Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Download
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Altmetrics
Final-revised paper
Preprint
BG | Articles | Volume 16, issue 14
Biogeosciences, 16, 2923–2936, 2019
https://doi.org/10.5194/bg-16-2923-2019
Biogeosciences, 16, 2923–2936, 2019
https://doi.org/10.5194/bg-16-2923-2019

Research article 31 Jul 2019

Research article | 31 Jul 2019

Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths

Jamie D. Wilson et al.

Related authors

Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021,https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
A trait-based modelling approach to planktonic foraminifera ecology
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019,https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018,https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?
J. D. Wilson, A. Ridgwell, and S. Barker
Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015,https://doi.org/10.5194/bg-12-5547-2015, 2015
Short summary

Related subject area

Biogeochemistry: Open Ocean
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021,https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021,https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
Arthur Capet, Luc Vandenbulcke, and Marilaure Grégoire
Biogeosciences, 17, 6507–6525, https://doi.org/10.5194/bg-17-6507-2020,https://doi.org/10.5194/bg-17-6507-2020, 2020
Short summary
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020,https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise)
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020,https://doi.org/10.5194/bg-17-5539-2020, 2020

Cited articles

Boyd, P. W.: Toward quantifying the response of the oceans' biological pump to climate change, Front. Mar. Sci., 2, 77, https://doi.org/10.3389/fmars.2015.00077, 2015. a
Cael, B. B. and Bisson, K.: Particle Flux Parameterizations: Quantitative and Mechanistic Similarities and Differences, Front. Mar. Sci., 5, 395, https://doi.org/10.3389/fmars.2018.00395, 2018. a
Cao, L. and Zhang, H.: The role of biological rates in the simulated warming effect on oceanic CO2 uptake, J. Geophys. Res.-Biogeo., 122, 1098–1106, https://doi.org/10.1002/2016JG003756, 2017. a
Chikamoto, M. O., Abe-Ouchi, A., Oka, A., and Smith, S. L.: Temperature-induced marine export production during glacial period, Geophys. Res. Lett., 39, L21601, https://doi.org/10.1029/2012GL053828, 2012. a
Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P., Liang, J.-H., and Deutsch, C.: The Role of Particle Size, Ballast, Temperature, and Oxygen in the Sinking Flux to the Deep Sea, Global Biogeochem. Cy., 32, 858–876, https://doi.org/10.1029/2017GB005710, 2018. a, b
Publications Copernicus
Download
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Citation
Altmetrics
Final-revised paper
Preprint