Johnson, A. D., Jonas, T. D., Lindley, J. A., Nyman, J., Pritchard, P., Reid, P. C., Richardson, A. J., Saxby, R. E., Sidey, J., Smith, M. A., Stevens, D. P., Taylor, C. M., Tranter, P. R. G., Walne, A. W., Wootton, M., Wotton, C. O. M., and Wright, J. C.: Continuous plankton records: Plankton atlas of the North Atlantic Ocean (1958–1999), II. Biogeographical charts, Mar. Ecol.-Prog. Ser., MEPS supplement, 11–75, 2004.
Bennett, T., Broecker, W. S., and Hansen, J.: North Atlantic Deep Water Formation, NASA CP-2367, National Aeronautics and Space Administration, 1985.
Bernstein, R. E., Byrne, R. H., and Schijf, J.: Acantharians: a missing link in the oceanic biogeochemistry of barium, Deep-Sea Res. Pt. I, 45, 491–505, https://doi.org/10.1016/S0967-0637(97)00095-2, 1998.
Bishop, J. K. B.: The barite-opal-organic carbon association in oceanic particulate matter, Nature, 332, 341–343, https://doi.org/10.1038/332341a0, 1988.
Broecker, W., Kaufman, A., Ku, T.-L., Chung, Y.-C., and Craig, H.: Radium 226 measurements from the 1969 North Pacific Geosecs Station, J. Geophys. Res., 75, 7682–7685, https://doi.org/10.1029/JC075i036p07682, 1970.
Broecker, W. S., Li, Y.-H., and Cromwell, J.: Radium-226 and Radon-222?: Concentration in Atlantic and Pacific Oceans, Science, 158, 1307–1310, 1967.
Broecker, W. S., Goddard, J., and Sarmiento, J. L.: The distribution of 226Ra in the Atlantic Ocean, Earth Planet. Sc. Lett., 32, 220–235, https://doi.org/10.1016/0012-821X(76)90063-7, 1976.
Chan, L. H., Edmond, J. M., Stallard, R. F., Broecker, W. S., Chung, Y. C., Weiss, R. F., and Ku, T. L.: Radium and barium at GEOSECS stations in the Atlantic and Pacific, Earth Planet. Sc. Lett., 32, 258–267, 1976.
Chan, L. H., Drummond, D., Edmond, J. M., and Grant, B.: On the barium data from the Atlantic GEOSECS expedition, Deep-Sea Res., 24, 613–649, https://doi.org/10.1016/0146-6291(77)90505-7, 1977.
Charette, M. A., Morris, P. J., Henderson, P. B., and Moore, W. S.: Radium isotope distributions during the US GEOTRACES North Atlantic cruises, Mar. Chem., 177, 184–195, https://doi.org/10.1016/j.marchem.2015.01.001, 2015.
Chow, T. J. and Goldberg, E. D.: On the marine geochemistry of barium, Geochim. Cosmochim. Ac., 20, 192–198, https://doi.org/10.1016/0016-7037(60)90073-9, 1960.
Chung, Y.: Radium-barium-silica correlations and a two-dimensional radium model for the world ocean, Earth Planet. Sc. Lett., 49, 309–318, https://doi.org/10.1016/0012-821X(80)90074-6, 1980.
Chung, Y., Craig, H., Ku, T. L., Goddard, J., and Broecker, W. S.: Radium-226 measurements from three Geosecs intercalibration stations, Earth Planet. Sc. Lett., 23, 116–124, https://doi.org/10.1016/0012-821X(74)90038-7, 1974.
Chung, Y.-C.: A deep 226Ra maximum in the Northeast Pacific, Earth Planet. Sc. Lett., 32, 249–257, https://doi.org/10.1016/0012-821X(76)90065-0, 1976.
Chung, Y.-C. and Craig, H.: 226Ra in the Pacifique Ocean, Earth Planet. Sc. Lett., 49, 267–292, 1980.
Cochran, J. K.: The flux of 226Ra from deep-sea sediments, Earth Planet. Sc. Lett., 49, 381–392, https://doi.org/10.1016/0012-821X(80)90080-1, 1980.
Cochran, J. K. and Krishnaswami, S.: Radium, thorium, uranium, and 210Pb in deep-sea sediments and sediment pore waters from the North Equatorial Pacific, Am. J. Sci., 280, 849–889, https://doi.org/10.2475/ajs.280.9.849, 1980.
Daniault, N., Lherminier, P., and Mercier, H.: Circulation and Transport at the Southeast Tip of Greenland, J. Phys. Oceanogr., 41, 437–457, https://doi.org/10.1175/2010JPO4428.1, 2011.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V., and Gladyshev, S.: The northern North Atlantic Ocean mean circulation in the early 21st century, Prog. Oceanogr., 146, 142–158, https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett., 49, 528–550, https://doi.org/10.1016/0012-821X(80)90094-1, 1980.
Deng, F., Thomas, A. L., Rijkenberg, M. J. A. and Henderson, G. M.: Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic, Earth Planet. Sc. Lett., 390, 93–102, https://doi.org/10.1016/j.epsl.2013.12.038, 2014.
Deng, F., Henderson, G. M., Castrillejo, M., and Perez, F. F.: Evolution of 231Pa and 230Th in overflow waters of the North Atlantic, Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-191, in review, 2018.
Dutkiewicz, A., Müller, R. D., O'Callaghan, S., and Jónasson, H.: Census of seafloor sediments in the world's ocean, Geology, 43, 795–798, https://doi.org/10.1130/G36883.1, 2015.
Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B.: Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sc. Lett., 46, 1–18, https://doi.org/10.1016/0012-821X(79)90061-X, 1979.
Falina, A., Sarafanov, A., Mercier, H., Lherminier, P., Sokov, A., and Daniault, N.: On the Cascading of Dense Shelf Waters in the Irminger Sea, J. Phys. Oceanogr., 42, 2254–2267, https://doi.org/10.1175/JPO-D-12-012.1, 2012.
Falkner, K. K., klinkhammer, G. P., Bowers, T. S., Todd, J. F., Lewis, B. L., Landing, W. M., and Edmond, J. M.: The behavior of barium in anoxic marine waters, Geochim. Cosmochim. Ac., 57, 537–554, https://doi.org/10.1016/0016-7037(93)90366-5, 1993.
Fanning, K. A., Vargo, G. A., Bell-Torres, L., and Young, R. W.: Covariation of reactive solutes in the sea, Mar. Chem., 24, 215–238, 1988.
Foster, D. A., Staubwasser, M., and Henderson, G. M.: 226Ra and Ba concentrations in the Ross Sea measured with multicollector ICP mass spectrometry, Mar. Chem., 87, 59–71, 2004.
Freydier, R., Dupre, B., and Polve, M.: Analyses by inductively coupled plasma mass spectrometry of Ba concentrations in water and rock samples, Comparison between isotope dilution and external calibration with or without internal standard, Eur. J. Mass Spectrom., 1, 283–291, https://doi.org/10.1255/ejms.140, 1995.
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I., Jeansson, E., and Rajasakaren, B.: Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior, Nat. Commun., 7, 13244, https://doi.org/10.1038/ncomms13244, 2016.
García-Ibáñez, M. I., Pardo, P. C., Carracedo, L. I., Mercier, H., Lherminier, P., Ríos, A. F., and Pérez, F. F.: Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre, Prog. Oceanogr., 135, 18–36, https://doi.org/10.1016/j.pocean.2015.03.009, 2015.
García-Ibáñez, M. I., Pérez, F. F., Lherminier, P., Zunino, P., Mercier, H., and Tréguer, P.: Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic, Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, 2018.
Gingele, F. and Dahmke, A.: Discrete barite particles and barium as tracers of paleoproductivity in south Atlantic sediments, Paleoceanography, 9, 151–168, https://doi.org/10.1029/93PA02559, 1994.
Henderson, P., Morris, P., Moore, W., and Charette, M.: Methodological advances for measuring low-level radium isotopes in seawater, J. Radioanal. Nucl. Ch., 296, 357–362, https://doi.org/10.1007/s10967-012-2047-9, 2013.
Jacquet, S. H. M., Dehairs, F., Cardinal, D., Navez, J., and Delille, B.: Barium distribution across the Southern Ocean frontal system in the Crozet–Kerguelen Basin, Mar. Chem., 95, 149–162, https://doi.org/10.1016/j.marchem.2004.09.002, 2005.
Jacquet, S. H. M., Dehairs, F., Elskens, M., Savoye, N., and Cardinal, D.: Barium cycling along WOCE SR3 line in the Southern Ocean, Mar. Chem., available from: http://vliz.be/en/imis?module=ref&refid=211233&basketaction=add (last access: 20 January 2017), 2007.
Jeandel, C., Dupré, B., Lebaron, G., Monnin, C., and Minster, J.-F.: Longitudinal distributions of dissolved barium, silica and alkalinity in the western and southern Indian Ocean, Deep-Sea Res. Pt. I, 43, 1–31, https://doi.org/10.1016/0967-0637(95)00098-4, 1996.
Jenkins, W. J., Smethie Jr., W. M., Boyle, E. A., and Cutter, G. A.: Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic sections, Deep-Sea Res. Pt. II, 116, 6–20, https://doi.org/10.1016/j.dsr2.2014.11.018, 2015.
Jullion, L., Jacquet, S. H. M., and Tanhua, T.: Untangling biogeochemical processes from the impact of ocean circulation: First insight on the Mediterranean dissolved barium dynamics, Glob. Biogeochem. Cy., 31, GB005489, https://doi.org/10.1002/2016GB005489, 2017.
Kadko, D.: Radioisotopic studies of submarine hydrothermal vents, Rev. Geophys., 34, 349–366, https://doi.org/10.1029/96RG01762, 1996.
Kadko, D. and Moore, W.: Radiochemical constraints on the crustal residence time of submarine hydrothermal fluids: Endeavour Ridge, Geochim. Cosmochim. Ac., 52, 659–668, https://doi.org/10.1016/0016-7037(88)90328-6, 1988.
Key, R. M., Guinasso, N. L., and Schink, D. R.: Emanation of radon-222 from marine sediments, Mar. Chem., 7, 221–250, https://doi.org/10.1016/0304-4203(79)90041-0, 1979.
Kipp, L. E., Sanial, V., Henderson, P. B., van Beek, P., Reyss, J.-L., Hammond, D. E., Moore, W. S., and Charette, M. A.: Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean, Mar. Chem., 201, 51–65, https://doi.org/10.1016/j.marchem.2017.06.011, 2017.
Klinkhammer, G. P. and Chan, L. H.: Determination of barium in marine waters by isotope dilution inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 232, 323–329, https://doi.org/10.1016/s0003-2670(00)81249-0, 1990.
Koczy, F. F.: Natural radium as a tracer in the ocean, Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy, 18, 351–357, 1958.
Krauss, W.: Currents and mixing in the Irminger Sea and in the Iceland Basin, J. Geophys. Res.-Ocean., 100, 10851–10871, https://doi.org/10.1029/95JC00423, 1995.
Krishnaswami, S., Lal, D., Somayajulu, B. L. K., Weiss, R. F., and Craig, H.: Large-volume in-situ filtration of deep Pacific waters: Mineralogical and radioisotope studies, Earth Planet. Sc. Lett., 32, 420–429, https://doi.org/10.1016/0012-821X(76)90082-0, 1976.
Kröll, V.: Vertical Distribution of Radium in Deep-Sea Sediments, Nature, 171, 742–742, https://doi.org/10.1038/171742a0, 1953.
Ku, T.-L. and Lin, M.-C.: 226Ra distribution in the Antarctic Ocean, Earth Planet. Sc. Lett., 32, 236–248, https://doi.org/10.1016/0012-821X(76)90064-9, 1976.
Ku, T.-L. and Luo, S.: New appraisal of radium-226 as a large-scale oceanic mixing tracer, J. Geophys. Res.-Ocean., 99, 10255–10273, https://doi.org/10.1029/94JC00089, 1994.
Ku, T. L., Li, Y. H., Mathieu, G. G., and Wong, H. K.: Radium in the Indian-Antarctic Ocean south of Australia, J. Geophys. Res., 75, 5286–5292, https://doi.org/10.1029/JC075i027p05286, 1970.
Ku, T. L., Huh, C. A., and Chen, P. S.: Meridional distribution of 226Ra in the eastern Pacific along GEOSECS cruise tracks, Earth Planet. Sc. Lett., 49, 293–308, https://doi.org/10.1016/0012-821X(80)90073-4, 1980.
Kumar, D. M. and Li, Y.-H.: Spreading of water masses and regeneration of silica and 226Ra in the Indian Ocean, Deep-Sea Res. Pt. II, 43, 83–110, https://doi.org/10.1016/0967-0645(95)00084-4, 1996.
Lacan, F. and Jeandel, C.: Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep-Sea Res. Pt. I, 51, 71–82, 2004.
Lazier, J. R. N.: The renewal of Labrador sea water, Deep-Sea Res.-Oceanogr., 20, 341–353, https://doi.org/10.1016/0011-7471(73)90058-2, 1973.
Lea, D. and Boyle, E.: Barium content of benthic foraminifera controlled by bottom-water composition, Nature, 338, 751–753, https://doi.org/10.1038/338751a0, 1989.
Lea, D. W. and Boyle, E. A.: Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans, Paleoceanography, 5, 719–742, https://doi.org/10.1029/PA005i005p00719, 1990.
Legeleux, F. and Reyss, J.-L.: 228Ra226Ra activity ratio in oceanic settling particles: implications regarding the use of barium as a proxy for paleoproductivity reconstruction, Deep-Sea Res. Pt. I, 43, 1857–1863, https://doi.org/10.1016/S0967-0637(96)00086-6, 1996.
Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., García-Ibáñez, M. I., Gourain, A., Cheize, M., Monin, L., André, L., Laha, P., Terryn, H., and Dehairs, F.: Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic, Biogeosciences, 15, 2289–2307, https://doi.org/10.5194/bg-15-2289-2018, 2018a.
Lemaitre, N., Planchon, F., Planquette, H., Dehairs, F., Fonseca-Batista, D., Roukaerts, A., Deman, F., Tang, Y., Mariez, C., and Sarthou, G.: High variability of export fluxes along the North Atlantic GEOTRACES section GA01: Particulate organic carbon export deduced from the 234Th method, Biogeosciences Discuss.,https://doi.org/10.5194/bg-2018-190, in review, 2018b.
Lherminier, P., Mercier, H., Huck, T., Gourcuff, C., Perez, F. F., Morin, P., Sarafanov, A., and Falina, A.: The Atlantic Meridional Overturning Circulation and the subpolar gyre observed at the A25-OVIDE section in June 2002 and 2004, Deep-Sea Res. Pt. I, 57, 1374–1391, https://doi.org/10.1016/j.dsr.2010.07.009, 2010.
Li, Y. H., Ku, T. L., Mathieu, G. G., and Wolgemuth, K.: Barium in the Antarctic Ocean and implications regarding the marine geochemistry of Ba and226Ra, Earth Planet. Sc. Lett., 19, 352–358, https://doi.org/10.1016/0012-821X(73)90085-X, 1973.
Lucas, H. F.: Improved Low-Level Alpha-Scintillation Counter for Radon, Rev. Sci. Instrum., 28, 680–683, https://doi.org/10.1063/1.1715975, 1957.
Martin, J.-M. and Meybeck, M.: Elemental mass-balance of material carried by major world rivers, Mar. Chem., 7, 173–206, https://doi.org/10.1016/0304-4203(79)90039-2, 1979.
Martin, P., Allen, J. T., Cooper, M. J., Johns, D. G., Lampitt, R. S., Sanders, R., and Teagle, D. A. H.: Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies, Limnol. Oceanogr., 55, 604–614, https://doi.org/10.4319/lo.2010.55.2.0604, 2010.
Mathieu, G. G. and Wolgemuth, K.: Barium in the Antartic Ocean and Implication regarding the marine geochemsitry of Ba ans 226Ra, Earth Planet. Sc. Lett., 19, 352–358, 1973.
Mawji, E., et al.: The GEOTRACES Intermediate Data Product 2014, Mar. Chem., https://doi.org/10.1016/j.marchem.2015.04.005, 2015.
McCartney, M. S.: Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283–383, 1992.
McCave, I. N.: Local and global aspects of the bottom nepheloid layers in the world ocean, Neth. J. Sea Res., 20, 167–181, https://doi.org/10.1016/0077-7579(86)90040-2, 1986.
McManus, J., Berelson, W. M., Hammond, D. E., and Klinkhammer, G. P.: Barium Cycling in the North Pacific: Implications for the Utility of Ba as a Paleoproductivity and Paleoalkalinity Proxy, Paleoceanography, 14, 53–61, https://doi.org/10.1029/1998PA900007, 1999.
Menzel Barraqueta, J.-L., Schlosser, C., Planquette, H., Gourain, A., Cheize, M., Boutorh, J., Shelley, R., Pereira Contreira, L., Gledhill, M., Hopwood, M. J., Lherminier, P., Sarthou, G., and Achterberg, E. P.: Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal, Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-39, in review, 2018.
Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F.: The marine barite saturation state of the world's oceans, Mar. Chem., 65, 253–261, https://doi.org/10.1016/S0304-4203(99)00016-X, 1999.
Moore, W. S. and Reid, D. F.: Extraction of radium from natural waters using manganese-impregnated acrylic fibers, J. Geophys. Res., 78, 8880–8886, https://doi.org/10.1029/JC078i036p08880, 1973.
Nozaki, Y.: Excess 227Ac in deep ocean water, Nature, 310, 486–488, https://doi.org/10.1038/310486a0, 1984.
Okubo, A., Obata, H., Gamo, T., and Yamada, M.: 230Th and 232Th distributions in mid-latitudes of the North Pacific Ocean: Effect of bottom scavenging, Earth Planet. Sc. Lett., 339/340, 139–150, https://doi.org/10.1016/j.epsl.2012.05.012, 2012.
Östlund, H., Gote, C., Harmon, C., Broecker, Wa. S., Spencer, D. W., and GEOSECS: GEOSECS Atlantic, Pacific and Indian Ocean Expeditions: Shorebased Data and Graphics, National Science Foundation, US Government Printing Office, Washington, DC, 7, 200 pp., https://doi.org/10.1594/PANGAEA.824123, 1987.
Paytan, A. and Kastner, M.: Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle, Earth Planet. Sc. Lett., 142, 439–450, https://doi.org/10.1016/0012-821X(96)00120-3, 1996.
Peterson, R. N., Burnett, W. C., Dimova, N., and Santos, I. R.: Comparison of measurement methods for radium-226 on manganese-fiber, Limnol. Oceanogr.-Method., 7, 196–205, https://doi.org/10.4319/lom.2009.7.196, 2009.
Pickart, R. S. and Spall, M. A.: Impact of Labrador Sea Convection on the North Atlantic Meridional Overturning Circulation, J. Phys. Oceanogr., 37, 2207–2227, https://doi.org/10.1175/JPO3178.1, 2007.
Pickart, R. S., Straneo, F., and Moore, G. W. K.: Is Labrador sea water formed in the Irminger basin?, Deep-Sea Res. Pt. I, 50, 23–52, 2003.
Read, J. F.: CONVEX-91: water masses and circulation of the Northeast Atlantic subpolar gyre, Prog. Oceanogr., 48, 461–510, https://doi.org/10.1016/S0079-6611(01)00011-8, 2000.
Roy-Barman, M., Coppola, L., and Souhaut, M.: Thorium isotopes in the western Mediterranean Sea: an insight into the marine particle dynamics, Earth Planet. Sc. Lett., 196, 161–174, https://doi.org/10.1016/S0012-821X(01)00606-9, 2002.
Rubin, S. I., King, S. L., Jahnke, R. A., and Froelich, P. N.: Benthic barium and alkalinity fluxes: Is Ba an oceanic paleo-alkalinity proxy for glacial atmospheric CO2?, Geophys. Res. Lett., 30, 1885, https://doi.org/10.1029/2003GL017339, 2003.
Rudels, B., Fahrbach, E., Meincke, J., Budéus, G., and Eriksson, P.: The East Greenland Current and its contribution to the Denmark Strait overflow, ICES J. Mar. Sci., 59, 1133–1154, https://doi.org/10.1006/jmsc.2002.1284, 2002.
Rudnicki, M. D. and Elderfield, H.: Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23° N, Mid-Atlantic Ridge, Earth Planet. Sc. Lett., 113, 307–321, https://doi.org/10.1016/0012-821X(92)90136-J, 1992.
Schmidt, S. and Reyss, J.-L.: Radium as internal tracer of Mediterranean Outflow Water, J. Geophys. Res.-Ocean., 101, 3589–3596, https://doi.org/10.1029/95JC03308, 1996.
Schmitz, W. J. and McCartney, M. S.: On the North Atlantic Circulation, Rev. Geophys., 31, 29–49, https://doi.org/10.1029/92RG02583, 1993.
Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., and Cane, M. A.: Is the Gulf Stream responsible for Europe's mild winters?, Q. J. R. Meteorol. Soc., 128, 2563–2586, https://doi.org/10.1256/qj.01.128, 2002.
Shannon, L. V. and Cherry, R. D.: Radium-226 in marine phytoplankton, Earth Planet. Sc. Lett., 11, 339–343, https://doi.org/10.1016/0012-821X(71)90189-0, 1971.
Spencer, D. W.: Geosecs II, the 1970 North Atlantic station: Hydrographic features, oxygen, and nutrients, Earth Planet. Sc. Lett., 16, 91–102, https://doi.org/10.1016/0012-821X(72)90241-5, 1972.
Szabo, B. J.: Radium content in plankton and sea water in the Bahamas, Geochim. Cosmochim. Ac., 31, 1321–1331, https://doi.org/10.1016/S0016-7037(67)80018-8, 1967.
Tonnard, M., Planquette, H., Bowie, A. R., van der Merwe, P., Gallinari, M., Desprez de Gésincourt, F., Germain, Y., Gourain, A., Benetti, M., Reverdin, G., Tréguer, P., Boutorh, J., Cheize, M., Menzel Barraqueta, J.-L., Pereira-Contreira, L., Shelley, R., Lherminier, P., and Sarthou, G.: Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01), Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-147, in review, 2018.
van Aken, H. M.: The hydrography of the mid-latitude northeast Atlantic Ocean, I: The deep water masses, Deep-Sea Res. Pt. I, 47, 757–788, https://doi.org/10.1016/S0967-0637(99)00092-8, 2000.
van Aken, H. M. and Becker, G.: Hydrography and through-flow in the north-eastern North Atlantic Ocean: the NANSEN project, Prog. Oceanogr., 38, 297–346, https://doi.org/10.1016/S0079-6611(97)00005-0, 1996.
van Beek, P., François, R., Conte, M., Reyss, J.-L., Souhaut, M., and Charette, M.: 228Ra ∕ 226Ra and 226Ra ∕ Ba ratios to track barite formation and transport in the water column, Geochim. Cosmochim. Ac., 71, 71–86, https://doi.org/10.1016/j.gca.2006.07.041, 2007.
van Beek, P., Sternberg, E., Reyss, J. L., Souhaut, M., Robin, E., and Jeandel, C.: 228Ra ∕ 226Ra and 226Ra ∕ Ba ratios in the Western Mediterranean Sea?: barite formation and transport in the water column, Geochim. Cosmochim. Ac., 73, 4720–4737, https://doi.org/10.1016/j.gca.2009.05.063, 2009.
van Beek, P., Souhaut, M., and Reyss, J.-L.: Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry, J. Environ. Radioact., 101, 521–529, https://doi.org/10.1016/j.jenvrad.2009.12.002, 2010.
Wolgemuth, K. and Broecker, W. S.: Barium in sea water, Earth Planet. Sc. Lett., 8, 372–378, https://doi.org/10.1016/0012-821X(70)90110-X, 1970.
Yashayaev, I. and Dickson, B.: Transformation and Fate of Overflows in the Northern North Atlantic, in: Arctic–Subarctic Ocean Fluxes, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer Netherlands, 505–526, available from: http://link.springer.com/chapter/10.1007/978-1-4020-6774-7_22 (last access: 11 April 2016), 2008.
Yashayaev, I. and Loder, J. W.: Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability, J. Geophys. Res.-Ocean., 121, 8095–8114, https://doi.org/10.1002/2016JC012046, 2016.
Yashayaev, I., Bersch, M., and van Aken, H. M.: Spreading of the Labrador Sea Water to the Irminger and Iceland basins, Geophys. Res. Lett., 34, 1–8, https://doi.org/10.1029/2006GL028999, 2007.
Short summary
We report detailed sections of radium-226 (226Ra, T1/2 = 1602 y) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal–Greenland–Canada) in the framework of the international GEOTRACES program (GA01 section–GEOVIDE project, May–July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, which may reflect their similar chemical behavior.
We report detailed sections of radium-226 (226Ra, T1/2 = 1602 y) activities and barium (Ba)...
Altmetrics
Final-revised paper
Preprint