Articles | Volume 16, issue 16
https://doi.org/10.5194/bg-16-3233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-3233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort
CORRESPONDING AUTHOR
Institute of Geology, ETH Zürich, Sonneggstrasse 5, 8092
Zurich, Switzerland
now at: Campus Fryslân, University of Groningen,
Wirdumerdijk 34, Leeuwarden, the Netherlands
Utsav Mannu
Institute of Geology, ETH Zürich, Sonneggstrasse 5, 8092
Zurich, Switzerland
now at: Department of Earth and Climate Science, IISER
Pune, Pune, India
Frank Hagedorn
Forest soils and Biogeochemistry, Swiss Federal Research Institute
WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Cameron McIntyre
Institute of Geology, ETH Zürich, Sonneggstrasse 5, 8092
Zurich, Switzerland
Department of Physics, Laboratory of Ion Beam Physics, ETH Zurich,
Schaffmattstrasse 20, 9083 Zurich, Switzerland
now at: AMS Laboratory, Scottish Universities Environmental Research Centre (SUERC), Rankine Av., East Kilbride, G75 0QF, UK
Lorenz Walthert
Forest soils and Biogeochemistry, Swiss Federal Research Institute
WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Patrick Schleppi
Forest soils and Biogeochemistry, Swiss Federal Research Institute
WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Negar Haghipour
Institute of Geology, ETH Zürich, Sonneggstrasse 5, 8092
Zurich, Switzerland
Timothy Ian Eglinton
Institute of Geology, ETH Zürich, Sonneggstrasse 5, 8092
Zurich, Switzerland
Related authors
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
Claudia Guidi, Sia Gosheva-Oney, Markus Didion, Roman Flury, Lorenz Walthert, Stephan Zimmermann, Brian J. Oney, Pascal A. Niklaus, Esther Thürig, Toni Viskari, Jari Liski, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3788, https://doi.org/10.5194/egusphere-2024-3788, 2024
Short summary
Short summary
Predicting soil organic carbon (SOC) stocks in forests is crucial for assessing C balance, yet drivers of SOC stocks remain uncertain at large scales. Across a broad environmental gradient in Switzerland, we compared measured SOC stocks with those modelled by Yasso20, commonly used for GHG budgets. Our results show that soil mineral properties and climate are main controls of SOC stocks, indicating that better accounting of these processes will advance accuracy of SOC stock predictions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Frank Hagedorn, Joesphine Imboden, Pavel Moiseev, Decai Gao, Emmanuel Frossard, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2622, https://doi.org/10.5194/egusphere-2024-2622, 2024
Short summary
Short summary
At treeline, plant species change abruptly from low stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer gets strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase the nutrient release during decomposition in forest than in tundra. The associated improvement of nutrient availability in the forest potentially stimulates tree growth and treeline shifts.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautchi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-123, https://doi.org/10.5194/amt-2024-123, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing fossil from biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. With this work we made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Thomas Baer, Gerhard Furrer, Stephan Zimmermann, and Patrick Schleppi
Biogeosciences, 20, 4577–4589, https://doi.org/10.5194/bg-20-4577-2023, https://doi.org/10.5194/bg-20-4577-2023, 2023
Short summary
Short summary
Nitrogen (N) deposition to forest ecosystems is a matter of concern because it affects their nutrient status and makes their soil acidic. We observed an ongoing acidification in a montane forest in central Switzerland even if the subsoil of this site contains carbonates and is thus well buffered. We experimentally added N to simulate a higher pollution, and this increased the acidification. After 25 years of study, however, we can see the first signs of recovery, also under higher N deposition.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Susan J. Cheng, Peter G. Hess, William R. Wieder, R. Quinn Thomas, Knute J. Nadelhoffer, Julius Vira, Danica L. Lombardozzi, Per Gundersen, Ivan J. Fernandez, Patrick Schleppi, Marie-Cécile Gruselle, Filip Moldan, and Christine L. Goodale
Biogeosciences, 16, 2771–2793, https://doi.org/10.5194/bg-16-2771-2019, https://doi.org/10.5194/bg-16-2771-2019, 2019
Short summary
Short summary
Nitrogen deposition and fertilizer can change how much carbon is stored in plants and soils. Understanding how much added nitrogen is recovered in plants or soils is critical to estimating the size of the future land carbon sink. We compared how nitrogen additions are recovered in modeled soil and plant stocks against data from long-term nitrogen addition experiments. We found that the model simulates recovery of added nitrogen into soils through a different process than found in the field.
Emily F. Solly, Valentino Weber, Stephan Zimmermann, Lorenz Walthert, Frank Hagedorn, and Michael W. I. Schmidt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-33, https://doi.org/10.5194/bg-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
Soils are the largest reservoir of carbon on land. In the context of global change, it is important to assess which environmental variables are needed to describe changes in the content of soil organic carbon. We assessed how climatic, vegetation and edaphic variables explain the variance of soil organic carbon content in Swiss forests. Our results provide a first indication that considering the effective cation exchange capacity of soils in future biogeochemical simulations could be beneficial.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Lorenz Wüthrich, Claudio Brändli, Régis Braucher, Heinz Veit, Negar Haghipour, Carla Terrizzano, Marcus Christl, Christian Gnägi, and Roland Zech
E&G Quaternary Sci. J., 66, 57–68, https://doi.org/10.5194/egqsj-66-57-2017, https://doi.org/10.5194/egqsj-66-57-2017, 2017
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Madlene Nussbaum, Lorenz Walthert, Marielle Fraefel, Lucie Greiner, and Andreas Papritz
SOIL, 3, 191–210, https://doi.org/10.5194/soil-3-191-2017, https://doi.org/10.5194/soil-3-191-2017, 2017
Short summary
Short summary
Digital soil mapping (DSM) relates soil property data to environmental data that describe soil-forming factors. With imagery sampled from satellites or terrain analysed at multiple scales, large sets of possible input to DSM are available. We propose a new statistical framework (geoGAM) that selects parsimonious models for DSM and illustrate the application of geoGAM to two study regions. Straightforward interpretation of the modelled effects likely improves end-user acceptance of DSM products.
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Short summary
For this study we systematically investigated the molecular pattern of leaf waxes in litter and topsoils along a European transect to assess their potential for palaeoenvironmental reconstruction. Our results show that leaf wax patterns depend on the type of vegetation. The vegetation signal is not only found in the litter; it can also be preserved to some degree in the topsoil.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
Related subject area
Biogeochemistry: Soils
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Plutonium concentrations link soil organic matter decline to wind erosion in ploughed soils of South Africa
A Synthesis of Sphagnum Litterbag Experiments: Initial Leaching Losses Bias Decomposition Rate Estimates
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water extractable colloids of a Vertisol
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1757, https://doi.org/10.5194/egusphere-2024-1757, 2024
Short summary
Short summary
When microbes consume carbon within soils, it is important to know how much carbon is respired and lost as carbon dioxide versus how much is used to make new biomass. We used a new approach of monitoring carbon dioxide and oxygen to track the fate of consumed carbon during a series of laboratory experiments where sugar was added to moistened soil. Our approach allowed us to estimate how much sugar was converted to dead microbial biomass, which is more likely to be preserved in soils.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
EGUsphere, https://doi.org/10.5194/egusphere-2024-1312, https://doi.org/10.5194/egusphere-2024-1312, 2024
Short summary
Short summary
We measured concentrations of fallout radionuclides (FRNs) in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century CE, the FRN data strongly correlate with the soil organic matter (SOM) content of the soils. The finding implies that wind erosion strongly influenced SOM loss in the soils we investigated. Furthermore, the exponential decline of FRN concentrations and SOM content over time peaks shortly after native grassland is cultivated.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1686, https://doi.org/10.5194/egusphere-2024-1686, 2024
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-983, https://doi.org/10.5194/egusphere-2024-983, 2024
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions and organic P, but decreased the abundances of P cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention brought increases for organic C, total P, available P concentrations in water-extractable colloids (WECs). Abundances of phoD gene and phoD-harbouring Proteobacteria in WECs increased under straw retention, suggesting that the P mineralizing capacity increased.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Cited articles
Angst, G., John, S., Mueller, C. W., Kögel-Knabner, I., and Rethemeyer,
J.: Tracing the sources and spatial distribution of organic carbon in
subsoils using a multi-biomarker approach, Sci. Rep.-UK, 6, 29478,
https://doi.org/10.1038/srep29478, 2016.
Baisden, W. T. and Parfitt, R. L.: Bomb 14C enrichment indicates decadal C
pool in deep soil?, Biogeochemistry, 85, 59–68,
https://doi.org/10.1007/s10533-007-9101-7, 2007.
Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.:
Evaluating 50 years of time-series soil radiocarbon data?: towards routine
calculation of robust C residence times, Biogeochemistry, 112, 129–137,
https://doi.org/10.1007/s10533-011-9675-y, 2013.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D.,
Fekiacova, Z., and Hatté, C.: Atmosphere–soil carbon transfer as a
function of soil depth, Nature, 559, 599–602,
https://doi.org/10.1038/s41586-018-0328-3, 2018.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 47, 151–163, 1996.
Braakhekke, M. C., Beer, C., Schrumpf, M., Ekici, A., Ahrens, B., Hoosbeek,
M. R., Kruijt, B., Kabat, P., and Reichstein, M.: The use of radiocarbon to
constrain current and future soil organic matter turnover and transport in a
temperate forest, J. Geophys. Res.-Biogeo., 119, 372–391,
https://doi.org/10.1002/2013JG002420, 2014.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B.,
Beer, C., Cescatti, A., Randerson, J. T., Reichstein, M., Mu, M.,
Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C.,
Cescatti, A., Randerson, J. T., Reichstein, M., Mu, M., Saatchi, S.,
Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A.,
Randerson, J. T., and Reichstein, M.: Global covariation of carbon turnover
times with climate in terrestrial ecosystems, Nature, 514, 213–217,
https://doi.org/10.1038/nature13731, 2014.
Crowther, T., Todd-Brown, K., Rowe, C., Wieder, W., Carey, J., Machmuller,
M., Snoek, L., Fang, S., Zhou, G., Allison, S., Blair, J., Bridgham, S.,
Burton, A., Carrillo, Y., Reich, P., Clark, J., Classen, A., Dijkstra, F.,
Elberling, B., Emmett, B., Estiarte, M., Frey, S., Guo, J., Harte, J.,
Jiang, L., Johnson, B., Kröel-Dulay, G., Larsen, K., Laudon, H.,
Lavallee, J., Luo, Y., Lupascu, M., Ma, L., Marhan, S., Michelsen, A.,
Mohan, J., Niu, S., Pendall, E., Penuelas, J., Pfeifer-Meister, L., Poll,
C., Reinsch, S., Reynolds, L., Schmidth, I., Sistla, S., Sokol, N., Templer,
P., Treseder, K., Welker, J., and Bradford, M.: Quantifying global soil C
losses in response to warming, Nature, 540, 104–108,
https://doi.org/10.1038/nature20150, 2016.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173, available at: http://www.ncbi.nlm.nih.gov/pubmed/16525463
(last access: 28 May 2014), 2006.
Davidson, E. A., Trumbore, S. E., and Amundson, R.: Soil warming and organic
carbon content, Nature, 408, 789–790, https://doi.org/10.1038/35048672,
2000.
Diserens, E.: Étude de quelques aspects pédologiques liés aux dépositions acides dans une pessière humide de Suisse centrale, EPF Zurich, Switzerland, 1992.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Oost, K. Van, Pinto, M. C.,
Casanova-katny, A., Muñoz, C., Boudin, M., Venegas, E. Z., and Boeckx,
P.: Soil carbon storage controlled by interactions between geochemistry and
climate, Nat. Geosci., 8, 1–4, https://doi.org/10.1038/NGEO2516, 2015.
Etzold, S., Waldner, P., Thimonier, A., Schmitt, M., and Dobbertin, M.: Tree
growth in Swiss forests between 1995 and 2010 in relation to climate and
stand conditions: Recent disturbances matter, Forest Ecol. Manage., 311,
41–55, 2014.
Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D., and Simpson, M. J.:
Increased cuticular carbon sequestration and lignin oxidation in response to
soil warming, Nat. Geosci., 1, 836–839, 2008.
Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial
community composition through two soil depth profiles, Soil Biol. Biochem.,
35, 167–176, 2003.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, 2007.
Fröberg, M., Tipping, E., Stendahl, J., Clarke, N., and Bryant, C.: Mean
residence time of O horizon carbon along a climatic gradient in Scandinavia
estimated by 14C measurements of archived soils, Biogeochemistry, 104,
227–236,
2010.
Galy, V., Beyssac, O., France-Lanord, C., and Eglinton, T. I.: Recycling of
graphite during Himalayan erosion: a geological stabilization of carbon in
the crust, Science, 322, 943–945,
https://doi.org/10.1126/science.1161408, 2008.
Giardina, C. P. and Ryan, M. G.: Evidence that decomposition rates of
organic carbon in mineral soil do not vary with temperature, Nature,
404, 858–861, https://doi.org/10.1038/35009076, 2000.
Gosheva, S., Walthert, L., Niklaus, P. A., Zimmermann, S., Gimmi, U., and
Hagedorn, F.: Reconstruction of Historic Forest Cover Changes Indicates
Minor Effects on Carbon Stocks in Swiss Forest Soils, Ecosystems, 20, 1512–1528,
https://doi.org/10.1007/s10021-017-0129-9, 2017.
Graven, H. D.: Impact of fossil fuel emissions on atmospheric radiocarbon
and various applications of radiocarbon over this century, P. Natl. Acad.
Sci. USA, 112, 9542–9545, https://doi.org/10.1073/pnas.1504467112, 2015.
Hagedorn, F., Bucher, J. B., and Schleppi, P.: Contrasting dynamics of
dissolved inorganic and organic nitrogen in soil and surface waters of
forested catchments with Gleysols, Geoderma, 100, 173–192,
https://doi.org/10.1016/S0016-7061(00)00085-9, 2001a.
Hagedorn, F., Maurer, S., Egli, P., Blaser, P., Bucher, J. B., and Siegwolf, R.:
Carbon sequestration in forest soils?: effects of soil type, atmospheric CO2 enrichment, and N deposition, Eur. J. Soil Sci., 52, 619–628, https://doi.org/10.1046/j.1365-2389.2001.00412.x, 2001b.
Hagedorn, F., Saurer, M., and Blaser, P.: A 13C tracer study to identify the
origin of dissolved organic carbon in forested mineral soils, Eur. J. Soil
Sci., 55, 91–100, 2004.
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S.,
Allison, S. D., and Randerson, J. T.: Radiocarbon constraints imply reduced
carbon uptake by soils during the 21st century, Science, 353,
1419–1424, 2016.
Helfrich, M., Flessa, H., Mikutta, R., Dreves, A., and Ludwig, B.: Comparison
of chemical fractionation methods for isolating stable soil organic carbon
pools, Eur. J. Soil Sci., 58, 1316–1329,
https://doi.org/10.1111/j.1365-2389.2007.00926.x, 2007.
Hemingway, J.: Microbial oxidation of lithospheric organic carbon in rapidly
eroding tropical mountain soils, Science, 360, 209–212,
https://doi.org/10.1126/science.aao6463, 2018.
Herold, N., Schöning, I., Michalzik, B., Trumbore, S. E., and Schrumpf,
M.: Controls on soil carbon storage and turnover in German landscapes,
Biogeochemistry, 119, 435–451, 2014.
Hua, Q., Barbetti, M., and Rakowski, A. Z.: Atmospheric radiocarbon for the
period 1950–2010, Radiocarbon, 55, 2059–2072, 2013.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schluchter, C.: Latest Pleistocene and Holocene glacier variations in the
European Alps, Quaternary Sci. Rev., 28, 2137–2149,
https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Jobbagy, E. G. and Jackson, R.: Ther vertical distribution of soil organic
carbon an its relation to climate and vegetation, Ecol. Appl., 10,
423–436, 2000.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002,
2012.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K.,
and Kleber, M.: Mineral protection of soil carbon counteracted by root
exudates, Nat. Clim. Change, 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
Klute, A.: Methods of soil analysis, Part 1: Physical and Mineralogical
Methods, 2nd Edn., Agronomy Monograph No 9, Madison WI., 1986.
Koarashi, J., Hockaday, W. C., Masiello, C. A., and Trumbore, S. E.: Dynamics
of decadally cycling carbon in subsurface soils, J. Geophys. Res.-Biogeo., 117, 1–13, https://doi.org/10.1029/2012JG002034, 2012.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures , δ13C and δ14C: comparison of fumigation and direct
acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6,
254–262, 2008.
Krause, K., Niklaus, P. A. and Schleppi, P.: Soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O in a mountain spruce forest subjected to long-term N addition and to tree girdling, Agr. Forest Meteorol., 181, 61–68, https://doi.org/10.1016/j.agrformet.2013.07.007, 2013.
Lang, S. Q., McIntyre, C. P., Bernasconi, S. M., Früh-Green, G. L.,
Voss, B. M., Eglinton, T. I., and Wacker, L.: Rapid 14C Analysis of Dissolved
Organic Carbon in Non-Saline Waters, Radiocarbon, 58, 1–11,
https://doi.org/10.1017/RDC.2016.17, 2016.
Lechleitner, F. A., Baldini, J. U. L., Breitenbach, S. F. M., Fohlmeister,
J., McIntyre, C., Goswami, B., Jamieson, R. A., van der Voort, T. S.,
Prufer, K., Marwan, N., Culleton, B. J., Kennett, D. J., Asmerom, Y.,
Polyak, V., and Eglinton, T. I.: Hydrological and climatological controls on
radiocarbon concentrations in a tropical stalagmite, Geochim. Cosmochim.
Ac., 194, 233–252, https://doi.org/10.1016/j.gca.2016.08.039, 2016.
Lutzow, M. V, Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger,
G., Marschner, B., and Flessa, H.: Stabilization of organic matter in
temperate soils: mechanisms and their relevance under different soil
conditions – a review, Eur. J. Soil Sci., 57, 426–445, https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Manzoni, S., Katul, G. G., and Porporato, A.: Analysis of soil carbon transit
times and age distributions using network theories, J. Geophys. Res.-Biogeo., 114, 1–14, https://doi.org/10.1029/2009JG001070, 2009.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.: Deep soil
carbon dynamics are driven more by soil type than by climate: A worldwide
meta-analysis of radiocarbon profiles, Glob. Change Biol., 21,
4278–4292, https://doi.org/10.1111/gcb.13012, 2015.
McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C.
W., Callaham, M. A., and Guilderson, T. P.: Comparison of soil organic matter
dynamics at five temperate deciduous forests with physical fractionation and
radiocarbon measurements, Biogeochemistry, 112, 457–476,
https://doi.org/10.1007/s10533-012-9740-1, 2013.
McIntyre, C. P., Wacker, L., Haghipour, N., Blattmann, T. M., Fahrni, S.,
Usman, M., Eglinton, T. I., and Synal, H.-A.: Online 13C and 14C Gas
Measurements by EA-IRMS–AMS at ETH Zürich, Radiocarbon, 2, 1–11, https://doi.org/10.1017/RDC.2016.68, 2016.
Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles,
F. P., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.: Soil
warming and carbon-cycle feedbacks to the climate system, Science,
298, 2173–2176,
2002.
Mills, R. T. E., Tipping, E., Bryant, C. L., and Emmett, B. A.: Long-term
organic carbon turnover rates in natural and semi-natural topsoils,
Biogeochemistry, 118, 257–272, https://doi.org/10.1007/s10533-013-9928-z, 2013.
Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L.: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging, Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014, 2014.
Paul, E. A., Follett, R. F., Leavitt, W. S., Halvorson, A., Petersen, G. A.,
and Lyon, D. J.: Radiocarbon Dating for Determination of Soil Organic Matter
Pool Sizes and Dynamics, Soil Sci. Soc. Am. J., 61, 1058–1067, 1997.
Paul, E. A., Collins, H. P., and Leavitt, S. W.: Dynamics of resistant soil
carbon of midwestern agricultural soils measured by naturally occurring 14C
abundance, Geoderma, 104, 239–256, https://doi.org/10.1016/S0016-7061(01)00083-0,
2001.
Prietzel, J., Zimmermann, L., Schubert, A., and Christophel, D.: Organic
matter losses in German Alps forest soils since the 1970s most likely caused
by warming, Nat. Geosci., 9, 543–548, https://doi.org/10.1038/ngeo2732, 2016.
Prior, C. A., Baisden, W. T., Bruhn, F., and Neff, J. C.: Using a soil
chronosequence to identify soil fractions for understanding and modeling
soil carbon dynamics in New Zealand, Radiocarbon, 49, 1093–1102, 2007.
Rasse, D. P., Rumpel, C., and Dignac, M.-F.: Is soil carbon mostly root
carbon? Mechanisms for a specific stabilisation, Plant Soil, 269,
341–356, https://doi.org/10.1007/s11104-004-0907-y, 2005.
Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa,
H., Andersen, N., Nadeau, M., and Grootes, P. M.: Transformation of organic
matter in agricultural soils?: radiocarbon concentration versus soil depth,
Geoderma, 128, 94–105, https://doi.org/10.1016/j.geoderma.2004.12.017, 2005.
Richter, D. D. and Markewitz, D.: Understanding Soil Change, Cambridge
University Press, Cambridge, 2001.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but
poorly understood component of terrestrial C cycle, Plant Soil, 338,
143–158, 2011.
Sanderman, J. and Amundson, R.: A comparative study of dissolved organic
carbon transport and stabilization in California forest and grassland soils,
Biogeochemistry, 92, 41–59, https://doi.org/10.1007/s10533-008-9249-9, 2009.
Scharpenseel, H. W. and Becker-Heidelmann, P.: Shifts in 14C patterns of
soil profiles due to bomb carbon, including effects of morphogenetic and
turbation processes, Radiocarbon, 31, 627–636, 1989.
Schaub, M., Dobbertin, M., Kräuchi, N., and Dobbertin, M. K.:
Preface-long-term ecosystem research: Understanding the present to shape the
future, Environ. Monit. Assess., 174, 1–2,
https://doi.org/10.1007/s10661-010-1756-1, 2011.
Schimel, D. S., House, J. I., Hibbard, K. a, Bousquet, P., Ciais, P.,
Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell,
J., Churkina, G., Cramer, W., Denning, a S., Field, C. B., Friedlingstein,
P., Goodale, C., Heimann, M., Houghton, R. a, Melillo, J. M., Moore, B.,
Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R.,
Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent patterns
and mechanisms of carbon exchange by terrestrial ecosystems, Nature,
414, 169–172, 2001.
Schleppi, P., Muller, N., Feyen, H., Papritz, A., Bucher, J. B., and
Fluehler, H.: Nitrogen budgets of two small experimental forested catchments
at Alptal, Switzerland, Forest Ecol. Manage., 127, 177–185, 1998.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature,
478, 49–56,
2011.
Schrumpf, M. and Kaiser, K.: Large differences in estimates of soil organic
carbon turnover in density fractions by using single and repeated
radiocarbon inventories, Geoderma, 239–240, 168–178, 2015.
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, 2013.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Sierra, C. A., Muller, M., Metzler, H., Manzoni, S., and Trumbore, S. E.: The
muddle of ages, turnover, transit, and residence times in the carbon cycle,
Glob. Change Biol., 23, 1763–1773, https://doi.org/10.1111/gcb.13556, 2016.
Smith, J. C., Galy, A., Hovius, N., Tye, A. M., Turowski, J. M., and
Schleppi, P.: Runoff-driven export of particulate organic carbon from soil
in temperate forested uplands, Earth Planet. Sc. Lett., 365, 198–208,
https://doi.org/10.1016/j.epsl.2013.01.027, 2013.
Solly, E., Schöning, I., Boch, S., Müller, J., Socher, S. A., Trumbore, S. E., and Schrumpf, M.: Mean age of carbon in fine roots from temperate forests and grasslands with different management, Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, 2013.
Thomas, G. W.: Exchangeable Cations, in: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, edited by: Page, A. L., 159–165, Amer. Society of Agronomy, 1982.
Torn, M. S., Swanston, C. W., Castanha, C., and Trumbore, S. E.: Storage and
turnover of organic matter in soil, in: Biophysico-Chemical Processes
Involving Natural Nonliving Organic Matter in Environmental Systems, edited
by: Senesi, N., Xing, B., and Huang, P. M., p. 54, John Wiley & Sons, Inc.,
2009.
Trumbore, S. E. and Czimczik, C. I.: Geology. An uncertain future for soil
carbon, Science, 321, 1455–1456, 2008.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
van der Voort, T. S., Mannu, U., Hagedorn, F., McIntyre, C.,
Walthert, L., Schleppi, P., Haghipour, N., and Eglinton, T. I.:Data from: Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient, Dryad Digital Repository, https://doi.org/10.5061/dryad.jk939fc, 2019.
Von Arx, G., Graf Pannatier, E., Thimonier, A., and Rebetez, M.: Microclimate
in forests with varying leaf area index and soil moisture: Potential
implications for seedling establishment in a changing climate, J. Ecol.,
101, 1201–1213, https://doi.org/10.1111/1365-2745.12121, 2013.
Wacker, L., Němec, M., and Bourquin, J.: A revolutionary graphitisation
system: Fully automated, compact and simple, Nucl. Instrum. Meth. B, 268, 931–934, 2009.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B.,
Nïmec, M., Ruff, M., Suter, M., Synal, H.-A., and
Vockenhuber, C.: MICADAS: Routine and high-precision radiocarbon dating,
Radiocarbon, 52, 252–262, 2010.
Walthert, L., Lüscher, P., Luster, J., and Peter, B.: Langfristige
Waldökosystem-Forschung LWF in der Schweiz. Kernprojekt Bodenmatrix.
Aufnahmeanleitung zur ersten Erhebung 1994–1999, Swiss Federal Institute for Forest, Snow and
Landscape Research WSL, Birmensdorf, available at:
http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=269 (last access: 1 February 2019), 2002.
Walthert, L., Blaser, P., Lüscher, P., Luster, J., and Zimmermann, S.:
Langfristige Waldökosystem-Forschung LWF in der Schweiz. Kernprojekt
Bodenmatrix. Ergebnisse der ersten Erhebung 1994–1999, WSL, Birmensdorf, 2003.
Walthert, L., Graf Pannatier, E., and Meier, E. S.: Shortage of nutrients and
excess of toxic elements in soils limit the distribution of soil-sensitive
tree species in temperate forests, Forest Ecol. Manage., 297, 94–107,
https://doi.org/10.1016/j.foreco.2013.02.008, 2013.
Xu, G. L., Schleppi, P., Li, M. H., and Fu, S. L.: Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition, Environ. Pollut., 157, 2030–2036, https://doi.org/10.1016/j.envpol.2009.02.026, 2009.
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of...
Altmetrics
Final-revised paper
Preprint