Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
BG | Articles | Volume 15, issue 14
Biogeosciences, 15, 4353–4365, 2018
https://doi.org/10.5194/bg-15-4353-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Biogeosciences, 15, 4353–4365, 2018
https://doi.org/10.5194/bg-15-4353-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2018

Research article | 18 Jul 2018

The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification

Clara Jule Marie Hoppe et al.

Related authors

The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light
Emily White, Clara J. M. Hoppe, and Björn Rost
Biogeosciences, 17, 635–647, https://doi.org/10.5194/bg-17-635-2020,https://doi.org/10.5194/bg-17-635-2020, 2020
Short summary

Related subject area

Biodiversity and Ecosystem Function: Marine
Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020,https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020,https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
A meta-analysis on environmental drivers of marine phytoplankton C : N : P
Tatsuro Tanioka and Katsumi Matsumoto
Biogeosciences, 17, 2939–2954, https://doi.org/10.5194/bg-17-2939-2020,https://doi.org/10.5194/bg-17-2939-2020, 2020
Short summary
Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system
Vanessa Joglar, Antero Prieto, Esther Barber-Lluch, Marta Hernández-Ruiz, Emilio Fernández, and Eva Teira
Biogeosciences, 17, 2807–2823, https://doi.org/10.5194/bg-17-2807-2020,https://doi.org/10.5194/bg-17-2807-2020, 2020
Short summary
Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean
Tasnim Patel, Henri Robert, Cedric D'Udekem D'Acoz, Koen Martens, Ilse De Mesel, Steven Degraer, and Isa Schön
Biogeosciences, 17, 2731–2744, https://doi.org/10.5194/bg-17-2731-2020,https://doi.org/10.5194/bg-17-2731-2020, 2020
Short summary

Cited articles

AMAP: AMAP Assessment 2013: Arctic Ocean Acidification, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 99, 2013. 
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary production, Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008gl035028, 2008. 
Bach, L. T., Mackinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D. C., Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi, New Phytol., 199, 121–134, https://doi.org/10.1111/nph.12225, 2013. 
Behrenfeld, M. J., Halsey, K. H., and Milligan, A. J.: Evolved physiological responses of phytoplankton to their integrated growth environment, Philos. T. R. Soc. B, 363, 2687–2703, https://doi.org/10.1098/rstb.2008.0019, 2008. 
Publications Copernicus
Download
Short summary
Responses of the Arctic microalgae Micromonas pusilla to different pCO2 levels were investigated at two temperatures. We observed that warming and ocean acidification (OA) synergistically increased growth rates. Furthermore, elevated temperature shifted the pCO2 optimum of biomass production to higher levels. This seem to be caused by more efficient photosynthesis under warmer and more acidic conditions. Our findings explain the dominance of picoeukaryotes frequently observed in OA experiments.
Responses of the Arctic microalgae Micromonas pusilla to different pCO2 levels were investigated...
Citation
Final-revised paper
Preprint