Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-223-2019
https://doi.org/10.5194/bg-16-223-2019
Research article
 | 
21 Jan 2019
Research article |  | 21 Jan 2019

Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator

Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan

Related authors

Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022,https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Effect of small-scale snow surface roughness on snow albedo and reflectance
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021,https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
An Aerosol Optical Depth time series 1982–2014 for atmospheric correction based on OMI and TOMS Aerosol Index
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180,https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
Brief communication: Light-absorbing impurities can reduce the density of melting snow
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014,https://doi.org/10.5194/tc-8-991-2014, 2014
CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013,https://doi.org/10.5194/acp-13-3743-2013, 2013

Related subject area

Earth System Science/Response to Global Change: Climate Change
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024,https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024,https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024,https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024,https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Global and regional hydrological impacts of global forest expansion
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024,https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary

Cited articles

Aalto, J., Pirinen, P., Heikkinen, J., and Venäläinen, A: Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models, Theor. Appl. Climatol., 112, 99–111, 2013. 
Anttila, K., Jääskeläinen, E., Riihelä, A., Manninen, T., Andersson, K., and Hollman, R.: Algorithm Theoretical Basis Document: CM SAF Cloud, Albedo, Radiation data record ed. 2 – Surface Albedo, 85 pp., https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2016a. 
Anttila, K., Jääskeläinen, E., Riihelä, A., Manninen, T., Andersson, K., and Hollman, R.: Validation Report: CM SAF Cloud, Albedo, Radiation data record ed. 2 – Surface Albedo, 54 pp., 2016b. 
Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., and Lahtinen, P.: The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40 N–80 N during 1982–2015, Remote Sensing, 10, 1619, https://doi.org/10.3390/rs10101619, 2018. 
Arslan, A., Tanis, C., Metsämäki, S., Aurela, M., Böttcher, K., Linkosalmi, M., and Peltoniemi, M.: Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions, Geosciences, 7, 55, https://doi.org/10.3390/geosciences7030055, 2017. 
Download
Short summary
The surface albedo time series CLARA-A2 SAL was used to study trends in the timing of the melting season of snow and preceding albedo value in Finland during 1982–2016 to assess climate change. The results were in line with operational snow depth data, JSBACH land ecosystem model, SYKE fractional snow cover and greening-up data. In the north a clear trend to earlier snowmelt onset, increasing melting season length, and decrease in pre-melt albedo (related to increased stem volume) was observed.
Altmetrics
Final-revised paper
Preprint