Articles | Volume 16, issue 15
https://doi.org/10.5194/bg-16-2949-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2949-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Synergies from co-deployment of negative emission technologies
Institute for Geology, Center for Earth System Research and
Sustainability, Universität Hamburg, Germany
Jens Hartmann
Institute for Geology, Center for Earth System Research and
Sustainability, Universität Hamburg, Germany
Related authors
Mingyang Tian, Jens Hartmann, Gibran Romero-Mujalli, Thorben Amann, Lishan Ran, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-131, https://doi.org/10.5194/bg-2023-131, 2023
Manuscript not accepted for further review
Short summary
Short summary
Effective water quality management in the Elbe River from 1984 to 2018 significantly reduced CO2 emissions, particularly after Germany's reunification. Key factors in the reduction include organic carbon removal and nutrient management, with nitrogen control being more critical than phosphorus for the restoration of ecosystem capacity. Unpredictable influxes of organic carbon and the relocation of emissions from wastewater treatment can cause uncertainties for CO2 removals.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thorben Amann, Jens Hartmann, Eric Struyf, Wagner de Oliveira Garcia, Elke K. Fischer, Ivan Janssens, Patrick Meire, and Jonas Schoelynck
Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020, https://doi.org/10.5194/bg-17-103-2020, 2020
Short summary
Short summary
Weathering is a major control on atmospheric CO2 at geologic timescales. Enhancement of this process can be used to actively remove CO2 from the atmosphere. Field results are still scarce and with this experiment we try to add some near-natural insights into dissolution processes. Results show CO2 sequestration potentials but also highlight the strong variability of outcomes that can be expected in natural environments. Such experiments are of the utmost importance to identify key processes.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Allanah Joy Paul, Mathias Haunost, Silvan Urs Goldenberg, Jens Hartmann, Nicolás Sánchez, Julieta Schneider, Niels Suitner, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-417, https://doi.org/10.5194/egusphere-2024-417, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being assessed for its potential to absorb atmospheric CO2 and store it for a long time. OAE still needs comprehensive assessment of its safety and effectiveness. We studied an idealised OAE application in a natural low nutrient ecosystem over one month. Our results showed that biogeochemical functioning remained mostly stable, but that the long-term capability for storing carbon may be limited at high alkalinity concentration.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Mingyang Tian, Jens Hartmann, Gibran Romero-Mujalli, Thorben Amann, Lishan Ran, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-131, https://doi.org/10.5194/bg-2023-131, 2023
Manuscript not accepted for further review
Short summary
Short summary
Effective water quality management in the Elbe River from 1984 to 2018 significantly reduced CO2 emissions, particularly after Germany's reunification. Key factors in the reduction include organic carbon removal and nutrient management, with nitrogen control being more critical than phosphorus for the restoration of ecosystem capacity. Unpredictable influxes of organic carbon and the relocation of emissions from wastewater treatment can cause uncertainties for CO2 removals.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thorben Amann, Jens Hartmann, Eric Struyf, Wagner de Oliveira Garcia, Elke K. Fischer, Ivan Janssens, Patrick Meire, and Jonas Schoelynck
Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020, https://doi.org/10.5194/bg-17-103-2020, 2020
Short summary
Short summary
Weathering is a major control on atmospheric CO2 at geologic timescales. Enhancement of this process can be used to actively remove CO2 from the atmosphere. Field results are still scarce and with this experiment we try to add some near-natural insights into dissolution processes. Results show CO2 sequestration potentials but also highlight the strong variability of outcomes that can be expected in natural environments. Such experiments are of the utmost importance to identify key processes.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Gaojun Li
Earth Surf. Dynam., 7, 191–197, https://doi.org/10.5194/esurf-7-191-2019, https://doi.org/10.5194/esurf-7-191-2019, 2019
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
G. G. Laruelle, H. H. Dürr, R. Lauerwald, J. Hartmann, C. P. Slomp, N. Goossens, and P. A. G. Regnier
Hydrol. Earth Syst. Sci., 17, 2029–2051, https://doi.org/10.5194/hess-17-2029-2013, https://doi.org/10.5194/hess-17-2029-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
P. K. Patra, J. G. Canadell, R. A. Houghton, S. L. Piao, N.-H. Oh, P. Ciais, K. R. Manjunath, A. Chhabra, T. Wang, T. Bhattacharya, P. Bousquet, J. Hartman, A. Ito, E. Mayorga, Y. Niwa, P. A. Raymond, V. V. S. S. Sarma, and R. Lasco
Biogeosciences, 10, 513–527, https://doi.org/10.5194/bg-10-513-2013, https://doi.org/10.5194/bg-10-513-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Effect of the 2022 summer drought across forest types in Europe
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Modelling the nutritional implications of ozone on wheat protein and amino acids
Global and regional hydrological impacts of global forest expansion
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Effectiveness of Agricultural Carbon Dioxide Removal using the University of Victoria Earth System Climate Model
Toward more robust NPP projections in the North Atlantic Ocean
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through coastal enhanced silicate weathering with olivine
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
Unifying framework for assessing sensitivity for marine calcifiers to ocean alkalinity enhancement identifies winners, losers and biological thresholds – importance of caution with precautionary principle
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Divergent responses of evergreen needle-leaf forests in Europe to the 2020 warm winter
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2968, https://doi.org/10.5194/egusphere-2024-2968, 2024
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Rebecca Chloe Evans and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1810, https://doi.org/10.5194/egusphere-2024-1810, 2024
Short summary
Short summary
To mitigate our impact on the climate, research suggests that we will need to both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated future climates under three emissions scenarios, in which we removed some carbon from the air and put it into agricultural soil at varying rates. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low emissions scenario and at a high rate, and it becomes less effective with time.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820, https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Short summary
Phytoplankton net primary production (NPP) is influenced by many processes, and their representation varies across Earth-system models. This leads to differing projections for NPP's future under climate change, especially in the North Atlantic. To address this, we identified and assessed the processes controlling NPP in each model. This assessment helped us select the most reliable models, significantly improving NPP projections in the region.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1824, https://doi.org/10.5194/egusphere-2024-1824, 2024
Short summary
Short summary
Coastal enhanced silicate weathering (CESW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of CESW parameters and identifying aspects to consider when applying CESW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Nina Bednaršek, Greg Pelletier, Hanna van de Mortel, Marisol García-Reyes, Richard Feely, and Andrew Dickson
EGUsphere, https://doi.org/10.5194/egusphere-2024-947, https://doi.org/10.5194/egusphere-2024-947, 2024
Short summary
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. A conceptual framework was developed showing 40 % of species to respond positively, 20 % negatively and 40 % with neutral response upon alkalinity addition. Biological thresholds were found between 10 to 500 µmol/kg NaOH addition, emphasizing lab experiments to be conducted at lower dosages. A precautionary approach is warranted to avoid potential risks.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2964, https://doi.org/10.5194/egusphere-2023-2964, 2024
Short summary
Short summary
Effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter in 2020 on the forest CO2 fluxes across 14 sites in Europe and found that in colder sites net ecosystem productivity (NEP) declined during the warm winter, while in the warmer sites NEP increased. Warming leads to increased respiration fluxes but if not translated into a direct warming of the soil might not enhance productivity, if the soil within the rooting zone remains frozen.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Philipp Suessle, Jan Taucher, Silvan Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2800, https://doi.org/10.5194/egusphere-2023-2800, 2023
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Cited articles
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D.,
Vithanage, M., Lee, S. S., and Ok, Y. S.: Biochar as a sorbent for
contaminant management in soil and water: a review, Chemosphere, 99,
19–33, https://doi.org/10.1016/j.chemosphere.2013.10.071, 2014.
Akhtar, S. S., Li, G., Andersen, M. N., and Liu, F.: Biochar enhances yield
and quality of tomato under reduced irrigation, Agricultural Water
Management, 138, 37–44, https://doi.org/10.1016/j.agwat.2014.02.016, 2014.
Alloway, B. J. (Ed.): Sources of Heavy Metals and Metalloids in Soils, in: Heavy
Metals in Soils: Trace Metals and Metalloids in Soils and their
Bioavailability, Springer Netherlands, Dordrecht,
11–50, 2013.
Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A.,
Sallam, A. S., and Ok, Y. S.: Impact of biochar properties on soil
conditions and agricultural sustainability: A review, Land Degrad.
Dev., 29, 2124–2161, https://doi.org/10.1002/ldr.2829, 2018.
Anda, M., Shamshuddin, J., and Fauziah, C. I.: Increasing negative charge
and nutrient contents of a highly weathered soil using basalt and rice husk
to promote cocoa growth under field conditions, Soil Till. Res.,
132, 1–11, https://doi.org/10.1016/j.still.2013.04.005, 2013.
Anda, M., Shamshuddin, J., and Fauziah, C. I.: Improving chemical properties
of a highly weathered soil using finely ground basalt rocks, Catena, 124,
147–161, https://doi.org/10.1016/j.catena.2014.09.012, 2015.
Atkinson, C., Fitzgerald, J., and Hipps, N.: Potential mechanisms for
achieving agricultural benefits from biochar application to temperate soils:
a review, Plant Soil, 337, 1–18, https://doi.org/10.1007/s11104-010-0464-5, 2010.
Bader, M. K. F., Leuzinger, S., Keel, S. G., Siegwolf, R. T. W., Hagedorn,
F., Schleppi, P., Körner, C., and Lee, J.: Central European hardwood
trees in a high-CO2 future: synthesis of an 8-year forest canopy
CO2enrichment project, J. Ecol., 101, 1509–1519, https://doi.org/10.1111/1365-2745.12149, 2013.
Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., and Dugan, B.:
Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved
Nutrient Fluxes Constrained by Laboratory Experiments, PLoS ONE, 9,
e108340, https://doi.org/10.1371/journal.pone.0108340, 2014.
Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., and Westgate, M.:
Assessing potential of biochar for increasing water-holding capacity of
sandy soils, GCB Bioenergy, 5, 132–143, https://doi.org/10.1111/gcbb.12026, 2013.
Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson,
P. N., Bird, M., Kantzas, E., Taylor, L. L., Sarkar, B., Kelland, M.,
DeLucia, E., Kantola, I., Muller, C., Rau, G., and Hansen, J.: Farming with
crops and rocks to address global climate, food and soil security, Nat.
Plants, 4, 138–147, https://doi.org/10.1038/s41477-018-0108-y, 2018.
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E.,
Robinson, B., and Sizmur, T.: A review of biochars' potential role in the
remediation, revegetation and restoration of contaminated soils,
Environ. Poll., 159, 3269–3282, https://doi.org/10.1016/j.envpol.2011.07.023, 2011.
Benes, J., Kepka, P., and Konvicka, M.: Limestone quarries as refuges for
European xerophilous butterflies, Conserv. Biol., 17, 1058–1069, https://doi.org/10.1046/j.1523-1739.2003.02092.x, 2003.
Benzerara, K., Yoon, T. H., Menguy, N., Tyliszczak, T., and Brown, G. E.,
Jr.: Nanoscale environments associated with bioweathering of a
Mg-Fe-pyroxene, P. Natl. Acad. Sci. USA, 102, 979–982, https://doi.org/10.1073/pnas.0409029102, 2005.
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt,
K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D., and
Brun, J. J.: A review of earthworm impact on soil function and ecosystem
services, Eur. J. Soil Sci., 64, 161–182, https://doi.org/10.1111/ejss.12025, 2013.
Bodner, G., Nakhforoosh, A., and Kaul, H.-P.: Management of crop water under
drought: a review, Agron. Sustain. Dev., 35, 401–442, https://doi.org/10.1007/s13593-015-0283-4, 2015.
Brantley, S. L., Kubicki, J. D., and White, A. F.: Kinetics of water-rock
interaction, Springer, 2008.
Brosse, N., Dufour, A., Meng, X., Sun, Q., and Ragauskas, A.: Miscanthus: a
fast-growing crop for biofuels and chemicals production, Biofuel Bioprod. Bior.,
6, 580–598, https://doi.org/10.1002/bbb.1353, 2012.
Caldeira, K., Bala, G., and Cao, L.: The Science of Geoengineering, Annu. Rev.
Earth Pl. Sc., 41, 231–256, https://doi.org/10.1146/annurev-earth-042711-105548, 2013.
Carcaillet, C.: Soil particles reworking evidences by AMS 14C dating of
charcoal, Cr. Acad. Sci. II A, 332, 21–28, https://doi.org/10.1016/s1251-8050(00)01485-3, 2001.
Carpenter, D., Hodson, M. E., Eggleton, P., and Kirk, C.: Earthworm induced
mineral weathering: Preliminary results, Eur. J. Soil Biol.,
43, S176–S183, https://doi.org/10.1016/j.ejsobi.2007.08.053, 2007.
Carpenter, D., Hodson, M. E., Eggleton, P., and Kirk, C.: The role of
earthworm communities in soil mineral weathering: a field experiment,
Mineral. Mag., 72, 33–36, https://doi.org/10.1180/minmag.2008.072.1.33, 2008.
Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: A
Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C
Ratio of Atmospheric CO2, Science, 269, 1098–1102, https://doi.org/10.1126/science.269.5227.1098, 1995.
Ciceri, D., de Oliveira, M., Stokes, R. M., Skorina, T., and Allanore, A.:
Characterization of potassium agrominerals: Correlations between
petrographic features, comminution and leaching of ultrapotassic syenites,
Miner. Eng., 102, 42–57, https://doi.org/10.1016/j.mineng.2016.11.016, 2017.
Ciceri, D. and Allanore, A.: Local fertilizers to achieve food
self-sufficiency in Africa, Sci. Total Environ., 648, 669–680, https://doi.org/10.1016/j.scitotenv.2018.08.154, 2019.
Cuadros, J.: Clay minerals interaction with microorganisms: a review, Clay
Miner., 52, 235–261, https://doi.org/10.1180/claymin.2017.052.2.05, 2018.
de Oliveira Garcia, W., Amann, T., and Hartmann, J.: Increasing biomass
demand enlarges negative forest nutrient budget areas in wood export
regions, Sci. Rep., 8, 5280, https://doi.org/10.1038/s41598-018-22728-5, 2018.
Dixit, S. and Hering, J. G.: Comparison of arsenic(V) and arsenic(III)
sorption onto iron oxide minerals: implications for arsenic mobility,
Environ. Sci. Technol., 37, 4182–4189, https://doi.org/10.1021/es030309t, 2003.
Drever, J. I.: The Effect of Land Plants on Weathering Rates of Silicate
Minerals, Geochim. Cosmochim. Ac., 58, 2325–2332, https://doi.org/10.1016/0016-7037(94)90013-2, 1994.
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais,
P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quere,
C., Raupach, M. R., Sharifi, A., Smith, P., and Yamagata, Y.: Betting on
negative emissions, Nat. Clim. Change, 4, 850–853, https://doi.org/10.1038/nclimate2392,
2014.
Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M.,
van Vuuren, D. P., Canadell, J. G., Jackson, R. B., Milne, J., Moreira, J.
R., Nakicenovic, N., Sharifi, A., and Yamagata, Y.: Research priorities for
negative emissions, Environ. Res. Lett., 11, 115007, https://doi.org/10.1088/1748-9326/11/11/115007, 2016.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann,
T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer,
G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J., del
Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2:
Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018.
Gillman, G. P., Burkett, D. C., and Coventry, R. J.: A laboratory study of
application of basalt dust to highly weathered soils: effect on soil cation
chemistry, Soil Res., 39, 799-811, https://doi.org/10.1071/SR00073, 2001.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M., and Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–3569, https://doi.org/10.5194/bg-9-3547-2012, 2012.
Gonnelli, C. and Renella, G.: Chromium and Nickel, in: Heavy Metals in
Soils: Trace Metals and Metalloids in Soils and their Bioavailability,
edited by: Alloway, B. J., Springer Netherlands, Dordrecht, 313–333, 2013.
Graham, P. H. and Vance, C. P.: Nitrogen fixation in perspective: an
overview of research and extension needs, Field Crop. Res., 65, 93–106,
https://doi.org/10.1016/S0378-4290(99)00080-5, 2000.
Grainger, A.: Estimating Areas of Degraded Tropical Lands Requiring
Replenishment of Forest Cover, International Tree Crops Journal, 5, 31–61, https://doi.org/10.1080/01435698.1988.9752837, 1988.
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., and Deng, H.:
Physico-chemical properties and microbial responses in biochar-amended
soils: Mechanisms and future directions, Agr. Ecosyst. Environ., 206, 46–59, https://doi.org/10.1016/j.agee.2015.03.015, 2015.
Hamdan, J. and Bumham, C. P.: The contribution of nutrients from parent
material in three deeply weathered soils of Peninsular Malaysia, Geoderma,
74, 219–233, https://doi.org/10.1016/s0016-7061(96)00062-6, 1996.
Hangx, S. J. T. and Spiers, C. J.: Coastal spreading of olivine to control
atmospheric CO2 concentrations: A critical analysis of viability,
Int. J. Greenh. Gas Con., 3, 757–767, https://doi.org/10.1016/j.ijggc.2009.07.001, 2009.
Harter, R. D.: Effect of Soil pH on Adsorption of Lead, Copper, Zinc, and
Nickel1, Soil Sci. Soc. Am. J., 47, 47–51, https://doi.org/10.2136/sssaj1983.03615995004700010009x, 1983.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L.,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys.,
51, 113–149, https://doi.org/10.1002/rog.20004, 2013.
Helyar, K. R. and Porter, W. M.: 2 – Soil Acidification, its Measurement
and the Processes Involved, in: Soil Acidity and Plant Growth, edited by:
Robson, A., Academic Press, 61–101, 1989.
Hengl, T., Leenaars, J. G. B., Shepherd, K. D., Walsh, M. G., Heuvelink, G.
B. M., Mamo, T., Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E.,
Wheeler, I., and Kwabena, N. A.: Soil nutrient maps of Sub-Saharan Africa:
assessment of soil nutrient content at 250 m spatial resolution using
machine learning, Nutr. Cycl. Agroecosys., 109, 77–102, https://doi.org/10.1007/s10705-017-9870-x, 2017.
Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina, A. A.,
Haselwandter, K., Holmstrom, S., Landeweert, R., Lundstrom, U. S., Rosling,
A., Sen, R., Smits, M. M., van Hees, P. A., and van Breemen, N.: The role of
fungi in weathering, Front. Ecol. Environ., 2, 258–264, https://doi.org/10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2, 2004.
Holloway, J. M. and Dahlgren, R. A.: Nitrogen in rock: Occurrences and
biogeochemical implications, Glob. Biogeochem. Cy., 16, 1118, https://doi.org/10.1029/2002gb001862, 2002.
Houlton, B. Z., Morford, S. L., and Dahlgren, R. A.: Convergent evidence for
widespread rock nitrogen sources in Earth's surface environment, Science,
360, 58–62, https://doi.org/10.1126/science.aan4399, 2018.
Jackson, R. B., Canadell, J. G., Le Quere, C., Andrew, R. M., Korsbakken, J.
I., Peters, G. P., and Nakicenovic, N.: Reaching peak emissions, Nat.
Clim. Change, 6, 7–10, https://doi.org/10.1038/nclimate2892, 2015.
Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C.: A
quantitative review of the effects of biochar application to soils on crop
productivity using meta-analysis, Agr. Ecosyst. Environ.,
144, 175–187, https://doi.org/10.1016/j.agee.2011.08.015, 2011.
Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V.,
Potočić, N., Waldner, P., Benham, S., Hansen, K., Merilä, P.,
Ponette, Q., de la Cruz, A. C., Roskams, P., Nicolas, M., Croisé, L.,
Ingerslev, M., Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.:
Tree mineral nutrition is deteriorating in Europe, Glob. Change Biol.,
21, 418–430, https://doi.org/10.1111/gcb.12657, 2015.
Kabata-Pendias, A.: Behavioral Properties of Trace-Metals in Soils, Appl.
Geochem., 8, 3–9, https://doi.org/10.1016/S0883-2927(09)80002-4, 1993.
Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4th edn., CRC Press,
548 pp., 2010.
Kang, Y., Khan, S., and Ma, X.: Climate change impacts on crop yield, crop
water productivity and food security – A review, Prog. Nat.
Sci., 19, 1665–1674, https://doi.org/10.1016/j.pnsc.2009.08.001, 2009.
Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P., and DeLucia,
E. H.: Potential of global croplands and bioenergy crops for climate change
mitigation through deployment for enhanced weathering, Biol. Lett., 13,
20160714, https://doi.org/10.1098/rsbl.2016.0714, 2017.
Keller, D. P., Lenton, A., Littleton, E. W., Oschlies, A., Scott, V., and
Vaughan, N. E.: The Effects of Carbon Dioxide Removal on the Carbon Cycle,
Curr. Clim. Change Rep., 4, 250–265, https://doi.org/10.1007/s40641-018-0104-3, 2018.
Körner, C., Morgan, J., and Norby, R.: CO2 Fertilization: When, Where, How Much?, in: errestrial Ecosystems in a Changing World, Global Change – The IGBP Series, edited by: Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Springer, Berlin, Heidelberg, 2007.
Kracher, D.: Nitrogen-Related Constraints of Carbon Uptake by Large-Scale
Forest Expansion: Simulation Study for Climate Change and Management
Scenarios, Earth's Future, 5, 1102–1118, https://doi.org/10.1002/2017ef000622, 2017.
Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D.: Biochar impact
on nutrient leaching from a Midwestern agricultural soil, Geoderma, 158,
436–442, https://doi.org/10.1016/j.geoderma.2010.05.012, 2010.
Lasaga, A. C.: Fundamental approaches in describing mineral dissolution and
precipitation rates, Rev. Mineral Geochem., 31, 23–86,
1995.
Lehmann, J.: Bio-energy in the black, Front. Ecol. Environ., 5, 381–387, https://doi.org/10.1890/1540-9295(2007)5[381:Bitb]2.0.Co;2,
2007.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and
Crowley, D.: Biochar effects on soil biota – A review, Soil Biol.
Biochem., 43, 1812–1836, https://doi.org/10.1016/j.soilbio.2011.04.022, 2011.
Leonardos, O. H., Fyfe, W. S., and Kronberg, B. I.: The use of ground rocks
in laterite systems: An improvement to the use of conventional soluble
fertilizers?, Chem. Geol., 60, 361–370, https://doi.org/10.1016/0009-2541(87)90143-4,
1987.
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Körner,
C.: Do global change experiments overestimate impacts on terrestrial
ecosystems?, Trends Ecol. Evol., 26, 236–241, https://doi.org/10.1016/j.tree.2011.02.011, 2011.
Li, D., Wen, L., Zhang, W., Yang, L., Xiao, K., Chen, H., and Wang, K.:
Afforestation effects on soil organic carbon and nitrogen pools modulated by
lithology, Forest Ecol. Manag., 400, 85–92, https://doi.org/10.1016/j.foreco.2017.05.050, 2017.
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill,
B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., and Neves,
E. G.: Black Carbon Increases Cation Exchange Capacity in Soils, Soil
Sci. Soc. Am. J., 70, 1719, https://doi.org/10.2136/sssaj2005.0383, 2006.
Liu, Z., Dugan, B., Masiello, C. A., and Gonnermann, H. M.: Biochar particle
size, shape, and porosity act together to influence soil water properties,
PLoS One, 12, e0179079, https://doi.org/10.1371/journal.pone.0179079, 2017.
Loomis, R. S. and Morris, J. G.: Agricultural Productivity, BioScience, 33, 338–339, https://doi.org/10.2307/1309328, 1983.
Major, J., Lehmann, J., Rondon, M., and Goodale, C.: Fate of soil-applied
black carbon: downward migration, leaching and soil respiration, Glob.
Change Biol., 16, 1366–1379, https://doi.org/10.1111/j.1365-2486.2009.02044.x, 2010.
Manning, D. A. C.: Mineral sources of potassium for plant nutrition, A
review, Agron. Sustain. Dev., Springer Netherlands, 2, 281–294, 2010.
Manning, D. A. C.: How will minerals feed the world in 2050?, P. Geologist Assoc., 126, 14–17, https://doi.org/10.1016/j.pgeola.2014.12.005, 2015.
Masiello, C., Dugan, B., Brewer, C., Spokas, K., Novak, J.-J., Liu, Z., and
Sorrenti, G.: Biochar effects on soil hydrology, in: Biochar for
Environmental Management Science, Technology and Implementation, edited by:
Lehmann, J. and Joseph, S., Routledge, 2015.
McBride, M. B., Richards, B. K., and Steenhuis, T.: Bioavailability and crop
uptake of trace elements in soil columns amended with sewage sludge
products, Plant Soil, 262, 71–84, https://doi.org/10.1023/B:Plso.0000037031.21561.34,
2004.
Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig,
F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna,
T., Lenzi, D., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente
Vicente, J. L., Wilcox, J., and del Mar Zamora Dominguez, M.: Negative
emissions – Part 1: Research landscape and synthesis, Environ. Res.
Lett., 13, 063001, https://doi.org/10.1088/1748-9326/aabf9b, 2018.
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom,
A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, G., Hasegawa, T.,
Holbrook, N. M., Nelson, R. L., Ottman, M. J., Raboy, V., Sakai, H., Sartor,
K. A., Schwartz, J., Seneweera, S., Tausz, M., and Usui, Y.: Increasing CO2 threatens human nutrition, Nature, 510, 139–142, https://doi.org/10.1038/nature13179, 2014.
Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M.: Heavy metals,
occurrence and toxicity for plants: a review, Environ. Chem. Lett., 8, 199–216, https://doi.org/10.1007/s10311-010-0297-8, 2010.
National Research Council: Climate Intervention: Carbon Dioxide Removal and
Reliable Sequestration, The National Academies Press, Washington, DC, 154 pp., 2015.
Nemet, G. F., Callaghan, M. W., Creutzig, F., Fuss, S., Hartmann, J.,
Hilaire, J., Lamb, W. F., Minx, J. C., Rogers, S., and Smith, P.: Negative
emissions – Part 3: Innovation and upscaling, Environ. Res.
Lett., 13, https://doi.org/10.1088/1748-9326/aabff4, 2018.
Nilsson, S. and Schopfhauser, W.: The carbon-sequestration potential of a
global afforestation program, Clim. Change, 30, 267–293, https://doi.org/10.1007/BF01091928, 1995.
Nishanth, D. and Biswas, D. R.: Kinetics of phosphorus and potassium
release from rock phosphate and waste mica enriched compost and their effect
on yield and nutrient uptake by wheat (Triticum aestivum), Bioresource
Technol., 99, 3342–3353, https://doi.org/10.1016/j.biortech.2007.08.025, 2008.
Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO2
Enrichment (FACE) Experiments, Annu. Rev. Ecol. Evol. S., 42, 181–203, https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.
Nunes, J. M. G., Kautzmann, R. M., and Oliveira, C.: Evaluation of the
natural fertilizing potential of basalt dust wastes from the mining district
of Nova Prata (Brazil), J. Clean Prod., 84, 649–656, https://doi.org/10.1016/j.jclepro.2014.04.032, 2014.
Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., and Pan, G.:
Quantification of biochar effects on soil hydrological properties using
meta-analysis of literature data, Geoderma, 274, 28–34, https://doi.org/10.1016/j.geoderma.2016.03.029, 2016.
Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E.,
Maier, C., Schafer, K. V. R., McCarthy, H., Hendrey, G., McNulty, S. G., and
Katul, G. G.: Soil fertility limits carbon sequestration by forest
ecosystems in a CO2-enriched atmosphere, Nature, 411, 469–472, https://doi.org/10.1038/35078064, 2001.
Ornstein, L., Aleinov, I., and Rind, D.: Irrigated afforestation of the
Sahara and Australian Outback to end global warming, Clim. Change, 97,
409–437, https://doi.org/10.1007/s10584-009-9626-y, 2009.
Perrin, A. S., Probst, A., and Probst, J. L.: Impact of nitrogenous
fertilizers on carbonate dissolution in small agricultural catchments:
Implications for weathering CO2 uptake at regional and global scales,
Geochim. Cosmochim. Ac., 72, 3105–3123, 2008.
Pietikainen, J., Kiikkila, O., and Fritze, H.: Charcoal as a habitat for
microbes and its effect on the microbial community of the underlying humus,
Oikos, 89, 231–242, https://doi.org/10.1034/j.1600-0706.2000.890203.x, 2000.
Pinheiro, E. A. R., de Jong van Lier, Q., and Šimůnek, J.: The role
of soil hydraulic properties in crop water use efficiency: A process-based
analysis for some Brazilian scenarios, Agr. Syst., 173, 364–377, https://doi.org/10.1016/j.agsy.2019.03.019, 2019.
Qian, J., Shan, X.-Q., Wang, Z.-J., and Tu, Q.: Distribution and plant
availability of heavy metals in different particle-size fractions of soil,
Sci. Total Environ., 187, 131–141, https://doi.org/10.1016/0048-9697(96)05134-0, 1996.
Rajkumar, M., Sandhya, S., Prasad, M. N. V., and Freitas, H.: Perspectives
of plant-associated microbes in heavy metal phytoremediation, Biotechnol.
Adv., 30, 1562–1574, https://doi.org/10.1016/j.biotechadv.2012.04.011, 2012.
Rawls, W. J., Brakensiek, D. L., and Saxtonn, K. E.: Estimation of Soil
Water Properties, T. ASAE, 25, 1316–1320, https://doi.org/10.13031/2013.33720, 1982.
Renforth, P., Pogge von Strandmann, P. A. E., and Henderson, G. M.: The
dissolution of olivine added to soil: Implications for enhanced weathering,
Appl. Geochem., 61, 109–118, https://doi.org/10.1016/j.apgeochem.2015.05.016, 2015.
Robinson, B. H., Brooks, R. R., Kirkman, J. H., Gregg, P. E. H., and
Gremigni, P.: Plant-available elements in soils and their influence on the
vegetation over ultramafic (“serpentine”) rocks in New Zealand, J. Roy. Soc. New Zeal., 26, 457–468, https://doi.org/10.1080/03014223.1996.9517520, 1996.
Rockstrom, J., Lannerstad, M., and Falkenmark, M.: Assessing the water
challenge of a new green revolution in developing countries, P. Natl. Acad.
Sci. USA, 104, 6253–6260, https://doi.org/10.1073/pnas.0605739104, 2007.
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat,
D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V.,
Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L.,
Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F.,
Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean
temperature increase below 1.5 ∘C, Nat. Clim. Change, 8,
325–332, https://doi.org/10.1038/s41558-018-0091-3, 2018.
Saito, M.: Charcoal as a micro-habitat for VA mycorrhizal fungi, and its
practical implication, Agr. Ecosyst. Environ., 29,
341–344, https://doi.org/10.1016/0167-8809(90)90298-r, 1990.
Sarbas, B.: The GEOROC Database as Part of a Growing Geoinformatics Network,
Geoinformatics 2008 – Data to Knowledge, Potsdam, 2008.
Schuiling, R. D. and Krijgsman, P.: Enhanced weathering: An effective and
cheap tool to sequester CO2, Clim. Change, 74, 349–354, https://doi.org/10.1007/s10584-005-3485-y, 2006.
Schuiling, R. D.: Farming nickel from non-ore deposits, combined with
CO2 sequestration, Nat. Sci., 5, 445–448, https://doi.org/10.4236/ns.2013.54057,
2013.
Schwartzman, D. W. and Volk, T.: Biotic Enhancement of Weathering and the
Habitability of Earth, Nature, 340, 457–460, https://doi.org/10.1038/340457a0, 1989.
Semhi, K., Suchet, P. A., Clauer, N., and Probst, J. L.: Impact of nitrogen
fertilizers on the natural weathering-erosion processes and fluvial
transport in the Garonne basin, Appl. Geochem., 15, 865–878, https://doi.org/10.1016/S0883-2927(99)00076-1, 2000.
Smith, M. R. and Myers, S. S.: Impact of anthropogenic CO2 emissions on
global human nutrition, Nat. Clim. Change, 8, 834–839, https://doi.org/10.1038/s41558-018-0253-3, 2018.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of carbon dioxide removal by enhanced weathering of
rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018.
Tack, F. M., Callewaert, O. W. J. J., and Verloo, M. G.: Metal solubility as
a function of pH in a contaminated, dredged sediment affected by oxidation,
Environ. Poll., 91, 199–208, https://doi.org/10.1016/0269-7491(95)00049-6, 1996.
Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J.,
Ridgwell, A., Lomas, M. R., Banwart, S. A., and Beerling, D. J.: Enhanced
weathering strategies for stabilizing climate and averting ocean
acidification, Nat. Clim. Change, 6, 402–406, https://doi.org/10.1038/nclimate2882,
2015.
Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L.,
Pacala, S., Reilly, J., Searchinger, T., Somerville, C., and Williams, R.:
Beneficial Biofuels – The Food, Energy, and Environment Trilemma, Science,
325, 270–271, https://doi.org/10.1126/science.1177970, 2009.
Topoliantz, S. and Ponge, J.-F.: Charcoal consumption and casting activity
by Pontoscolex corethrurus (Glossoscolecidae), Appl. Soil Ecol., 28,
217–224, https://doi.org/10.1016/j.apsoil.2004.08.003, 2005.
Tropek, R., Kadlec, T., Karesova, P., Spitzer, L., Kocarek, P., Malenovsky,
I., Banar, P., Tuf, I. H., Hejda, M., and Konvicka, M.: Spontaneous
succession in limestone quarries as an effective restoration tool for
endangered arthropods and plants, J. Appl. Ecol., 47, 139–147, https://doi.org/10.1111/j.1365-2664.2009.01746.x, 2010.
Uroz, S., Calvaruso, C., Turpault, M.-P., and Frey-Klett, P.: Mineral
weathering by bacteria: ecology, actors and mechanisms, T.
Microbiol., 17, 378–387, https://doi.org/10.1016/j.tim.2009.05.004, 2009.
van Straaten, P.: Rocks for Crops: Agrominerals of sub-Saharan Africa,
ICRAF, Nairobi, Kenya, 338 pp., 2002.
van Straaten, P.: Farming with rocks and minerals: challenges and
opportunities, An. Acad. Bras. Cienc., 78, 731–747, 2006.
Warnock, D. D., Lehmann, J., Kuyper, T. W., and Rillig, M. C.: Mycorrhizal
responses to biochar in soil – concepts and mechanisms, Plant Soil,
300, 9–20, https://doi.org/10.1007/s11104-007-9391-5, 2007.
West, T. O. and McBride, A. C.: The contribution of agricultural lime to
carbon dioxide emissions in the United States: dissolution, transport, and
net emissions, Agr. Ecosyst. Environ., 108, 145–154, https://doi.org/10.1016/j.agee.2005.01.002, 2005.
White, J. G. and Zasoski, R. J.: Mapping soil micronutrients, Field Crop.
Res., 60, 11–26, https://doi.org/10.1016/s0378-4290(98)00130-0, 1999.
Xu, C. Y., Hosseini-Bai, S., Hao, Y., Rachaputi, R. C., Wang, H., Xu, Z.,
and Wallace, H.: Effect of biochar amendment on yield and photosynthesis of
peanut on two types of soils, Environ. Sci. Pollut. Res. Int., 22, 6112–6125, https://doi.org/10.1007/s11356-014-3820-9, 2015.
Zhang, G.-l., Liu, F., and Song, X.-D.: Recent progress and future prospect
of digital soil mapping: A review, J. Integr. Agr., 16,
2871–2885, https://doi.org/10.1016/s2095-3119(17)61762-3, 2017.
Zomer, R. J., Trabucco, A., Bossio, D. A., and Verchot, L. V.: Climate
change mitigation: A spatial analysis of global land suitability for clean
development mechanism afforestation and reforestation, Agr.
Ecosyst. Environ., 126, 67–80, https://doi.org/10.1016/j.agee.2008.01.014, 2008.
Short summary
With the recent publication of the IPCC special report on the 1.5 °C target and increased attention on carbon dioxide removal (CDR) technologies, we think it is time to advance from the current way of looking at specific strategies to a more holistic CDR perspective, since multiple "side effects" may lead to additional CO2 uptake into different carbon pools. This paper explores potential co-benefits between terrestrial CDR strategies to facilitate a maximum CO2 sequestration effect.
With the recent publication of the IPCC special report on the 1.5 °C target and increased...
Altmetrics
Final-revised paper
Preprint