Articles | Volume 16, issue 6
https://doi.org/10.5194/bg-16-1281-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-1281-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon cycling in the North American coastal ocean: a synthesis
Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax B3H 4R2, Nova Scotia, Canada
Simone Alin
NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
Leticia Barbero
NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL 33149, USA
Wiley Evans
Hakai Institute, Campbell River, BC, V9W 0B7, Canada
Timothée Bourgeois
Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax B3H 4R2, Nova Scotia, Canada
Sarah Cooley
Ocean Conservancy, USA
John Dunne
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA
Richard A. Feely
NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
Jose Martin Hernandez-Ayon
Department of Marine Science, Autonomous University of Baja California, Ensenada, Baja California, CP 228600, Mexico
Xinping Hu
Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
Steven Lohrenz
School for Marine Science and Technology, University of Massachusetts, Dartmouth, MA 02747, USA
Frank Muller-Karger
Department of Marine Science, University of South Florida, Tampa, FL 33620, USA
Raymond Najjar
Department of Meteorology and Atmospheric Sciences, University Park, Pennsylvania 16802, USA
Lisa Robbins
Department of Marine Science, University of South Florida, Tampa, FL 33620, USA
Elizabeth Shadwick
The Department is Oceans & Atmosphere. The Institution is CSIRO, Hobart, TAS 7000, Australia
Samantha Siedlecki
Marine Sciences, University of Connecticut, Groton, CT 06340, USA
Nadja Steiner
Department of Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
Adrienne Sutton
NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
Daniela Turk
Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA
Penny Vlahos
Marine Sciences, University of Connecticut, Groton, CT 06340, USA
Zhaohui Aleck Wang
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
EGUsphere, https://doi.org/10.5194/egusphere-2023-987, https://doi.org/10.5194/egusphere-2023-987, 2023
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-46, https://doi.org/10.5194/bg-2023-46, 2023
Revised manuscript accepted for BG
Short summary
Short summary
This manuscript provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the biogeochemical Argo array.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Bin Wang, Katja Fennel, and Liuqian Yu
Ocean Sci., 17, 1141–1156, https://doi.org/10.5194/os-17-1141-2021, https://doi.org/10.5194/os-17-1141-2021, 2021
Short summary
Short summary
We demonstrate that even sparse BGC-Argo profiles can substantially improve biogeochemical prediction via a priori model tuning. By assimilating satellite surface chlorophyll and physical observations, subsurface distributions of physical properties and nutrients were improved immediately. The improvement of subsurface chlorophyll was modest initially but was greatly enhanced after adjusting the parameterization for light attenuation through further a priori tuning.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Christopher Gordon, Katja Fennel, Clark Richards, Lynn K. Shay, and Jodi K. Brewster
Biogeosciences, 17, 4119–4134, https://doi.org/10.5194/bg-17-4119-2020, https://doi.org/10.5194/bg-17-4119-2020, 2020
Short summary
Short summary
We describe a method for correcting errors in oxygen optode measurements on autonomous platforms in the ocean. The errors result from the relatively slow response time of the sensor. The correction method includes an in situ determination of the effective response time and requires the time stamps of the individual measurements. It is highly relevant for the BGC-Argo program and also applicable to gliders. We also explore if diurnal changes in oxygen can be obtained from profiling floats.
Bin Wang, Katja Fennel, Liuqian Yu, and Christopher Gordon
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, https://doi.org/10.5194/bg-17-4059-2020, 2020
Short summary
Short summary
We assess trade-offs between different types of biological observations, specifically satellite ocean color and BGC-Argo profiles and the benefits of combining both for optimizing a biogeochemical model of the Gulf of Mexico. Using all available observations leads to significant improvements in observed and unobserved variables (including primary production and C export). Our results highlight the significant benefits of BGC-Argo measurements for biogeochemical model optimization and validation.
Fabian Große, Katja Fennel, Haiyan Zhang, and Arnaud Laurent
Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, https://doi.org/10.5194/bg-17-2701-2020, 2020
Short summary
Short summary
In the East China Sea, hypoxia occurs frequently from spring to fall due to high primary production and subsequent decomposition of organic matter. Nitrogen inputs from the Changjiang and the open ocean have been suggested to contribute to hypoxia formation. We used a numerical modelling approach to quantify the relative contributions of these nitrogen sources. We found that the Changjiang dominates, which suggests that nitrogen management in the watershed would improve oxygen conditions.
Liuqian Yu, Katja Fennel, Bin Wang, Arnaud Laurent, Keith R. Thompson, and Lynn K. Shay
Ocean Sci., 15, 1801–1814, https://doi.org/10.5194/os-15-1801-2019, https://doi.org/10.5194/os-15-1801-2019, 2019
Short summary
Short summary
We present a first direct comparison of nonidentical versus identical twin approaches for an ocean data assimilation system. We show that the identical twin approach overestimates the value of assimilating satellite observations and undervalues the benefit of assimilating temperature and salinity profiles. Misleading assessments such as undervaluing the impact of observational assets are problematic and can lead to misguided decisions on balancing investments among different observing assets.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Krysten Rutherford and Katja Fennel
Ocean Sci., 14, 1207–1221, https://doi.org/10.5194/os-14-1207-2018, https://doi.org/10.5194/os-14-1207-2018, 2018
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves, we calculate transport timescales and pathways in order to understand the transport processes that underlie the rapid oxygen loss, air–sea CO2 flux, and supply of plankton seed populations on the Scotian Shelf. Study results highlight the limited connectivity between the Scotian Shelf and adjacent slope waters; instead, the dominant southwestward currents bring Grand Banks and Gulf of St. Lawrence waters to the Scotian Shelf.
Katja Fennel and Arnaud Laurent
Biogeosciences, 15, 3121–3131, https://doi.org/10.5194/bg-15-3121-2018, https://doi.org/10.5194/bg-15-3121-2018, 2018
Short summary
Short summary
Increasing human-derived nutrient inputs to coastal oceans lead to spreading dead zones around the world. Here a biogeochemical model for the northern Gulf of Mexico, where nutrients from the Mississippi River create the largest dead zone in North American coastal waters, is used for the first time to show the effects of single and dual nutrient reductions of nitrogen (N) and phosphorus (P). Significant reductions in N or N&P load would be required to significantly reduce hypoxia in this system.
Jonathan Lemay, Helmuth Thomas, Susanne E. Craig, William J. Burt, Katja Fennel, and Blair J. W. Greenan
Biogeosciences, 15, 2111–2123, https://doi.org/10.5194/bg-15-2111-2018, https://doi.org/10.5194/bg-15-2111-2018, 2018
Short summary
Short summary
We report a detailed mechanistic investigation of the impact of Hurricane Arthur on the CO2 cycling on the Scotian Shelf. We can show that in contrast to common thinking, the deepening of the surface during the summer months can lead to increased CO2 uptake as carbon-poor waters from subsurface water are brought up to the surface. Only during prolonged storm events is the deepening of the mixed layer strong enough to bring the (expected) carbon-rich water to the surface.
Julia M. Moriarty, Courtney K. Harris, Katja Fennel, Marjorie A. M. Friedrichs, Kehui Xu, and Christophe Rabouille
Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017, https://doi.org/10.5194/bg-14-1919-2017, 2017
Short summary
Short summary
In coastal aquatic environments, resuspension of sediment and organic material from the seabed into the overlying water can impact biogeochemistry. Here, we used a novel modeling approach to quantify this impact for the Rhône River delta. In the model, resuspension increased oxygen consumption during individual resuspension events, and when results were averaged over 2 months. This implies that observations and models that only represent calm conditions may underestimate net oxygen consumption.
Zuo Xue, Ruoying He, Katja Fennel, Wei-Jun Cai, Steven Lohrenz, Wei-Jen Huang, Hanqin Tian, Wei Ren, and Zhengchen Zang
Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016, https://doi.org/10.5194/bg-13-4359-2016, 2016
Short summary
Short summary
In this study we used a state-of-the-science coupled physical–biogeochemical model to simulate and examine temporal and spatial variability of sea surface CO2 concentration in the Gulf of Mexico. Our model revealed the Gulf was a net CO2 sink with a flux of 1.11 ± 0.84 × 1012 mol C yr−1. We also found that biological uptake was the primary driver making the Gulf an overall CO2 sink and that the carbon flux in the northern Gulf was very susceptible to changes in river inputs.
A. Laurent, K. Fennel, R. Wilson, J. Lehrter, and R. Devereux
Biogeosciences, 13, 77–94, https://doi.org/10.5194/bg-13-77-2016, https://doi.org/10.5194/bg-13-77-2016, 2016
Short summary
Short summary
In low oxygen environments, the lack of oxygen influences sediment biogeochemistry and in turn sediment-water fluxes. These nonlinear interactions are often missing from biogeochemical circulation models because sediment models are computationally expensive. A method for parameterizing realistic sediment-water fluxes is presented and applied to the Mississippi River Dead Zone where high primary production, stimulated by excess nutrient loads, promotes low bottom water conditions in summer.
L. Yu, K. Fennel, A. Laurent, M. C. Murrell, and J. C. Lehrter
Biogeosciences, 12, 2063–2076, https://doi.org/10.5194/bg-12-2063-2015, https://doi.org/10.5194/bg-12-2063-2015, 2015
Short summary
Short summary
Our study suggests that a combination of physical processes and sediment oxygen consumption determine the spatial extent and temporal dynamics of hypoxia on the Louisiana shelf. In summer, stratification isolates oxygen-rich surface waters from hypoxic bottom waters; oxygen outgasses to the atmosphere at this time. A large fraction of primary production occurs below the pycnocline in summer, but this primary production does not strongly affect the spatial extent of hypoxic bottom waters.
K.-K. Liu, C.-K. Kang, T. Kobari, H. Liu, C. Rabouille, and K. Fennel
Biogeosciences, 11, 7061–7075, https://doi.org/10.5194/bg-11-7061-2014, https://doi.org/10.5194/bg-11-7061-2014, 2014
Short summary
Short summary
This paper provides background info on the East China Sea, Japan/East Sea and South China Sea and highlights major findings in the special issue on their biogeochemical conditions and ecosystem functions. The three seas are subject to strong impacts from human activities and/or climate forcing. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large human population.
Z. Xue, R. He, K. Fennel, W.-J. Cai, S. Lohrenz, and C. Hopkinson
Biogeosciences, 10, 7219–7234, https://doi.org/10.5194/bg-10-7219-2013, https://doi.org/10.5194/bg-10-7219-2013, 2013
W. J. Burt, H. Thomas, K. Fennel, and E. Horne
Biogeosciences, 10, 53–66, https://doi.org/10.5194/bg-10-53-2013, https://doi.org/10.5194/bg-10-53-2013, 2013
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Benjamin Mark Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Seferian, Bjørn Hallvard Samset, Detlef van Vuuren, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2127, https://doi.org/10.5194/egusphere-2023-2127, 2023
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth System Models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches which have largely focussed on experiments with prescribed atmospheric carbon dioxide concentrations. We highlight the technical feasibility of achieving these simulations in coming years.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel. J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf E. Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-409, https://doi.org/10.5194/essd-2023-409, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The Global Carbon Budget 2023 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Thea Hatlen Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-160, https://doi.org/10.5194/bg-2023-160, 2023
Preprint under review for BG
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha A. Siedlecki, and Dana J. Greeley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-181, https://doi.org/10.5194/bg-2023-181, 2023
Preprint under review for BG
Short summary
Short summary
We provide a new multi-stressor data product allowed us to characterize the seasonality of temperature, oxygen, and carbon dioxide in the southern Salish Sea and provided insight into impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also described the present-day frequencies of temperature, oxygen, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-239, https://doi.org/10.5194/essd-2023-239, 2023
Preprint under review for ESSD
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana Bernardi Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-348, https://doi.org/10.5194/essd-2023-348, 2023
Preprint under review for ESSD
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of Dissolved Organic Matter (DOM) collected in coastal waters (CoastDOM v.1). Overall, the CoastDOM v.1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at e.g., better characterising local biogeochemical processes and in identifying a baseline for modelling future changes in coastal waters.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-325, https://doi.org/10.5194/essd-2023-325, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
As carbon dioxide is released into the air through human generated activity, about one third dissolves into the surface water of oceans, lowering the pH and increasing the acidity. This is known as ocean acidification. We merged ten years of ocean carbon data and made it publicly available for adaptation planning during a time of change. The data confirmed Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-99, https://doi.org/10.5194/gmd-2023-99, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We evaluate a model for Northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model’s ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living marine resource applications.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier L. Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-238, https://doi.org/10.5194/essd-2023-238, 2023
Preprint under review for ESSD
Short summary
Short summary
The Synthesis Product for Ocean Time-Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape, by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments, and time-series ranges including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
EGUsphere, https://doi.org/10.5194/egusphere-2023-987, https://doi.org/10.5194/egusphere-2023-987, 2023
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Fabian A. Gomez, Sang-Ki Lee, Charles A. Stock, Andrew C. Ross, Laure Resplandy, Samantha A. Siedlecki, Filippos Tagklis, and Joseph E. Salisbury
Earth Syst. Sci. Data, 15, 2223–2234, https://doi.org/10.5194/essd-15-2223-2023, https://doi.org/10.5194/essd-15-2223-2023, 2023
Short summary
Short summary
We present a river chemistry and discharge dataset for 140 rivers in the United States, which integrates information from the Water Quality Database of the US Geological Survey (USGS), the USGS’s Surface-Water Monthly Statistics for the Nation, and the U.S. Army Corps of Engineers. This dataset includes dissolved inorganic carbon and alkalinity, two key properties to characterize the carbonate system, as well as nutrient concentrations, such as nitrate, phosphate, and silica.
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023, https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-46, https://doi.org/10.5194/bg-2023-46, 2023
Revised manuscript accepted for BG
Short summary
Short summary
This manuscript provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the biogeochemical Argo array.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-236, https://doi.org/10.5194/gmd-2022-236, 2023
Preprint under review for GMD
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Paige D. Lavin, and Adrienne J. Sutton
Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022, https://doi.org/10.5194/essd-14-2081-2022, 2022
Short summary
Short summary
Oceanographers calculate the exchange of carbon between the ocean and atmosphere by comparing partial pressures of carbon dioxide (pCO2). Because seawater pCO2 is not measured everywhere at all times, interpolation schemes are required to fill observational gaps. We describe a monthly gap-filled dataset of pCO2 in the northeast Pacific Ocean off the west coast of North America created by machine-learning interpolation. This dataset is unique in its robust representation of coastal seasonality.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Wiley Evans, Geoffrey T. Lebon, Christen D. Harrington, Yuichiro Takeshita, and Allison Bidlack
Biogeosciences, 19, 1277–1301, https://doi.org/10.5194/bg-19-1277-2022, https://doi.org/10.5194/bg-19-1277-2022, 2022
Short summary
Short summary
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has been limited. To address this gap, we instrumented an Alaskan ferry in order to characterize the marine carbon dioxide system in this region. Data over a 2-year period were used to assess drivers of the observed variability, identify the timing of severe conditions, and assess the extent of contemporary ocean acidification as well as future levels consistent with a 1.5 °C warmer climate.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Bin Wang, Katja Fennel, and Liuqian Yu
Ocean Sci., 17, 1141–1156, https://doi.org/10.5194/os-17-1141-2021, https://doi.org/10.5194/os-17-1141-2021, 2021
Short summary
Short summary
We demonstrate that even sparse BGC-Argo profiles can substantially improve biogeochemical prediction via a priori model tuning. By assimilating satellite surface chlorophyll and physical observations, subsurface distributions of physical properties and nutrients were improved immediately. The improvement of subsurface chlorophyll was modest initially but was greatly enhanced after adjusting the parameterization for light attenuation through further a priori tuning.
Melissa R. McCutcheon, Hongming Yao, Cory J. Staryk, and Xinping Hu
Biogeosciences, 18, 4571–4586, https://doi.org/10.5194/bg-18-4571-2021, https://doi.org/10.5194/bg-18-4571-2021, 2021
Short summary
Short summary
We used 5+ years of discrete samples and 10 months of hourly sensor measurements to explore temporal variability and environmental controls on pH and pCO2 at the Aransas Ship Channel. Seasonal and diel variability were both present but small compared to other regions in the literature. Despite the small tidal range, tidal control often surpassed biological control. In comparison with sensor data, discrete samples were generally representative of mean annual and seasonal carbonate chemistry.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Christopher Gordon, Katja Fennel, Clark Richards, Lynn K. Shay, and Jodi K. Brewster
Biogeosciences, 17, 4119–4134, https://doi.org/10.5194/bg-17-4119-2020, https://doi.org/10.5194/bg-17-4119-2020, 2020
Short summary
Short summary
We describe a method for correcting errors in oxygen optode measurements on autonomous platforms in the ocean. The errors result from the relatively slow response time of the sensor. The correction method includes an in situ determination of the effective response time and requires the time stamps of the individual measurements. It is highly relevant for the BGC-Argo program and also applicable to gliders. We also explore if diurnal changes in oxygen can be obtained from profiling floats.
Bin Wang, Katja Fennel, Liuqian Yu, and Christopher Gordon
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, https://doi.org/10.5194/bg-17-4059-2020, 2020
Short summary
Short summary
We assess trade-offs between different types of biological observations, specifically satellite ocean color and BGC-Argo profiles and the benefits of combining both for optimizing a biogeochemical model of the Gulf of Mexico. Using all available observations leads to significant improvements in observed and unobserved variables (including primary production and C export). Our results highlight the significant benefits of BGC-Argo measurements for biogeochemical model optimization and validation.
Pierre St-Laurent, Marjorie A. M. Friedrichs, Raymond G. Najjar, Elizabeth H. Shadwick, Hanqin Tian, and Yuanzhi Yao
Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020, https://doi.org/10.5194/bg-17-3779-2020, 2020
Short summary
Short summary
Over the past century, estuaries have experienced global (atmospheric CO2 concentrations and temperature) and regional changes (river inputs, land use), but their relative impact remains poorly known. In the Chesapeake Bay, we find that global and regional changes have worked together to enhance how much atmospheric CO2 is taken up by the estuary. The increased uptake is roughly equally due to the global and regional changes, providing crucial perspective for managers of the bay's watershed.
Rik Wanninkhof, Denis Pierrot, Kevin Sullivan, Leticia Barbero, and Joaquin Triñanes
Earth Syst. Sci. Data, 12, 1489–1509, https://doi.org/10.5194/essd-12-1489-2020, https://doi.org/10.5194/essd-12-1489-2020, 2020
Short summary
Short summary
This paper describes a 17-year dataset of over a million data points of automated partial pressure of CO2 (pCO2) measurements on large luxury cruise ships of Royal Caribbean Cruise Lines (RCCL). These data are used to provide trends of ocean acidification and air–sea CO2 fluxes. The effort was possible through a unique continuing industry (RCCL), academic (University of Miami) and governmental (NOAA) partnership.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Fabian Große, Katja Fennel, Haiyan Zhang, and Arnaud Laurent
Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, https://doi.org/10.5194/bg-17-2701-2020, 2020
Short summary
Short summary
In the East China Sea, hypoxia occurs frequently from spring to fall due to high primary production and subsequent decomposition of organic matter. Nitrogen inputs from the Changjiang and the open ocean have been suggested to contribute to hypoxia formation. We used a numerical modelling approach to quantify the relative contributions of these nitrogen sources. We found that the Changjiang dominates, which suggests that nitrogen management in the watershed would improve oxygen conditions.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
Liuqian Yu, Katja Fennel, Bin Wang, Arnaud Laurent, Keith R. Thompson, and Lynn K. Shay
Ocean Sci., 15, 1801–1814, https://doi.org/10.5194/os-15-1801-2019, https://doi.org/10.5194/os-15-1801-2019, 2019
Short summary
Short summary
We present a first direct comparison of nonidentical versus identical twin approaches for an ocean data assimilation system. We show that the identical twin approach overestimates the value of assimilating satellite observations and undervalues the benefit of assimilating temperature and salinity profiles. Misleading assessments such as undervaluing the impact of observational assets are problematic and can lead to misguided decisions on balancing investments among different observing assets.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Juan Antonio Delgado, Joël Sudre, Sorayda Tanahara, Ivonne Montes, José Martín Hernández-Ayón, and Alberto Zirino
Ocean Sci., 15, 1561–1578, https://doi.org/10.5194/os-15-1561-2019, https://doi.org/10.5194/os-15-1561-2019, 2019
Short summary
Short summary
In this work, 25 years of daily satellite data on absolute dynamic topography (ADT) show that before 2002 Caribbean Water (CW) was less intrusive inside the Gulf of Mexico (GoM). Our results suggests that from 2003 onward, larger volumes of oligotrophic waters from the Caribbean Sea have invaded the western GoM and reduced mean surface Chl a concentrations. A direct comparison between the 1998–2002 and 2009–2014 periods indicates that the Chl a concentration has decreased significantly.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Gabriela Yareli Cervantes-Diaz, Jose Martín Hernández-Ayón, Alberto Zirino, Sharon Zinah Herzka, Victor Camacho-Ibar, Ivonne Montes, Joël Sudre, and Juan Antonio Delgado
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-340, https://doi.org/10.5194/bg-2019-340, 2019
Manuscript not accepted for further review
Short summary
Short summary
In this work we presents a new classification of water masses in the GoM, based on thermohaline properties and dissolved oxygen (DO) concentration using data from a total of five summer and winter cruises carried out primarily in the central GoM. The importance of this redefinition of the water masses contributes to a better understanding of their role in the dynamics of nutrients (and carbon).
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019, https://doi.org/10.5194/gmd-12-1965-2019, 2019
Short summary
Short summary
Ice algae, the primary producer in sea ice, play a fundamental role in shaping marine ecosystems and biogeochemical cycling of key elements in polar regions. In this study, we developed a process-based numerical model component representing sea-ice biogeochemistry for a sea ice–ocean coupled general circulation model. The model developed can be used to simulate the projected changes in sea-ice ecosystems and biogeochemistry in response to on-going rapid decline of the Arctic.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237, https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted
Short summary
Short summary
We studied long-term satellite data of the Barents and Kara Seas (BKS) of atmospheric CH4 and sea surface temperature (SST). Enhanced CH4 was found near Novaya Zemlya and Franz Josef Land, sources not in current budgets and areas of shoaling–where currents drive CH4–rich seabed water upslope to escape to the atmosphere, far from the source. Trends suggest increasing current heat transport warms the seabed, driving CH4 seepage from submerged hydrates and permafrost.
Krysten Rutherford and Katja Fennel
Ocean Sci., 14, 1207–1221, https://doi.org/10.5194/os-14-1207-2018, https://doi.org/10.5194/os-14-1207-2018, 2018
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves, we calculate transport timescales and pathways in order to understand the transport processes that underlie the rapid oxygen loss, air–sea CO2 flux, and supply of plankton seed populations on the Scotian Shelf. Study results highlight the limited connectivity between the Scotian Shelf and adjacent slope waters; instead, the dominant southwestward currents bring Grand Banks and Gulf of St. Lawrence waters to the Scotian Shelf.
Melissa Meléndez, Joseph Salisbury, Dwight Gledhill, Chris Langdon, Julio M. Morell, Derek Manzello, Sylvia Musielewicz, and Adrienne Sutton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-408, https://doi.org/10.5194/bg-2018-408, 2018
Preprint withdrawn
Short summary
Short summary
Using observations from the NOAA CO2 buoy in La Parguera, Puerto Rico along with modeling approaches yield useful indices of biological processes affecting the water column over the reef. This study provided the first long-term monitoring of coral reef biological processes. Results show that processes that produce CO2 dominated over most of the year leading to high dissolution rates. This can have implications on the reef system's ability to recover to other climate-scale stressors (warming).
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, and Alex Kozyr
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-77, https://doi.org/10.5194/essd-2018-77, 2018
Preprint withdrawn
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggest the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Cale A. Miller, Katie Pocock, Wiley Evans, and Amanda L. Kelley
Ocean Sci., 14, 751–768, https://doi.org/10.5194/os-14-751-2018, https://doi.org/10.5194/os-14-751-2018, 2018
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018, https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Katja Fennel and Arnaud Laurent
Biogeosciences, 15, 3121–3131, https://doi.org/10.5194/bg-15-3121-2018, https://doi.org/10.5194/bg-15-3121-2018, 2018
Short summary
Short summary
Increasing human-derived nutrient inputs to coastal oceans lead to spreading dead zones around the world. Here a biogeochemical model for the northern Gulf of Mexico, where nutrients from the Mississippi River create the largest dead zone in North American coastal waters, is used for the first time to show the effects of single and dual nutrient reductions of nitrogen (N) and phosphorus (P). Significant reductions in N or N&P load would be required to significantly reduce hypoxia in this system.
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75, https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted
Short summary
Short summary
Based on long-term satellite data of sea surface temperature and methane in the Barents and Kara Seas trends of increasing methane and sea surface temperature were found that were related to strengthening currents with strong methane anomalies near Franz Josef Land and Novaya Zemlya. Likely sources are methane seepage from subsea permafrost and hydrates, with current shoaling aiding the transport of near seabed dissolved methane to upper waters and the atmosphere.
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421–1442, https://doi.org/10.5194/gmd-11-1421-2018, https://doi.org/10.5194/gmd-11-1421-2018, 2018
Short summary
Short summary
Model intercomparison studies in the climate and Earth sciences communities have been crucial for strengthening future projections. Given the speed and magnitude of anthropogenic change in the marine environment, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. We describe the Fisheries and Marine Ecosystem Model Intercomparison Project, which brings together the marine ecosystem modelling community to inform long-term projections of marine ecosystems.
Jonathan Lemay, Helmuth Thomas, Susanne E. Craig, William J. Burt, Katja Fennel, and Blair J. W. Greenan
Biogeosciences, 15, 2111–2123, https://doi.org/10.5194/bg-15-2111-2018, https://doi.org/10.5194/bg-15-2111-2018, 2018
Short summary
Short summary
We report a detailed mechanistic investigation of the impact of Hurricane Arthur on the CO2 cycling on the Scotian Shelf. We can show that in contrast to common thinking, the deepening of the surface during the summer months can lead to increased CO2 uptake as carbon-poor waters from subsurface water are brought up to the surface. Only during prolonged storm events is the deepening of the mixed layer strong enough to bring the (expected) carbon-rich water to the surface.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Giuliana Turi, Michael Alexander, Nicole S. Lovenduski, Antonietta Capotondi, James Scott, Charles Stock, John Dunne, Jasmin John, and Michael Jacox
Ocean Sci., 14, 69–86, https://doi.org/10.5194/os-14-69-2018, https://doi.org/10.5194/os-14-69-2018, 2018
Short summary
Short summary
A high-resolution global model was used to study the influence of El Niño/La Niña events on the California Current System (CalCS). The mean surface oxygen (O2) response extends well offshore, where the pH response occurs within ~ 100 km of the coast. The surface O2 (pH) is primarily driven by temperature (upwelling) changes. Below 100 m, anomalously low O2 and low pH occurred during La Niña events near the coast, potentially stressing the ecosystem, but there are large variations between events.
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017, https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Short summary
In remote regions, cloud conditions may be strongly influenced by oceanic source of dimethylsulfide (DMS) produced by plankton and bacteria. In the Arctic, sea ice provides an additional source of these aerosols. The results of this study highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that would be better constrained by new observations.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
David T. Ho, Sara Ferrón, Victor C. Engel, William T. Anderson, Peter K. Swart, René M. Price, and Leticia Barbero
Biogeosciences, 14, 2543–2559, https://doi.org/10.5194/bg-14-2543-2017, https://doi.org/10.5194/bg-14-2543-2017, 2017
Short summary
Short summary
Mangroves take up more carbon (C) than any other ecosystems, but > 50 % of this C is
missing. The forest loses organic C to the surrounding waters, which might be rapidly transformed into inorganic C. Previous studies focused on organic C could have missed this important sink. We examined the sources and sinks of dissolved C in two mangrove estuaries, and confirmed that ca. 90 % of the total dissolved mangrove-derived C flux flowing out of the estuaries was inorganic C.
Julia M. Moriarty, Courtney K. Harris, Katja Fennel, Marjorie A. M. Friedrichs, Kehui Xu, and Christophe Rabouille
Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017, https://doi.org/10.5194/bg-14-1919-2017, 2017
Short summary
Short summary
In coastal aquatic environments, resuspension of sediment and organic material from the seabed into the overlying water can impact biogeochemistry. Here, we used a novel modeling approach to quantify this impact for the Rhône River delta. In the model, resuspension increased oxygen consumption during individual resuspension events, and when results were averaged over 2 months. This implies that observations and models that only represent calm conditions may underestimate net oxygen consumption.
Amy E. Maas, Gareth L. Lawson, and Zhaohui Aleck Wang
Biogeosciences, 13, 6191–6210, https://doi.org/10.5194/bg-13-6191-2016, https://doi.org/10.5194/bg-13-6191-2016, 2016
Short summary
Short summary
The objective of this study was to determine whether natural variation in environmental exposure changes the sensitivity of thecosome pteropods to high CO2 and low O2 by comparing individuals from the Atlantic and Pacific oceans. Of the species studied, no thecosome showed a change in oxygen consumption in response to high CO2 alone. Only one species, Limacina retroversa from the Atlantic, showed a reduced metabolic rate in response to the combined treatment.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Adrienne J. Sutton, Christopher L. Sabine, Richard A. Feely, Wei-Jun Cai, Meghan F. Cronin, Michael J. McPhaden, Julio M. Morell, Jan A. Newton, Jae-Hoon Noh, Sólveig R. Ólafsdóttir, Joseph E. Salisbury, Uwe Send, Douglas C. Vandemark, and Robert A. Weller
Biogeosciences, 13, 5065–5083, https://doi.org/10.5194/bg-13-5065-2016, https://doi.org/10.5194/bg-13-5065-2016, 2016
Short summary
Short summary
Ocean carbonate observations from surface buoys reveal that marine life is currently exposed to conditions outside preindustrial bounds at 12 study locations around the world. Seasonal conditions in the California Current Ecosystem and Gulf of Maine also exceed thresholds that may impact shellfish larvae. High-resolution observations place long-term change in the context of large natural variability: a necessary step to understand ocean acidification impacts under real-world conditions.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Zuo Xue, Ruoying He, Katja Fennel, Wei-Jun Cai, Steven Lohrenz, Wei-Jen Huang, Hanqin Tian, Wei Ren, and Zhengchen Zang
Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016, https://doi.org/10.5194/bg-13-4359-2016, 2016
Short summary
Short summary
In this study we used a state-of-the-science coupled physical–biogeochemical model to simulate and examine temporal and spatial variability of sea surface CO2 concentration in the Gulf of Mexico. Our model revealed the Gulf was a net CO2 sink with a flux of 1.11 ± 0.84 × 1012 mol C yr−1. We also found that biological uptake was the primary driver making the Gulf an overall CO2 sink and that the carbon flux in the northern Gulf was very susceptible to changes in river inputs.
Timothée Bourgeois, James C. Orr, Laure Resplandy, Jens Terhaar, Christian Ethé, Marion Gehlen, and Laurent Bopp
Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016, https://doi.org/10.5194/bg-13-4167-2016, 2016
Short summary
Short summary
The global coastal ocean took up 0.1 Pg C yr−1 of anthropogenic carbon during 1993–2012 based on new biogeochemical simulations with an eddying 3-D global model. That is about half of the most recent estimate, an extrapolation based on surface areas. It should not be confused with the continental shelf pump, perhaps 10 times larger, which includes natural as well as anthropogenic carbon. Coastal uptake of anthropogenic carbon is limited by its offshore transport.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
S. Sedigh Marvasti, A. Gnanadesikan, A. A. Bidokhti, J. P. Dunne, and S. Ghader
Biogeosciences, 13, 1049–1069, https://doi.org/10.5194/bg-13-1049-2016, https://doi.org/10.5194/bg-13-1049-2016, 2016
Short summary
Short summary
This study examines challenges in modeling phytoplankton blooms in Northwestern Arabian Sea and Gulf of Oman. Blooms in the region show strong modulation both by seasons and in the wintertime by eddies. However getting both of these correct is a challenge in a set of state-of-the-art global Earth System models. It is argued that maintaining a sharp pycnocline may be the key for preventing the wintertime bloom from being too strong and for allowing eddies to modulate upward mixing of nutrients.
A. Laurent, K. Fennel, R. Wilson, J. Lehrter, and R. Devereux
Biogeosciences, 13, 77–94, https://doi.org/10.5194/bg-13-77-2016, https://doi.org/10.5194/bg-13-77-2016, 2016
Short summary
Short summary
In low oxygen environments, the lack of oxygen influences sediment biogeochemistry and in turn sediment-water fluxes. These nonlinear interactions are often missing from biogeochemical circulation models because sediment models are computationally expensive. A method for parameterizing realistic sediment-water fluxes is presented and applied to the Mississippi River Dead Zone where high primary production, stimulated by excess nutrient loads, promotes low bottom water conditions in summer.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
Y. Takeshita, C. A. Frieder, T. R. Martz, J. R. Ballard, R. A. Feely, S. Kram, S. Nam, M. O. Navarro, N. N. Price, and J. E. Smith
Biogeosciences, 12, 5853–5870, https://doi.org/10.5194/bg-12-5853-2015, https://doi.org/10.5194/bg-12-5853-2015, 2015
Short summary
Short summary
In this manuscript, habitat-specific acidification projections are presented for four near-shore habitats in the Southern California Bight using high-temporal-resolution pH sensor data: surf zone, kelp forest, canyon edge, and the shelf break. All habitats were within 5km of one another and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
L. Yu, K. Fennel, A. Laurent, M. C. Murrell, and J. C. Lehrter
Biogeosciences, 12, 2063–2076, https://doi.org/10.5194/bg-12-2063-2015, https://doi.org/10.5194/bg-12-2063-2015, 2015
Short summary
Short summary
Our study suggests that a combination of physical processes and sediment oxygen consumption determine the spatial extent and temporal dynamics of hypoxia on the Louisiana shelf. In summer, stratification isolates oxygen-rich surface waters from hypoxic bottom waters; oxygen outgasses to the atmosphere at this time. A large fraction of primary production occurs below the pycnocline in summer, but this primary production does not strongly affect the spatial extent of hypoxic bottom waters.
J. A. Schulte, C. Duffy, and R. G. Najjar
Nonlin. Processes Geophys., 22, 139–156, https://doi.org/10.5194/npg-22-139-2015, https://doi.org/10.5194/npg-22-139-2015, 2015
S. E. Hartman, Z.-P. Jiang, D. Turk, R. S. Lampitt, H. Frigstad, C. Ostle, and U. Schuster
Biogeosciences, 12, 845–853, https://doi.org/10.5194/bg-12-845-2015, https://doi.org/10.5194/bg-12-845-2015, 2015
B. F. Jonsson, S. Doney, J. Dunne, and M. L. Bender
Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015, https://doi.org/10.5194/bg-12-681-2015, 2015
Short summary
Short summary
We compare how two global circulation models simulate biological production over the year with observations. Note that models simulate the range of biological production and biomass well but fail with regard to timing and regional structures. This is probably because the physics in the models are wrong, especially vertical processes such as mixed layer dynamics.
C. D. Nevison, M. Manizza, R. F. Keeling, M. Kahru, L. Bopp, J. Dunne, J. Tiputra, T. Ilyina, and B. G. Mitchell
Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, https://doi.org/10.5194/bg-12-193-2015, 2015
Short summary
Short summary
The observed seasonal cycles in atmospheric potential oxygen (APO) at five surface monitoring sites are compared to those inferred from the air-sea O2 fluxes of six ocean biogeochemistry models. The simulated air-sea fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Net primary production (NPP), estimated from satellite ocean color data, is also compared to model output.
C. A. Stock, J. P. Dunne, and J. G. John
Biogeosciences, 11, 7125–7135, https://doi.org/10.5194/bg-11-7125-2014, https://doi.org/10.5194/bg-11-7125-2014, 2014
Short summary
Short summary
Climate change projections suggest large regional ocean productivity shifts for mesozooplankton, an important food resource for fish, which are amplified relative to changes in phytoplankton production. Amplification is attributed to changes in planktonic food web dynamics under global warming. Results have implications for regional economies and food security. Improved understanding of the response of plankton food webs to climate change is essential to refine amplification estimates.
K.-K. Liu, C.-K. Kang, T. Kobari, H. Liu, C. Rabouille, and K. Fennel
Biogeosciences, 11, 7061–7075, https://doi.org/10.5194/bg-11-7061-2014, https://doi.org/10.5194/bg-11-7061-2014, 2014
Short summary
Short summary
This paper provides background info on the East China Sea, Japan/East Sea and South China Sea and highlights major findings in the special issue on their biogeochemical conditions and ecosystem functions. The three seas are subject to strong impacts from human activities and/or climate forcing. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large human population.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
Z. Cao, M. Dai, W. Evans, J. Gan, and R. Feely
Biogeosciences, 11, 6341–6354, https://doi.org/10.5194/bg-11-6341-2014, https://doi.org/10.5194/bg-11-6341-2014, 2014
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
Z. Xue, R. He, K. Fennel, W.-J. Cai, S. Lohrenz, and C. Hopkinson
Biogeosciences, 10, 7219–7234, https://doi.org/10.5194/bg-10-7219-2013, https://doi.org/10.5194/bg-10-7219-2013, 2013
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
S. E. Craig, H. Thomas, C. T. Jones, W. K. W. Li, B. J. W. Greenan, E. H. Shadwick, and W. J. Burt
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11255-2013, https://doi.org/10.5194/bgd-10-11255-2013, 2013
Revised manuscript not accepted
C. Beaulieu, S. A. Henson, Jorge L. Sarmiento, J. P. Dunne, S. C. Doney, R. R. Rykaczewski, and L. Bopp
Biogeosciences, 10, 2711–2724, https://doi.org/10.5194/bg-10-2711-2013, https://doi.org/10.5194/bg-10-2711-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
E. Montes, M. A. Altabet, F. E. Muller-Karger, M. I. Scranton, R. C. Thunell, C. Benitez-Nelson, L. Lorenzoni, and Y. M. Astor
Biogeosciences, 10, 267–279, https://doi.org/10.5194/bg-10-267-2013, https://doi.org/10.5194/bg-10-267-2013, 2013
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
W. J. Burt, H. Thomas, K. Fennel, and E. Horne
Biogeosciences, 10, 53–66, https://doi.org/10.5194/bg-10-53-2013, https://doi.org/10.5194/bg-10-53-2013, 2013
J. G. John, A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne
Atmos. Chem. Phys., 12, 12021–12036, https://doi.org/10.5194/acp-12-12021-2012, https://doi.org/10.5194/acp-12-12021-2012, 2012
Related subject area
Biogeochemistry: Coastal Ocean
Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
The additionality problem of Ocean Alkalinity Enhancement
Influence of manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Influence of a small submarine canyon on biogenic matter export flux in the Lower St. Lawrence Estuary, eastern Canada
Drivers of particle sinking velocities in the Peruvian upwelling system
Uncertainty in the evolution of northwest North Atlantic circulation leads to diverging biogeochemical projections
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed
Short-term variation of pH in seawaters around coastal areas of Japan: Characteristics and forcings
Revisiting the applicability and constraints of molybdenum and uranium-based paleo redox proxies: comparing two contrasting sill fjords
High metabolism and periodic hypoxia associated with drifting macrophyte detritus in the shallow subtidal Baltic Sea
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay
Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru)
Temporal and spatial evolution of bottom-water hypoxia in the St Lawrence estuarine system
Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan
Contrasts in dissolved, particulate, and sedimentary organic carbon from the Kolyma River to the East Siberian Shelf
Sediment quality assessment in an industrialized Greek coastal marine area (western Saronikos Gulf)
Limits and CO2 equilibration of near-coast alkalinity enhancement
Role of phosphorus in the seasonal deoxygenation of the East China Sea shelf
Interannual variability of the initiation of the phytoplankton growing period in two French coastal ecosystems
Iron “Ore” Nothing: Benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Spatio-temporal distribution, photoreactivity and environmental control of dissolved organic matter in the sea-surface microlayer of the eastern marginal seas of China
Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage
A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean
Observed and projected global warming pressure on coastal hypoxia
Benthic alkalinity fluxes from coastal sediments of the Baltic and North seas: comparing approaches and identifying knowledge gaps
Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement
Unprecedented summer hypoxia in southern Cape Cod Bay: an ecological response to regional climate change?
Interannual variabilities, long-term trends, and regulating factors of low-oxygen conditions in the coastal waters off Hong Kong
Causes of the extensive hypoxia in the Gulf of Riga in 2018
Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments
Drought recorded by Ba∕Ca in coastal benthic foraminifera
A nitrate budget of the Bohai Sea based on an isotope mass balance model
Suspended particulate matter drives the spatial segregation of nitrogen turnover along the hyper-turbid Ems estuary
Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian upwelling system
Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru
Pelagic primary production in the coastal Mediterranean Sea: variability, trends, and contribution to basin-scale budgets
Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton–bacteria communities
Biophysical controls on seasonal changes in the structure, growth, and grazing of the size-fractionated phytoplankton community in the northern South China Sea
Seasonal dispersal of fjord meltwaters as an important source of iron and manganese to coastal Antarctic phytoplankton
Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model
Technical note: Novel triple O2 sensor aquatic eddy covariance instrument with improved time shift correction reveals central role of microphytobenthos for carbon cycling in coral reef sands
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Lennart Thomas Bach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-122, https://doi.org/10.5194/bg-2023-122, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and therefore the efficiency of OAE for climate mitigation. However, this problem can be mitigated through dilute dosing of alkalinity into the environment.
Aubin Thibault de Chanvalon, George W. Luther, Emily R. Estes, Jennifer Necker, Bradley M. Tebo, Jianzhong Su, and Wei-Jun Cai
Biogeosciences, 20, 3053–3071, https://doi.org/10.5194/bg-20-3053-2023, https://doi.org/10.5194/bg-20-3053-2023, 2023
Short summary
Short summary
The intensity of the oceanic trap of CO2 released by anthropogenic activities depends on the alkalinity brought by continental weathering. Between ocean and continent, coastal water and estuaries can limit or favour the alkalinity transfer. This study investigate new interactions between dissolved metals and alkalinity in the oxygen-depleted zone of estuaries.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
EGUsphere, https://doi.org/10.5194/egusphere-2023-1538, https://doi.org/10.5194/egusphere-2023-1538, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021, that led to enhanced particle fluxes in the deep-water column layer >2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the Lower St. Lawrence Estuary.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
EGUsphere, https://doi.org/10.5194/egusphere-2023-987, https://doi.org/10.5194/egusphere-2023-987, 2023
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023, https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Linquan Mu, Jaime B. Palter, and Hongjie Wang
Biogeosciences, 20, 1963–1977, https://doi.org/10.5194/bg-20-1963-2023, https://doi.org/10.5194/bg-20-1963-2023, 2023
Short summary
Short summary
Enhancing ocean alkalinity accelerates carbon dioxide removal from the atmosphere. We hypothetically added alkalinity to the Amazon River and examined the increment of the carbon uptake by the Amazon plume. We also investigated the minimum alkalinity addition in which this perturbation at the river mouth could be detected above the natural variability.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-80, https://doi.org/10.5194/bg-2023-80, 2023
Revised manuscript accepted for BG
Short summary
Short summary
We carried out parallel year-round observations of pH and related ocean parameters in five stations around the Japan coast. It was found that short-term acidified situations with Ωara less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of main rivers that flows into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-83, https://doi.org/10.5194/bg-2023-83, 2023
Revised manuscript accepted for BG
Short summary
Short summary
The coastal seafloor naturally contains trace metals, which are sensitive to changes in oxygen concentrations in seawater: trace metal contents increase with decreasing oxygen concentrations. Studies have used those trace metals as indicators for declining oxygen concentrations in coastal waters. Here we show that in fjords, this relationship works well on longer (decadal) time scales but poorly on shorter (seasonal) time scales. We attribute this to other processes influencing the trace metals.
Karl M. Attard, Anna Lyssenko, and Iván F. Rodil
Biogeosciences, 20, 1713–1724, https://doi.org/10.5194/bg-20-1713-2023, https://doi.org/10.5194/bg-20-1713-2023, 2023
Short summary
Short summary
Aquatic plants produce a large amount of organic matter through photosynthesis that, following erosion, is deposited on the seafloor. In this study, we show that plant detritus can trigger low-oxygen conditions (hypoxia) in shallow coastal waters, making conditions challenging for most marine animals. We propose that the occurrence of hypoxia may be underestimated because measurements typically do not consider the region closest to the seafloor, where detritus accumulates.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
EGUsphere, https://doi.org/10.5194/egusphere-2023-705, https://doi.org/10.5194/egusphere-2023-705, 2023
Short summary
Short summary
Benthic foraminifera are single cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling we here show that foraminiferal burrow formation increase the oxygen penetration depth in the sediment. Leading to a change in the structure of the prokaryotic community.
M. James McLaughlin, Cindy Bessey, Gary A. Kendrick, John Keesing, and Ylva S. Olsen
Biogeosciences, 20, 1011–1026, https://doi.org/10.5194/bg-20-1011-2023, https://doi.org/10.5194/bg-20-1011-2023, 2023
Short summary
Short summary
Coral reefs face increasing pressures from environmental change at present. The coral reef framework is produced by corals and calcifying algae. The Kimberley region of Western Australia has escaped land-based anthropogenic impacts. Specimens of the dominant coral and algae were collected from Browse Island's reef platform and incubated in mesocosms to measure calcification and production patterns of oxygen. This study provides important data on reef building and climate-driven effects.
Patricia Ayón Dejo, Elda Luz Pinedo Arteaga, Anna Schukat, Jan Taucher, Rainer Kiko, Helena Hauss, Sabrina Dorschner, Wilhelm Hagen, Mariona Segura-Noguera, and Silke Lischka
Biogeosciences, 20, 945–969, https://doi.org/10.5194/bg-20-945-2023, https://doi.org/10.5194/bg-20-945-2023, 2023
Short summary
Short summary
Ocean upwelling regions are highly productive. With ocean warming, severe changes in upwelling frequency and/or intensity and expansion of accompanying oxygen minimum zones are projected. In a field experiment off Peru, we investigated how different upwelling intensities affect the pelagic food web and found failed reproduction of dominant zooplankton. The changes projected could severely impact the reproductive success of zooplankton communities and the pelagic food web in upwelling regions.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Sachi Umezawa, Manami Tozawa, Yuichi Nosaka, Daiki Nomura, Hiroji Onishi, Hiroto Abe, Tetsuya Takatsu, and Atsushi Ooki
Biogeosciences, 20, 421–438, https://doi.org/10.5194/bg-20-421-2023, https://doi.org/10.5194/bg-20-421-2023, 2023
Short summary
Short summary
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found nutrient concentration decreases in the dark subsurface layer during the bloom. Incubation experiments confirmed that diatoms could consume nutrients at a substantial rate, even in darkness. We concluded that the nutrient reduction was mainly caused by nutrient consumption by diatoms in the dark.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Georgia Filippi, Manos Dassenakis, Vasiliki Paraskevopoulou, and Konstantinos Lazogiannis
Biogeosciences, 20, 163–189, https://doi.org/10.5194/bg-20-163-2023, https://doi.org/10.5194/bg-20-163-2023, 2023
Short summary
Short summary
The pollution of the western Saronikos Gulf from heavy metals has been examined through the study of marine sediment cores. It is a deep gulf (maximum depth 440 m) near Athens affected by industrial and volcanic activity. Eight cores were received from various stations and depths and analysed for their heavy metal content and geochemical characteristics. The results were evaluated by using statistical methods, environmental indicators and comparisons with old data.
Jing He and Michael D. Tyka
Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, https://doi.org/10.5194/bg-20-27-2023, 2023
Short summary
Short summary
Recently, ocean alkalinity enhancement (OAE) has gained interest as a scalable way to address the urgent need for negative CO2 emissions. In this paper we examine the capacity of different coastlines to tolerate alkalinity enhancement and the time scale of CO2 uptake following the addition of a given quantity of alkalinity. The results suggest that OAE has significant potential and identify specific favorable and unfavorable coastlines for its deployment.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Coline Poppeschi, Guillaume Charria, Anne Daniel, Romaric Verney, Peggy Rimmelin-Maury, Michaël Retho, Eric Goberville, Emilie Grossteffan, and Martin Plus
Biogeosciences, 19, 5667–5687, https://doi.org/10.5194/bg-19-5667-2022, https://doi.org/10.5194/bg-19-5667-2022, 2022
Short summary
Short summary
This paper aims to understand interannual changes in the initiation of the phytoplankton growing period (IPGP) in the current context of global climate changes over the last 20 years. An important variability in the timing of the IPGP is observed with a trend towards a later IPGP during this last decade. The role and the impact of extreme events (cold spells, floods, and wind burst) on the IPGP is also detailed.
De’Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-237, https://doi.org/10.5194/bg-2022-237, 2022
Revised manuscript under review for BG
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low oxygen conditions in the basin.
Lin Yang, Jing Zhang, Anja Engel, and Gui-Peng Yang
Biogeosciences, 19, 5251–5268, https://doi.org/10.5194/bg-19-5251-2022, https://doi.org/10.5194/bg-19-5251-2022, 2022
Short summary
Short summary
Enrichment factors of dissolved organic matter (DOM) in the eastern marginal seas of China exhibited a significant spatio-temporal variation. Photochemical and enrichment processes co-regulated DOM enrichment in the sea-surface microlayer (SML). Autochthonous DOM was more frequently enriched in the SML than terrestrial DOM. DOM in the sub-surface water exhibited higher aromaticity than that in the SML.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Le Zhang and Z. George Xue
Biogeosciences, 19, 4589–4618, https://doi.org/10.5194/bg-19-4589-2022, https://doi.org/10.5194/bg-19-4589-2022, 2022
Short summary
Short summary
We adopt a high-resolution carbon model for the Gulf of Mexico (GoM) and calculate the decadal trends of important carbon system variables in the GoM from 2001 to 2019. The GoM surface CO2 values experienced a steady increase over the past 2 decades, and the ocean surface pH is declining. Although carbonate saturation rates remain supersaturated with aragonite, they show a slightly decreasing trend. The northern GoM is a stronger carbon sink than we thought.
Michael M. Whitney
Biogeosciences, 19, 4479–4497, https://doi.org/10.5194/bg-19-4479-2022, https://doi.org/10.5194/bg-19-4479-2022, 2022
Short summary
Short summary
Coastal hypoxia is a major environmental problem of increasing severity. The 21st-century projections analyzed indicate global coastal waters will warm and experience rapid declines in oxygen. The forecasted median coastal trends for increasing sea surface temperature and decreasing oxygen capacity are 48 % and 18 % faster than the rates observed over the last 4 decades. Existing hypoxic areas are expected to worsen, and new hypoxic areas likely will emerge under these warming-related pressures.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement is a CO2 removal method with significant potential, but it can lead to a perturbation of the ocean with trace metals such as nickel. This study tested the effect of increasing nickel concentrations on phytoplankton growth and photosynthesis. We found that the response to nickel varied across the 11 phytoplankton species tested here, but the majority were rather insensitive. We note, however, that responses may be different under other experimental conditions.
Malcolm E. Scully, W. Rockwell Geyer, David Borkman, Tracy L. Pugh, Amy Costa, and Owen C. Nichols
Biogeosciences, 19, 3523–3536, https://doi.org/10.5194/bg-19-3523-2022, https://doi.org/10.5194/bg-19-3523-2022, 2022
Short summary
Short summary
For two consecutive summers, the bottom waters in southern Cape Cod Bay became severely depleted of dissolved oxygen. Low oxygen levels in bottom waters have never been reported in this area before, and this unprecedented occurrence is likely the result of a new algae species that recently began blooming during the late-summer months. We present data suggesting that blooms of this new species are the result of regional climate change including warmer waters and changes in summer winds.
Zheng Chen, Bin Wang, Chuang Xu, Zhongren Zhang, Shiyu Li, and Jiatang Hu
Biogeosciences, 19, 3469–3490, https://doi.org/10.5194/bg-19-3469-2022, https://doi.org/10.5194/bg-19-3469-2022, 2022
Short summary
Short summary
Deterioration of low-oxygen conditions in the coastal waters off Hong Kong was revealed by monitoring data over two decades. The declining wind forcing and the increasing nutrient input contributed significantly to the areal expansion and intense deterioration of low-oxygen conditions. Also, the exacerbated eutrophication drove a shift in the dominant source of organic matter from terrestrial inputs to in situ primary production, which has probably led to an earlier onset of hypoxia in summer.
Stella-Theresa Stoicescu, Jaan Laanemets, Taavi Liblik, Māris Skudra, Oliver Samlas, Inga Lips, and Urmas Lips
Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022, https://doi.org/10.5194/bg-19-2903-2022, 2022
Short summary
Short summary
Coastal basins with high input of nutrients often suffer from oxygen deficiency. In summer 2018, the extent of oxygen depletion was exceptional in the Gulf of Riga. We analyzed observational data and found that extensive oxygen deficiency appeared since the water layer close to the seabed, where oxygen is consumed, was separated from the surface layer. The problem worsens if similar conditions restricting vertical transport of oxygen occur more frequently in the future.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Wiley Evans, Geoffrey T. Lebon, Christen D. Harrington, Yuichiro Takeshita, and Allison Bidlack
Biogeosciences, 19, 1277–1301, https://doi.org/10.5194/bg-19-1277-2022, https://doi.org/10.5194/bg-19-1277-2022, 2022
Short summary
Short summary
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has been limited. To address this gap, we instrumented an Alaskan ferry in order to characterize the marine carbon dioxide system in this region. Data over a 2-year period were used to assess drivers of the observed variability, identify the timing of severe conditions, and assess the extent of contemporary ocean acidification as well as future levels consistent with a 1.5 °C warmer climate.
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022, https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary
Short summary
Here, we synthesize the results from 62 studies reporting in situ rates of seagrass metabolism to highlight spatial and temporal variability in oxygen fluxes and inform efforts to use seagrass to mitigate ocean acidification. Our analyses suggest seagrass meadows are generally autotrophic and variable in space and time, and the effects on seawater oxygen are relatively small in magnitude.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Samu Elovaara, Eeva Eronen-Rasimus, Eero Asmala, Tobias Tamelander, and Hermanni Kaartokallio
Biogeosciences, 18, 6589–6616, https://doi.org/10.5194/bg-18-6589-2021, https://doi.org/10.5194/bg-18-6589-2021, 2021
Short summary
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding it is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
Yuan Dong, Qian P. Li, Zhengchao Wu, Yiping Shuai, Zijia Liu, Zaiming Ge, Weiwen Zhou, and Yinchao Chen
Biogeosciences, 18, 6423–6434, https://doi.org/10.5194/bg-18-6423-2021, https://doi.org/10.5194/bg-18-6423-2021, 2021
Short summary
Short summary
Temporal change of plankton growth and grazing are less known in the coastal ocean, not to mention the relevant controlling mechanisms. Here, we performed monthly size-specific dilution experiments outside a eutrophic estuary over a 1-year cycle. Phytoplankton growth was correlated to nutrients and grazing mortality to total chlorophyll a. A selective grazing on small cells may be important for maintaining high abundance of large-chain-forming diatoms in this eutrophic system.
Kiefer O. Forsch, Lisa Hahn-Woernle, Robert M. Sherrell, Vincent J. Roccanova, Kaixuan Bu, David Burdige, Maria Vernet, and Katherine A. Barbeau
Biogeosciences, 18, 6349–6375, https://doi.org/10.5194/bg-18-6349-2021, https://doi.org/10.5194/bg-18-6349-2021, 2021
Short summary
Short summary
We show that for an unperturbed cold western Antarctic Peninsula fjord, the seasonality of iron and manganese is linked to the dispersal of metal-rich meltwater sources. Geochemical measurements of trace metals in meltwaters, porewaters, and seawater, collected during two expeditions, showed a seasonal cycle of distinct sources. Finally, model results revealed that the dispersal of surface meltwater and meltwater plumes originating from under the glacier is sensitive to katabatic wind events.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Tom Hull, Naomi Greenwood, Antony Birchill, Alexander Beaton, Matthew Palmer, and Jan Kaiser
Biogeosciences, 18, 6167–6180, https://doi.org/10.5194/bg-18-6167-2021, https://doi.org/10.5194/bg-18-6167-2021, 2021
Short summary
Short summary
The shallow shelf seas play a large role in the global cycling of CO2 and also support large fisheries. We use an autonomous underwater vehicle in the central North Sea to measure the rates of change in oxygen and nutrients.
Using these data we determine the amount of carbon dioxide taken out of the atmosphere by the sea and measure how productive the region is.
These observations will be useful for improving our predictive models and help us predict and adapt to a changing ocean.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Alireza Merikhi, Peter Berg, and Markus Huettel
Biogeosciences, 18, 5381–5395, https://doi.org/10.5194/bg-18-5381-2021, https://doi.org/10.5194/bg-18-5381-2021, 2021
Short summary
Short summary
The aquatic eddy covariance technique is a powerful method for measurements of solute fluxes across the sediment–water interface. Data measured by conventional eddy covariance instruments require a time shift correction that can result in substantial flux errors. We introduce a triple O2 sensor eddy covariance instrument that by design eliminates these errors. Deployments next to a conventional instrument in the Florida Keys demonstrate the improvements achieved through the new design.
Cited articles
Aksnesa, D. L. and Ohman, M. D.: Multi-decadal shoaling of the euphotic zone
in
the southern sector of the California Current System, Limnol.
Oceanogr., 54, 1272–1281, 2009. a
Azetsu-Scott, K., Clarke, A., Falkner, K., Hamilton, J., Jones, E. P., Lee,
C.,
Petrie, B., Prinsenberg, S., Starr, M., and Yeats, P.: Calcium carbonate
saturation states in the waters of the Canadian Arctic Archipelago and the
Labrador Sea, J. Geophys. Res.-Ocean., 115, C11021,
https://doi.org/10.1029/2009JC005917, 2010. a
Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R.,
Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U.,
Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R.,
Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L.,
Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A.,
Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, M.,
Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E.
M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A.,
Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis,
J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono,
T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L.,
Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R.,
Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki,
T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S.
M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and
Watson, A. J.: An update to the Surface Ocean CO2 Atlas (SOCAT
version 2), Earth Syst. Sci. Data, 6, 69–90,
https://doi.org/10.5194/essd-6-69-2014, 2014. a
Bakun, A.: Global climate change and intensification of coastal ocean
upwelling, Science, 247, 198–201, 1990. a
Barrón, C. and Duarte, C. M.: Dissolved organic carbon pools and export
from the coastal ocean, Global Biogeochem. Cy., 29, 1725–1738, 2015. a
Barth, J. A., Cowles, T. J., Kosro, P. M., Shearman, R. K., Huyer, A., and
Smith, R. L.: Injection of carbon from the shelf to offshore beneath the
euphotic zone in the California Current, J. Geophys. Res.-Ocean., 107, C63057, https://doi.org/10.1029/2001jc000956, 2002. a
Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., and Feely, R. A.: The
Pacific oyster, Crassostrea gigas, shows negative correlation to naturally
elevated carbon dioxide levels: Implications for near-term ocean
acidification effects, Limnol. Oceanogr., 57, 698–710, 2012. a
Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A.,
Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLauglin, K.:
Impacts of coastal acidification on the Pacific Northwest shellfish industry
and adaptation strategies implemented in response, Oceanography, 28,
146–159, 2015. a
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle:
evaluation of air-sea CO2 exchanges, ocean acidification impacts and
potential feedbacks, Biogeosciences, 6, 2433–2459,
https://doi.org/10.5194/bg-6-2433-2009, 2009. a
Bates, N. R.: Air-sea CO2 fluxes and the continental shelf pump of
carbon in
the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys.
Res.-Ocean., 111, C10013, https://doi.org/10.1029/2005jc003083, 2006. a
Bednaršek, N., Feely, R., Reum, J., Peterson, B., Menkel, J., Alin, S.,
and Hales, B.: Limacina helicina shell dissolution as an indicator of
declining habitat suitability owing to ocean acidification in the California
Current Ecosystem, P. R. Soc. B, 281, 20140123, https://doi.org/10.1098/rspb.2014.0123, 2014. a
Bednaršek, N., Harvey, C. J., Kaplan, I. C., Feely, R. A., and
Možina, J.: Pteropods on the edge: Cumulative effects of ocean
acidification, warming, and deoxygenation, Prog. Oceanogr., 145,
1–24, 2016. a
Bednaršek, N., Feely, R., Tolimieri, N., Hermann, A., Siedlecki, S.,
Waldbusser, G., McElhany, P., Alin, S., Klinger, T., Moore-Maley, B., and Pörtner, H. O.:
Exposure history determines pteropod vulnerability to ocean acidification
along the US West Coast, Sci. Rep., 7, 4526, https://doi.org/10.1038/s41598-017-03934-z, 2017. a
Benway, H. M. and Coble, P. G.: Report of the U.S. Gulf of Mexico Carbon
Cycle
Synthesis Workshop, 27–28 March 2013, Ocean Carbon and Biogeochemistry
Program and North American Carbon Program, 2014. a
Benway, H. M., Alin, S. R., Boyer, E., Cai, W.-J., Coble, P. G., Cross,
J. N.,
Friedrichs, M. A., Goni, M., Griffith, P., Herrmann, M., Lohrenz, S., Mathis, J., McKinley, G., Najjar, R., Pilskaln, C., Siedlecki, S., and Smith, R. L.: A science
plan for carbon cycle research in North American coastal waters. Report of
the Coastal CARbon Synthesis (CCARS) community workshop, 19–21 August 2014,
2016. a
Birdsey, R., Mayes, M., Romero-Lankao, P., Najjar, R., Reed, S., Cavallaro,
N.,
Shrestha, G., Hayes, D., Lorenzoni, L., Marsh, A., Tedesco, K., Wirth, T.,
and Zhu, Z.: Executive Summary, in: Second State of the Carbon Cycle Report
(SOCCR2): A Sustained Assessment Report, edited by: Cavallaro, N., Shrestha,
G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P.,
and Zhu, Z., US Global Change Research Program, Washington, DC,
USA, 21–40, 2018. a
Butman, D., Striegl, R., Stackpoole, S., del Giorgio, P., Prairie, Y.,
Pilcher,
D., Raymond, P., Paz Pellat, F., and Alcocer, J.: Chapter 14: Inland waters,
in: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment
Report, edited by: Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A.,
Najjar, R. G., Reed, S. C., Romero-Lankao, P., and Zhu, Z.,
U.S. Global Change Research Program, Washington, DC, USA, 568–595, 2018. a
Butterworth, B. J. and Miller, S. D.: Air-sea exchange of carbon dioxide in
the
Southern Ocean and Antarctic marginal ice zone, Geophys. Res. Lett.,
43, 7223–7230, 2016. a
Cahill, B., Wilkin, J., Fennel, K., Vandemark, D., and Friedrichs, M. A.:
Interannual and seasonal variabilities in air-sea CO2 fluxes along the US
eastern continental shelf and their sensitivity to increasing air
temperatures and variable winds, J. Geophys. Res.-Biogeo., 121, 295–311, 2016. a, b, c, d, e, f
Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or
sites
of terrestrial carbon incineration?, Ann. Rev. Mar. Sci., 3,
123–145, 2011. a
Cai, W.-J. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide
in the estuarine waters of the Satilla and Altamaha Rivers, Georgia,
Limnol. Oceanogr., 43, 657–668, 1998. a
Cai, W.-J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated
heterotrophic continental margins in transport of CO2 between the
atmosphere, the land-sea interface and the ocean, Geophys. Res.
Lett., 30, 1849, https://doi.org/10.1029/2003gl017633, 2003. a
Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D.,
Sullivan, K., Wang, Y., Hu, X., Huang, W. J., Zhang, Y., Xu, S., Murata, A., Grebmeier, J. M., Jones, E. P., and Zhang, H.: Decrease in the CO2 uptake
capacity in an ice-free Arctic Ocean basin, Science, 329, 556–559,
2010a. a, b
Cai, W.-J., Hu, X., Huang, W.-J., Jiang, L.-Q., Wang, Y., Peng, T.-H., and
Zhang, X.: Alkalinity distribution in the western North Atlantic Ocean
margins, J. Geophys. Res.-Ocean., 115, C08014,
https://doi.org/10.1029/2009jc005482, 2010b. a
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz,
S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.:
Acidification of subsurface coastal waters enhanced by eutrophication, Nat.
Geosci., 4, 766–770, 2011. a, b, c
Cai, W.-J., Bates, N. R., Guo, L., Anderson, L. G., Mathis, J. T.,
Wanninkhof,
R., Hansell, D. A., Chen, L., and Semiletov, I. P.: Carbon fluxes across
boundaries in the Pacific Arctic region in a changing environment, in: The
Pacific Arctic Region, Springer, 199–222, 2014. a
Caldeira, K. and Wicke, M. E.: Oceanography: Anthropogenic carbon and Ocean
pH, Nature, 425, p. 365, https://doi.org/10.1038/425365a, 2003. a
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B.,
Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R.,
and Marland, G.: Contributions to accelerating atmospheric CO2 growth from
economic activity, carbon intensity, and efficiency of natural sinks,
P. Natl. Acad. Sci. USA, 104, 18866–18870, 2007. a
Canals, M., Puig, P., de Madron, X. D., Heussner, S., Palanques, A., and
Fabres, J.: Flushing submarine canyons, Nature, 444, 354–357, 2006. a
Carmack, E., Barber, D., Christensen, J., Macdonald, R., Rudels, B., and
Sakshaug, E.: Climate variability and physical forcing of the food webs and
the carbon budget on Panarctic shelves, Prog. Oceanogr., 71,
145–181, 2006. a
Carmack, E., Winsor, P., and Williams, W.: The contiguous Panarctic riverine
coastal domain: A unifying concept, Prog. Oceanogr., 139, 13–23,
2015. a
Chavez, F., Takahashi, P. T., Cai, W. J., Friederich, G. E., Hales, B.,
Wanninkhof, R., and Feely, R. A.: Coastal oceans, in: First State of the
Carbon Cycle Report (SOCCR): The North American Carbon Budget and
Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change
Science Program and the Subcommittee on Global Change Research, edited by:
King, A., Dilling, W. L., Zimmerman, G. P., Fairman, D. M., Houghton, R. A.,
Marland, G., Rose, A. Z., and Wilbanks, T., chap. 15, National
Oceanic and Atmospheric Administration, National Climatic Data Center,
Asheville, 157–166, 2007. a
Chavez, F. P., Messié, M., and Pennington, J. T.: Marine primary
production
in relation to climate variability and change, Ann. Rev. Mar.
Sci., 3, 227–260, 2011. a
Chavez, F. P., Pennington, J. T., Michisaki, R. P., Blum, M., Chavez, G. M.,
Friederich, J., Jones, B., Herlien, R., Kieft, B., Hobson, B., Ren, A. S., Ryan, J., Sevadjian, J. C., Wahl, C., Walz, K. R., Yamahara, K., Friederich, G. E., and Messié, M.:
Climate variability and change: Response of a coastal ocean ecosystem,
Oceanography, 30, 128–145, 2017. a, b, c, d
Chelton, D. B., Freilich, M. H., and Esbensen, S. K.: Satellite observations
of
the wind jets off the Pacific coast of Central America. Part I: Case studies
and statistical characteristics, Mon. Weather Rev., 128, 1993–2018,
2000a. a
Chelton, D. B., Freilich, M. H., and Esbensen, S. K.: Satellite observations
of
the wind jets off the Pacific coast of Central America. Part II: Regional
relationships and dynamical considerations, Mon. Weather Rev., 128,
2019–2043, 2000b. a
Chen, C. T. A.: Exchange of carbon in the coastal seas, in: The global carbon
cycle: integrating humans, climate, and the natural world, edited by: Field,
C. B. and Raupach, M. R., vol. 62, SCOPE, Washington, DC, 341–351, 2004. a
Coronado-Álvarez, L. d. L. A., Álvarez-Borrego, S., Lara-Lara, J. R.,
Solana-Arellano, E., Hernández-Ayón, J. M., and Zirino, A.: Temporal
variations of water pCO2 and the air-water CO2 flux at a coastal
location in the southern California Current System: diurnal to interannual
scales, Cienc. Mar., 43, 137–156, 2017. a
Crabeck, O., Delille, B., Thomas, D., Geilfus, N.-X., Rysgaard, S., and
Tison, J.-L.: CO2 and CH4 in sea ice from a subarctic fjord
under influence of riverine input, Biogeosciences, 11, 6525–6538,
https://doi.org/10.5194/bg-11-6525-2014, 2014. a
Crawford, W. R. and Peña, M. A.: Decadal trends in oxygen concentration
in
subsurface waters of the Northeast Pacific Ocean, Atmos. Ocean, 54,
171–192, 2016. a
Cross, J., Mathis, J., Monacci, N., Musielewicz, S., Maenner, S., and
Osborne,
J.: High-resolution Ocean and Atmosphere pCO2 Time-series Measurements
from Mooring M2_164W_57N, https://doi.org/10.3334/CDIAC/OTG.TSM_M2_164W_57N,
2014a. a
Cross, J. N., Mathis, J. T., Frey, K. E., Cosca, C. E., Danielson, S. L.,
Bates, N. R., Feely, R. A., Takahashi, T., and Evans, W.: Annual sea-air
CO2 fluxes in the Bering Sea: Insights from new autumn and winter
observations of a seasonally ice-covered continental shelf, J.
Geophys. Res.-Ocean., 119, 6693–6708, 2014b. a, b
Déry, S. J., Stieglitz, M., McKenna, E. C., and Wood, E. F.:
Characteristics and trends of river discharge into Hudson, James, and Ungava
Bays, 1964–2000, J. Clim., 18, 2540–2557, 2005. a
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Göttlicher, J.,
Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N.: Calcium
carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res.
Lett., 35, L08501, https://doi.org/10.1029/2008gl033540, 2008. a
Else, B. G., Papakyriakou, T. N., Granskog, M. A., and Yackel, J. J.:
Observations of sea surface fCO2 distributions and estimated air-sea
CO2 fluxes in the Hudson Bay region (Canada) during the open water season,
J. Geophys. Res.-Ocean., 113, C08026, https://doi.org/10.1029/2007jc004389,
2008. a, b
Evans, W., Hales, B., and Strutton, P. G.: Seasonal cycle of surface ocean
pCO2 on the Oregon shelf, J. Geophys. Res.-Ocean., 116,
C05012,
https://doi.org/10.1029/2010jc006625, 2011. a, b
Evans, W., Mathis, J. T., Cross, J. N., Bates, N. R., Frey, K. E., Else,
B. G.,
Papkyriakou, T. N., DeGrandpre, M. D., Islam, F., Cai, W.-J., Chen, B., Yamamoto-Kawai, M., Carmack, E., Williams, W. J., and Takahashi, T.: Sea-air
CO2 exchange in the western Arctic coastal ocean, Global
Biogeochem.
Cy., 29, 1190–1209, 2015b. a, b, c, d, e
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean
acidification on marine fauna and ecosystem processes, ICES J. Mar.
Sci., 65, 414–432, 2008. a
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry,
V. J.,
and Millero, F. J.: Impact of anthropogenic CO2 on the CaCO3 system in
the oceans, Science, 305, 362–366, 2004. a
Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan,
F., Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., Sabine, C. L., Greeley, D., and Juranek, L.: Chemical and
biological impacts of ocean acidification along the west coast of North
America, Estuarine, Coast. Shelf Sci., 183, 260–270, 2016. a, b, c
Feely, R. A., Okazaki, R. R., Cai, W.-J., Bednaršek, N., Alin, S. R.,
Byrne, R. H., and Fassbender, A.: The combined effects of acidification and
hypoxia on pH and aragonite saturation in the coastal waters of the
California current ecosystem and the northern Gulf of Mexico, Cont.
Shelf Res., 152, 50–60, 2018. a, b, c
Fennel, K.: The role of continental shelves in nitrogen and carbon cycling:
Northwestern North Atlantic case study, Ocean Sci., 6, 539–548,
https://doi.org/10.5194/os-6-539-2010, 2010. a, b
Fennel, K. and Wilkin, J.: Quantifying biological carbon export for the
northwest North Atlantic continental shelves, Geophys. Res. Lett.,
36, L18605, https://doi.org/10.1029/2009gl039818, 2009. a, b
Fennel, K., Wilkin, J., Previdi, M., and Najjar, R.: Denitrification effects
on
air-sea CO2 flux in the coastal ocean: Simulations for the northwest North
Atlantic, Geophys. Res. Lett., 35, L24608, https://doi.org/10.1029/2008gl036147, 2008. a, b, c
Franco, A. C., Hernández-Ayón, J. M., Beier, E., Garçon, V.,
Maske, H., Paulmier, A., Färber-Lorda, J., Castro, R., and
Sosa-Ávalos, R.: Air-sea CO2 fluxes above the stratified oxygen
minimum zone in the coastal region off Mexico, J. Geophys.
Res.-Ocean., 119, 2923–2937, 2014. a
Friederich, G., Walz, P., Burczynski, M., and Chavez, F.: Inorganic carbon in
the central California upwelling system during the 1997–1999 El Niño–La
Niña event, Prog. Oceanogr., 54, 185–203, 2002. a
Gao, Z., Chen, L., Sun, H., Chen, B., and Cai, W.-J.: Distributions and
air-sea
fluxes of carbon dioxide in the Western Arctic Ocean, Deep-Sea Res. Pt.
II, 81, 46–52, 2012. a
García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R.,
Black, B. A., Smit, A. J., and Bograd, S. J.: Under pressure: Climate change,
upwelling, and eastern boundary upwelling ecosystems, Front. Mar.
Sci., 2, 109, https://doi.org/10.3389/fmars.2015.00109, 2015. a, b
Gattuso, J.-P. and Hansson, L.: Ocean acidification, Oxford Univ. Press,
Oxford, 2011. a
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate
metabolism in coastal aquatic ecosystems, Ann. Rev. Ecol.
Syst., 29, 405–434, 1998. a
Gaxiola-Castro, G. and Muller-Karger, F.: Seasonal phytoplankton pigment
variability in the Eastern Tropical Pacific Ocean as determined by CZCS
imagery, Remote Sensing of the Pacific Ocean by Satellite, 71–227, 1998. a
Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO2 uptake by
a
coastal upwelling system, Global Biogeochem. Cy., 19, GB1009,
https://doi.org/10.1029/2004gb002295, 2005. a, b
Hales, B., Karp-Boss, L., Perlin, A., and Wheeler, P. A.: Oxygen production
and
carbon sequestration in an upwelling coastal margin, Global Biogeochem.
Cy., 20, GB3001, https://doi.org/10.1029/2005gb002517, 2006. a, b
Hales, B., Cai, W.-J., Mitchell, B. G., Sabine, C. L., and Schofield, O.:
North
American continental margins: A synthesis and planning workshop, Report of
the North American continental margins working group for the US carbon cycle
scientific steering group and interagency working group, US Carbon Cycle
Science Program, Washington, DC, 2008. a, b
Harris, K. E., DeGrandpre, M. D., and Hales, B.: Aragonite saturation state
dynamics in a coastal upwelling zone, Geophys. Res. Lett., 40,
2720–2725, 2013. a
Hautala, S. L., Solomon, E. A., Johnson, H. P., Harris, R. N., and Miller,
U. K.: Dissociation of Cascadia margin gas hydrates in response to
contemporary ocean warming, Geophys. Res. Lett., 41, 8486–8494,
2014. a
Herrmann, M., Najjar, R. G., Kemp, W. M., Alexander, R. B., Boyer, E. W.,
Cai,
W.-J., Griffith, P. C., Kroeger, K. D., McCallister, S. L., and Smith, R. A.:
Net ecosystem production and organic carbon balance of US East Coast
estuaries: A synthesis approach, Global Biogeochem. Cy., 29, 96–111,
2015. a
Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., and
Sullivan, K. F.: Toward a universal relationship between wind speed and gas
exchange: Gas transfer velocities measured with 3He∕SF6 during the
Southern Ocean Gas Exchange Experiment, J. Geophys. Res.-Ocean., 116, C00F04, https://doi.org/10.1029/2010jc006854, 2011. a
Ho, D. T., Ferrón, S., Engel, V. C., Anderson, W. T., Swart, P. K.,
Price, R. M., and Barbero, L.: Dissolved carbon biogeochemistry and export in
mangrove-dominated rivers of the Florida Everglades, Biogeosciences, 14,
2543–2559, https://doi.org/10.5194/bg-14-2543-2017, 2017. a
Huyer, A.: Coastal upwelling in the California Current system, Prog.
Oceanogr., 12, 259–284, 1983. a
Ianson, D. and Allen, S. E.: A two-dimensional nitrogen and carbon flux model
in a coastal upwelling region, Global Biogeochem. Cy., 16, 1011,
https://doi.org/10.1029/2001gb001451, 2002. a, b
IPCC: Workshop Report of the Intergovernmental Panel on Climate Change
Workshop
on Impacts of Ocean Acidification on Marine Biology and Ecosystems, in: IPCC
Working Group II Technical Support Unit, edited by: Field, C. B., Barros, V.,
Stocker, T. F., Qin, D., Mach, K. J., Plattner, G.-K., Mastrandrea, M. D.,
Tignor, M., and Eb, K. L., Carnegie Institution, Stanford, p. 164, 2011. a
Ivanov, V., Shapiro, G., Huthnance, J., Aleynik, D., and Golovin, P.:
Cascades
of dense water around the world ocean, Prog. Oceanogr., 60, 47–98,
2004. a
Izett, J. G. and Fennel, K.: Estimating the Cross-Shelf Export of Riverine
Materials: Part 1. General Relationships From an Idealized Numerical Model,
Global Biogeochem. Cy., 32, 160–175, 2018a. a
Izett, J. G. and Fennel, K.: Estimating the Cross-Shelf Export of Riverine
Materials: Part 2. Estimates of Global Freshwater and Nutrient Export, Global
Biogeochem. Cy., 32, 176–186, 2018b. a
Jacox, M. G., Bograd, S. J., Hazen, E. L., and Fiechter, J.: Sensitivity of
the
California Current nutrient supply to wind, heat, and remote ocean forcing,
Geophys. Res. Lett., 42, 5950–5957, 2015. a
Jiang, L.-Q., Cai, W.-J., Wanninkhof, R., Wang, Y., and Lüger, H.:
Air-sea
CO2 fluxes on the US South Atlantic Bight: Spatial and seasonal
variability, J. Geophys. Res.-Ocean., 113, C07019,
https://doi.org/10.1029/2007jc004366, 2008. a, b, c
Jiang, L.-Q., Cai, W.-J., Wang, Y., and Bauer, J. E.: Influence of
terrestrial inputs on continental shelf carbon dioxide, Biogeosciences, 10,
839–849, https://doi.org/10.5194/bg-10-839-2013, 2013. a
Johnson, H. P., Miller, U. K., Salmi, M. S., and Solomon, E. A.: Analysis of
bubble plume distributions to evaluate methane hydrate decomposition on the
continental slope, Geochem. Geophy. Geosy., 16, 3825–3839,
2015. a
Kahru, M., Lee, Z., Kudela, R. M., Manzano-Sarabia, M., and Mitchell, B. G.:
Multi-satellite time series of inherent optical properties in the California
Current, Deep-Sea Res. Pt. II, 112, 91–106, 2015. a
King, A., Dilling, W. L., Zimmerman, G. P., Fairman, D. M., Houghton, R. A.,
Marland, G., Rose, A. Z., and Wilbanks, T. J.: First State of the Carbon
Cycle Report (SOCCR): e North American Carbon Budget and Implications for the
Global Carbon Cycle. A Report by the US Climate Change Science Program and
the Subcommitee on Global Change Research, National Oceanic and Atmospheric
Administration, National Climatic Data Center, Asheville, NC, USA, 157–166,
2007. a
Kuzyk, Z. Z. A., Macdonald, R. W., Johannessen, S. C., Gobeil, C., and Stern,
G. A.: Towards a sediment and organic carbon budget for Hudson Bay, Mar.
Geol., 264, 190–208, 2009. a
Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P.,
Goossens, N., and Regnier, P. A. G.: Global multi-scale segmentation of
continental and coastal waters from the watersheds to the continental
margins, Hydrol. Earth Syst. Sci., 17, 2029–2051,
https://doi.org/10.5194/hess-17-2029-2013, 2013. a
Laruelle, G. G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F. T., and
Regnier,
P.: Continental shelves as a variable but increasing global sink for
atmospheric carbon dioxide, Nat. Commun., 9, 454, https://doi.org/10.1038/s41467-017-02738-z,
2018. a, b, c, d
Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch,
S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J.,
Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P.,
Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier,
F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris,
I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein
Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre,
N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata,
A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono,
T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G.,
Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian,
R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook,
B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S.,
Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global
Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349–396,
https://doi.org/10.5194/essd-7-349-2015, 2015. a
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz,
J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G.,
Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K.,
Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L.,
Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., Currie, K.,
Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W.,
Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F.,
Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero,
F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,
Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B.,
Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian,
R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., Tubiello, F. N.,
van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N.,
Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., and
Zhu, D.: Global Carbon Budget 2017, Earth Syst. Sci. Data, 10, 405–448,
https://doi.org/10.5194/essd-10-405-2018, 2018. a
Lee, T. N., Yoder, J. A., and Atkinson, L. P.: Gulf Stream frontal eddy
influence on productivity of the southeast US continental shelf, J.
Geophys. Res.-Ocean., 96, 22191–22205, 1991. a
Liu, K.-K., Atkinson, L., Quiñones, R., and Talaue-McManus, L.: Carbon
and
nutrient fluxes in continental margins: A global synthesis, Springer Science
& Business Media, 2010. a
Loder, J. W.: The coastal ocean off northeastern North America: A large-scale
view, in: The Sea, edited by: Robinson, A. R. and Brink, K. H., vol. 11,
chap. 15, Wiley, 105–138, 1998. a
Lohrenz, S. and Verity, P.: Regional oceanography: Southeastern United States
and Gulf of Mexico, in: Interdisciplinary Regional Studies and Syntheses,
edited by: Robinson, A. R. and Brink, K. H., vol. 14, New York,
Wiley & Sons, 169–224, 2004. a
Mannino, A., Signorini, S. R., Novak, M. G., Wilkin, J., Friedrichs, M. A.,
and
Najjar, R. G.: Dissolved organic carbon fluxes in the Middle Atlantic Bight:
An integrated approach based on satellite data and ocean model products,
J. Geophys. Res.-Biogeo., 121, 312–336, 2016. a
Mathis, J., Sutton, A., Sabine, C., Musielewicz, S., and Maenner, S.:
High-resolution Ocean and Atmosphere pCO2 Time-series Measurements from
Mooring WA_125W_47N, https://doi.org/10.3334/CDIAC/OTG.TSM_WA_125W_47N,
http://cdiac.esd.ornl.gov/ftp/oceans/Moorings/WA_125W_47N/ (last
access: 1 May 2018),
2013. a
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, 2009. a
McNeil, B. I. and Matear, R. J.: The non-steady state oceanic CO2
signal: its importance, magnitude and a novel way to detect it,
Biogeosciences, 10, 2219–2228, https://doi.org/10.5194/bg-10-2219-2013,
2013. a
Miller, L. A., Macdonald, R. W., McLaughlin, F., Mucci, A., Yamamoto-Kawai,
M.,
Giesbrecht, K. E., and Williams, W. J.: Changes in the marine carbonate
system of the western Arctic: Patterns in a rescued data set, Pol. Res.,
33, https://doi.org/10.3402/polar.v33.20577, 2014. a, b
Moore, S. E. and Stabeno, P. J.: Synthesis of Arctic Research (SOAR) in
marine
ecosystems of the Pacific Arctic, Prog. Oceanogr., 136, 1–11, 2015. a
Moreau, S., Vancoppenolle, M., Delille, B., Tison, J.-L., Zhou, J.,
Kotovitch,
M., Thomas, D. N., Geilfus, N.-X., and Goosse, H.: Drivers of inorganic
carbon dynamics in first-year sea ice: A model study, J. Geophys.
Res.-Ocean., 120, 471–495, 2015. a
Moreau, S., Vancoppenolle, M., Bopp, L., Aumont, O., Madec, G., Delille, B.,
Tison, J.-L., Barriat, P.-Y., and Goosse, H.: Assessment of the sea-ice
carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical
model (NEMO-LIM-PISCES), Elementa: Science of the anthropocene, 4, 000122, https://doi.org/10.12952/journal.elementa.000122,
2016. a
Mucci, A., Lansard, B., Miller, L. A., and Papakyriakou, T. N.: CO2
fluxes
across the air-sea interface in the southeastern Beaufort Sea: Ice-free
period, J. Geophys. Res.-Ocean., 115, C04003,
https://doi.org/10.1029/2009jc005330, 2010. a
Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and
Walsh,
J. J.: The importance of continental margins in the global carbon cycle,
Geophys. Res. Lett., 32, L01602, https://doi.org/10.1029/2004gl021346, 2005. a, b
Najjar, R., Friedrichs, M., and Cai, W.: Report of The US East Coast carbon
cycle synthesis workshop, 19–20 January 2012, 2012. a
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J.,
Butman, D., Cai, W.-J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M.,
Feagin, R. A., Griffith, P. C., Hinson, L. A., Holmquist, J. R., Hu, X.,
Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis,
W. R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R.,
St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and
Zimmerman, R. C.: Carbon budget of tidal wetlands, estuaries, and shelf
waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416,
https://doi.org/10.1002/2017GB005790, 2018. a, b, c, d
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Planer, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Toerdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool,
A.: Anthropogenic
ocean acidification over the twenty-first century and its impact on
calcifying organisms, Nature, 437, 681–686, 2005. a, b
Pennington, J. T., Friedrich, G. E., Castro, C. G., Collins, C. A., Evans,
W. W., , and Chavez, F. P.: The northern and central California upwelling
coastal upwelling system, in: Carbon and Nutrient Fluxes in Continental
Margins: A Global Synthesis, edited by: Liu, K.-K., Atkinson, L.,
Quiñones, R. A., and Talaue-McManus, L., Springer, 29–43, 2010. a
Peterson, J. O., Morgan, C. A., Peterson, W. T., and Di Lorenzo, E.: Seasonal
and interannual variation in the extent of hypoxia in the northern California
Current from 1998–2012, Limnol. Oceanogr., 58, 2279–2292, 2013. a
Previdi, M., Fennel, K., Wilkin, J., and Haidvogel, D.: Interannual
variability
in atmospheric CO2 uptake on the northeast US continental shelf, J. Geophys. Res.-Biogeo., 114, GB04003, https://doi.org/10.1029/2008jg000881,
2009. a, b, c
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F. D.,
LaRowe, E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A.,
Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation
of the carbon fluxes from land to
ocean, Nat. Geosci., 6, 597–607, 2013. a, b, c
Reimer, J. J., Cai, W.-J., Xue, L., Vargas, R., Noakes, S., Hu, X.,
Signorini,
S. R., Mathis, J. T., Feely, R. A., Sutton, A. J., Sabine, C., Musielewicz,
S., Chen, B., and Wanninkhof, R.: Time series pCO2 at a coastal mooring:
Internal consistency, seasonal cycles, and interannual variability,
Cont. Shelf Res., 145, 95–108, 2017. a, b
Rivas, D., Badan, A., and Ochoa, J.: The ventilation of the deep Gulf of
Mexico, J. Phys. Oceanogr., 35, 1763–1781, 2005. a
Robbins, L., Daly, K., Barbero, L., Wanninkhof, R., He, R., Zong, H., Lisle,
J., Cai, W.-J., and Smith, C.: Spatial and temporal variability of pCO2,
carbon fluxes and saturation state on the West Florida Shelf, J.
Geophys. Res.-Ocean., 123, 6174–6188, https://doi.org/10.1029/2018jc014195, 2018. a
Robbins, L. L., Wanninkhof, R., Barbero, L., Hu, X., Mitra, S., Yvon-Lewis,
S.,
Cai, W.-J., Huang, W.-J., and Ryerson, T.: Air-sea exchange, in: Report of
the U.S. Gulf of Mexico Carbon Cycle Synthesis Workshop, March 27–28, 2013,
edited by: Benway, H. M. and Coble, P. G., Ocean Carbon and
Biogeochemistry Program and North American Carbon Program, 17–23, 2014. a, b, c, d, e, f
Rutherford, K. and Fennel, K.: Diagnosing transit times on the northwestern
North Atlantic continental shelf, Ocean Sci., 14, 1207–1221,
https://doi.org/10.5194/os-14-1207-2018, 2018. a, b, c
Rysgaard, S., Glud, R. N., Sejr, M., Bendtsen, J., and Christensen, P.:
Inorganic carbon transport during sea ice growth and decay: A carbon pump in
polar seas, J. Geophys. Res.-Ocean., 112, C03016,
https://doi.org/10.1029/2006jc003572, 2007. a
Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramløv, H., and Glud, R. N.:
Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas,
J. Geophys. Res.-Ocean., 114, C09011, https://doi.org/10.1029/2008jc005088,
2009. a
Rysgaard, S., Søgaard, D. H., Cooper, M., Pucko, M., Lennert, K.,
Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J.,
McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D.:
Ikaite crystal distribution in winter sea ice and implications for
CO2 system dynamics, The Cryosphere, 7, 707–718,
https://doi.org/10.5194/tc-7-707-2013, 2013. a, b
Sabine, C. L. and Tanhua, T.: Estimation of anthropogenic CO2
inventories in
the ocean, Ann. Rev. Mar. Sci., 2, 175–198, 2010. a
Salisbury, J. E., Vandemark, D., Hunt, C. W., Campbell, J. W., McGillis,
W. R.,
and McDowell, W. H.: Seasonal observations of surface waters in two Gulf of
Maine estuary-plume systems: Relationships between watershed attributes,
optical measurements and surface pCO2, Estuar. Coast. Shelf
Sci., 77, 245–252, 2008. a, b
Shadwick, E. H., Thomas, H., Comeau, A., Craig, S. E., Hunt, C. W., and
Salisbury, J. E.: Air-Sea CO2 fluxes on the Scotian Shelf: seasonal
to multi-annual variability, Biogeosciences, 7, 3851–3867,
https://doi.org/10.5194/bg-7-3851-2010, 2010. a, b, c
Shadwick, E. H., Thomas, H., Chierici, M., Else, B., Fransson, A., Michel,
C.,
Miller, L., Mucci, A., Niemi, A., Papakyriakou, T., and Tremblay, J. É.: Seasonal
variability of the inorganic carbon system in the Amundsen Gulf region of the
southeastern Beaufort Sea, Limnol. Oceanogr., 56, 303–322, 2011. a
Shakhova, N., Semiletov, I., Sergienko, V., Lobkovsky, L., Yusupov, V.,
Salyuk,
A., Salomatin, A., Chernykh, D., Kosmach, D., Panteleev, G., Nicolsky, D., Samarkin, V., Joye, S., Charkin, A., Dudarev, O., Meluzov, A., and Gustafsson, O.: The East
Siberian Arctic Shelf: Towards further assessment of permafrost-related
methane fluxes and role of sea ice, Philos. T. Roy.
Soc. A, 373, 20140451, https://doi.org/10.1098/rsta.2014.0451, 2015. a
Solomon, E. A., Kastner, M., MacDonald, I. R., and Leifer, I.: Considerable
methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of
Mexico, Nat. Geosci., 2, 561–565, 2009. a
Somero, G. N., Beers, J. M., Chan, F., Hill, T. M., Klinger, T., and Litvin,
S. Y.: What changes in the carbonate system, oxygen, and temperature portend
for the northeastern Pacific Ocean: A physiological perspective, BioScience,
66, 14–26, 2015. a
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney,
S. C.: Imminent ocean acidification in the Arctic projected with the NCAR
global coupled carbon cycle-climate model, Biogeosciences, 6, 515–533,
https://doi.org/10.5194/bg-6-515-2009, 2009. a, b
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: A research
synthesis, Climatic Change, 110, 1005–1027, 2012. a
Sutton, A., Sabine, C., Cai, W.-J., Noakes, S., Musielewicz, S., Maenner, S.,
Dietrich, C., Bott, R., and Osborne, J.: High-resolution Ocean and Atmosphere
pCO2 Time-series Measurements from Mooring GraysRf_81W_31N,
https://doi.org/10.3334/CDIAC/OTG.TSM_GRAYSRF_81W_31N, 2011. a
Sutton, A., Sabine, C., Send, U., Ohman, M., Musielewicz, S., Maenner, S.,
Bott, R., and Osborne, J.: High-resolution Ocean and Atmosphere pCO2
Time-series Measurements from Mooring CCE2_121W_34N (NODC Accession
0084099), Version 4.4, https://doi.org/10.3334/CDIAC/OTG.TSM_CCE2_121W_34N, 2012. a
Sutton, A., Sabine, C., Salisbury, J., Vandemark, D., Musielewicz, S.,
Maenner,
S., Bott, R., and Osborne, J.: High-resolution Ocean and Atmosphere pCO2
Time-series Measurements from Mooring NH_70W_43N,
https://doi.org/10.3334/CDIAC/OTG.TSM_NH_70W_43N, 2013. a
Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W.-J., Cronin, M. F.,
McPhaden, M. J., Morell, J. M., Newton, J. A., Noh, J.-H.,
ÓlafsdÓttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C., and
Weller, R. A.: Using present-day observations to detect when anthropogenic
change forces surface ocean carbonate chemistry outside preindustrial bounds,
Biogeosciences, 13, 5065–5083, https://doi.org/10.5194/bg-13-5065-2016,
2016. a, b, c
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinho, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56,
554–577, 2009. a
Tsunogai, S., Watanabe, S., and Sato, T.: Is there a ”continental shelf
pump”
for the absorption of atmospheric CO2?, Tellus B, 51, 701–712, 1999. a
Turi, G., Lachkar, Z., Gruber, N., and Münnich, M.: Climatic modulation
of
recent trends in ocean acidification in the California Current System,
Environ. Res. Lett., 11, 014007, https://doi.org/10.1088/1748-9326/11/1/014007, 2016. a, b, c
Turk, D., Bedard, J., Burt, W., Vagle, S., Thomas, H., Azetsu-Scott, K.,
McGillis, W., Iverson, S., and Wallace, D.: Inorganic carbon in a high
latitude estuary-fjord system in Canada's eastern Arctic, Estuar. Coast. Shelf Sci., 178, 137–147, 2016. a
van der Loeff, M. M. R., Cassar, N., Nicolaus, M., Rabe, B., and Stimac, I.:
The influence of sea ice cover on air-sea gas exchange estimated with
radon-222 profiles, J. Geophys. Res.-Ocean., 119, 2735–2751,
2014. a
Vandemark, D., Salisbury, J., Hunt, C., Shellito, S., Irish, J., McGillis,
W.,
Sabine, C., and Maenner, S.: Temporal and spatial dynamics of CO2 air-sea
flux in the Gulf of Maine, J. Geophys. Res.-Ocean., 116, C01012,
https://doi.org/10.1029/2010jc006408, 2011. a, b, c
Vlahos, P., Chen, R. F., and Repeta, D. J.: Dissolved organic carbon in the
Mid-Atlantic Bight, Deep-Sea Res. Pt. II, 49, 4369–4385, 2002. a
Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P.,
Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I.: Saturation-state
sensitivity of marine bivalve larvae to ocean acidification, Nat. Clim.
Change, 5, 273–280, 2015. a
Walker Brown, C., Boutin, J., and Merlivat, L.: New insights into
fCO2 variability in the tropical eastern Pacific Ocean using
SMOS SSS, Biogeosciences, 12, 7315–7329,
https://doi.org/10.5194/bg-12-7315-2015, 2015. a
Wang, Z. A., Wanninkhof, R., Cai, W.-J., Byrne, R. H., Hu, X., Peng, T.-H.,
and
Huang, W.-J.: The marine inorganic carbon system along the Gulf of Mexico and
Atlantic coasts of the United States: Insights from a transregional coastal
carbon study, Limnol. Oceanogr., 58, 325–342, 2013. a, b, c, d, e, f
Wang, Z. A., Lawson, G. L., Pilskaln, C. H., and Maas, A. E.: Seasonal
controls
of aragonite saturation states in the Gulf of Maine, J. Geophys.
Res.-Ocean., 122, 372–389, 2017. a
Wanninkhof, R. and Trinanes, J.: The impact of changing wind speeds on gas
transfer and its effect on global air-sea CO2 fluxes, Global
Biogeochem. Cy., 31, 961–974, 2017. a
Weber, T. C., Mayer, L., Jerram, K., Beaudoin, J., Rzhanov, Y., and Lovalvo,
D.: Acoustic estimates of methane gas flux from the seabed in a 6000 km2
region in the Northern Gulf of Mexico, Geochem. Geophy. Geosy.,
15, 1911–1925, 2014. a
Windham-Myers, L., Cai, W.-J., Alin, S., Andersson, A., Crosswell, J.,
Dunton,
K. H., Hernandez-Ayon, J. M., Herrmann, M., Hinson, A. L., Hopkinson, C. S.,
Howard, J., Hu, X., Knox, S. H., Kroeger, K., Lagomasino, D., Megonigal, P.,
Najjar, R. G., Paulsen, M.-L., Peteet, D., Pidgeon, E., Schäfer, K. V.
R., Tzortziou, M., Wang, Z. A., and Watson, E. B.: Chapter 15: Tidal wetlands
and estuaries, in: Second State of the
Carbon Cycle Report (SOCCR2): A Sustained Assessment Report, edited by:
Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed,
S. C., Romero-Lankao, P., and Zhu, Z., US Global Change
Research Program, Washington, DC, USA, 596–648, 2018. a, b, c
Xue, L., Cai, W.-J., Hu, X., Sabine, C., Jones, S., Sutton, A. J., Jiang,
L.-Q., and Reimer, J. J.: Sea surface carbon dioxide at the Georgia time
series site (2006–2007): Air-sea flux and controlling processes, Prog.
Oceanogr., 140, 14–26, 2016. a
Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., and Hopkinson, C.:
Modeling ocean circulation and biogeochemical variability in the Gulf of
Mexico, Biogeosciences, 10, 7219–7234,
https://doi.org/10.5194/bg-10-7219-2013, 2013. a
Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., Huang, W.-J., Tian, H.,
Ren, W., and Zang, Z.: Modeling pCO2 variability in the Gulf
of Mexico, Biogeosciences, 13, 4359–4377,
https://doi.org/10.5194/bg-13-4359-2016, 2016. a, b, c
Yamamoto-Kawai, M., McLaughlin, F., and Carmack, E.: Ocean acidification in
the
three oceans surrounding northern North America, J. Geophys.
Res.-Ocean., 118, 6274–6284, 2013. a
Yasunaka, S., Murata, A., Watanabe, E., Chierici, M., Fransson, A., van
Heuven, S., Hoppema, M., Ishii, M., Johannessen, T., Kosugi, N., Lauvset, S.
K., Mathis, J. T., Nishino, S., Omar, A. M., Olsen, A.,, Sasano, Takahashi,
T., and Wanninkhof, R.: Mapping of
the air–sea CO2 flux in the Arctic Ocean and its adjacent seas:
Basin-wide distribution and seasonal to interannual variability, Polar
Sci., 10, 323–334, 2016. a
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
We review and synthesize available information on coastal ocean carbon fluxes around North...
Altmetrics
Final-revised paper
Preprint