Articles | Volume 15, issue 23
Biogeosciences, 15, 7347–7377, 2018
https://doi.org/10.5194/bg-15-7347-2018

Special issue: Assessing environmental impacts of deep-sea mining...

Biogeosciences, 15, 7347–7377, 2018
https://doi.org/10.5194/bg-15-7347-2018

Research article 13 Dec 2018

Research article | 13 Dec 2018

Quantitative mapping and predictive modeling of Mn nodules' distribution from hydroacoustic and optical AUV data linked by random forests machine learning

Iason-Zois Gazis et al.

Related authors

Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020,https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl, Anne Hennke, Timm Schoening, Kevin Köser, and Jens Greinert
Biogeosciences, 17, 1463–1493, https://doi.org/10.5194/bg-17-1463-2020,https://doi.org/10.5194/bg-17-1463-2020, 2020
Short summary
Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area
Jeffrey C. Drazen, Astrid B. Leitner, Sage Morningstar, Yann Marcon, Jens Greinert, and Autun Purser
Biogeosciences, 16, 3133–3146, https://doi.org/10.5194/bg-16-3133-2019,https://doi.org/10.5194/bg-16-3133-2019, 2019
Short summary
Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data
Anne Peukert, Timm Schoening, Evangelos Alevizos, Kevin Köser, Tom Kwasnitschka, and Jens Greinert
Biogeosciences, 15, 2525–2549, https://doi.org/10.5194/bg-15-2525-2018,https://doi.org/10.5194/bg-15-2525-2018, 2018
Short summary
Quantification of the fine-scale distribution of Mn-nodules: insights from AUV multi-beam and optical imagery data fusion
Evangelos Alevizos, Timm Schoening, Kevin Koeser, Mirjam Snellen, and Jens Greinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-60,https://doi.org/10.5194/bg-2018-60, 2018
Revised manuscript has not been submitted
Short summary

Related subject area

Biogeochemistry: Open Ocean
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021,https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021,https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021,https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021,https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021,https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary

Cited articles

Alevizos, E., Schoening, T., Koeser, K., Snellen, M., and Greinert, J.: Quantification of the fine-scale distribution of Mn-nodules: insights from AUV multi-beam and optical imagery data fusion, Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-60, in review, 2018. 
Anselin, L.: Local Indicators of Spatial Association – LISA, Geogr. Anal., 27, 93–115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x, 1995. 
Atmanand, M. A. and Ramadass, G. A.: Concepts of Deep-Sea Mining Technologies, in: Deep-Sea Mining, edited by: Sharma, R., Resource Springer, Cham. Online ISBN 978-3-319-52557-0, https://doi.org/10.1007/978-3-319-52557-0_6, 2017. 
Bellingham, J.: Autonomous underwater vehicles (AUVs), in: Encyclopedia of Ocean Sciences, edited by: Steele, H., Academic Press, San Diego, 212–216, https://doi.org/10.1006/rwos.2001.0303, 2001. 
Bingham, D., Drake, T., Hill, A., and Lott, R.: The Application of Autonomous Underwater Vehicle (AUV) Technology in the Oil Industry – Vision and Experiences. FIG XXII International Congress Washington, DC USA, 19–26 April, 1–13, 2002. 
Download
Short summary
The use of high-resolution hydroacoustic and optic data acquired by an autonomous underwater vehicle can give us detailed sea bottom topography and valuable information regarding manganese nodules' spatial distribution. Moreover, the combined use of these data sets with a random forest machine learning model can extend this spatial prediction beyond the areas with available photos, providing researchers with a new mapping tool for further investigation and links with other data.
Altmetrics
Final-revised paper
Preprint