Articles | Volume 16, issue 23
https://doi.org/10.5194/bg-16-4535-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-4535-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine
Research, Telegrafenberg A45, 14473 Potsdam, Germany
Institute of Earth and Environmental
Science, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany
World Wildlife Fund, The Living Planet Centre, Rufford House, Brewery Road, Woking, Surrey, GU214LL, UK
Bennet Juhls
Institute for Space Sciences,
Department of Earth Sciences, Freie Universität Berlin, 12165 Berlin, Germany
Scott F. Lamoureux
Department of Geography and Planning,
Mackintosh-Corry Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
Melissa J. Lafrenière
Department of Geography and Planning,
Mackintosh-Corry Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
Michael Fritz
Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine
Research, Telegrafenberg A45, 14473 Potsdam, Germany
Birgit Heim
Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine
Research, Telegrafenberg A45, 14473 Potsdam, Germany
Hugues Lantuit
Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine
Research, Telegrafenberg A45, 14473 Potsdam, Germany
Institute of Earth and Environmental
Science, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany
Related authors
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Preprint under review for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862, https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present a global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21,000 years, which are suitable for the evaluation of Earth System Model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic areas and Tibetan Plateau during the Last Glacial Maximum and early deglaciation, as well as in North Africa and the Mediterranean regions during the Holocene.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2914, https://doi.org/10.5194/egusphere-2023-2914, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-36, https://doi.org/10.5194/essd-2023-36, 2023
Preprint under review for ESSD
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic, and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data, 14, 57–63, https://doi.org/10.5194/essd-14-57-2022, https://doi.org/10.5194/essd-14-57-2022, 2022
Short summary
Short summary
From 2015 to 2018 we collected rain and snow samples in Inuvik, Canada. We measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists who work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Bennet Juhls, Pier Paul Overduin, Jens Hölemann, Martin Hieronymi, Atsushi Matsuoka, Birgit Heim, and Jürgen Fischer
Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, https://doi.org/10.5194/bg-16-2693-2019, 2019
Short summary
Short summary
In this article, we present the variability and characteristics of dissolved organic matter at the fluvial–marine transition in the Laptev Sea from a unique dataset collected during 11 Arctic expeditions. We develop a new relationship between dissolved organic carbon (DOC) and coloured dissolved organic matter absorption, which is used to estimate surface water DOC concentration from space. We believe that our findings help current efforts to monitor ongoing changes in the Arctic carbon cycle.
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019, https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Sophia Walther, Luis Guanter, Birgit Heim, Martin Jung, Gregory Duveiller, Aleksandra Wolanin, and Torsten Sachs
Biogeosciences, 15, 6221–6256, https://doi.org/10.5194/bg-15-6221-2018, https://doi.org/10.5194/bg-15-6221-2018, 2018
Short summary
Short summary
We explored the timing of the peak of the short annual growing season in tundra ecosystems as indicated by an extensive suite of satellite indicators of vegetation productivity. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. Plants also experience growth after optimal conditions for assimilation regarding light and temperature have passed. Our results have implications for the modelling of the circumpolar carbon balance.
Justine L. Ramage, Anna M. Irrgang, Anne Morgenstern, and Hugues Lantuit
Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, https://doi.org/10.5194/bg-15-1483-2018, 2018
Short summary
Short summary
We describe the evolution of thaw slumps between 1952 and 2011 along the Yukon Coast, Canada, and calculate the contribution of the slumps to the carbon budget in this area. The number of slumps has increased by 73 % over the period. These slumps displaced more than 16 billion m3 of material and mobilized 146 t of carbon. This represents 0.6 % of the annual carbon flux released from shoreline retreat, which shows that the contribution of slumps to the nearshore carbon budget is non-negligible.
Jean E. Holloway, Ashley C. A. Rudy, Scott F. Lamoureux, and Paul M. Treitz
The Cryosphere, 11, 1403–1415, https://doi.org/10.5194/tc-11-1403-2017, https://doi.org/10.5194/tc-11-1403-2017, 2017
Short summary
Short summary
Below ground pressurization occurs when there is more moisture in the soil pores than normal, and it can potentially result in landscape degradation. We mapped features that are caused by this overpressurization and generated susceptibility maps to find other areas on the landscape that could be susceptible in the future. The susceptibility maps identified areas that may be sensitive to pressurization and help improve our understanding of potentially hazardous permafrost degradation.
François Lapointe, Pierre Francus, Scott F. Lamoureux, Mathias Vuille, Jean-Philippe Jenny, Raymond S. Bradley, and Charly Massa
Clim. Past, 13, 411–420, https://doi.org/10.5194/cp-13-411-2017, https://doi.org/10.5194/cp-13-411-2017, 2017
Short summary
Short summary
Using a unique annually-laminated record (varve) from the western Canadian High Arctic, we found a significant relationship between our varve record and instrumental and reconstructed Pacific Decadal Oscillations (PDOs). The negative (positive) PDO (North Pacific Index) phases increase precipitation as low sea-ice extent, warmer temperature and winds reach our region more efficiently. Our results imply that future negative PDO phases will likely impact the already rapidly warming Arctic.
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
I. Fedorova, A. Chetverova, D. Bolshiyanov, A. Makarov, J. Boike, B. Heim, A. Morgenstern, P. P. Overduin, C. Wegner, V. Kashina, A. Eulenburg, E. Dobrotina, and I. Sidorina
Biogeosciences, 12, 345–363, https://doi.org/10.5194/bg-12-345-2015, https://doi.org/10.5194/bg-12-345-2015, 2015
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
Related subject area
Biogeochemistry: Rivers & Streams
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Role of nitrogen and iron biogeochemical cycles on the production and export of dissolved organic matter in agricultural headwater catchments
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest
Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments
Carbon and nutrient export regimes from headwater catchments to downstream reaches
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Thibault Lambert, Rémi Dupas, and Patrick Durand
EGUsphere, https://doi.org/10.5194/egusphere-2024-1212, https://doi.org/10.5194/egusphere-2024-1212, 2024
Short summary
Short summary
This study investigates the dissolved organic carbon (DOC) export in headwater catchment. Results show narrow links between DOC, nitrates and iron cycles along the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, commonly referred as a non-productive period in our current conceptual model, acts both as an active period of DOC production in riparian soils and DOC export toward stream waters.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017, https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary
Short summary
We analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from catchments in a temperate stream network. The carbon exported by streams and rivers corresponds to 2.7 % of the terrestrial NPP. CO2 evasion and downstream transport contribute about equally to this flux. A review of existing studies suggests that the catchment-specific carbon export varies in a relatively narrow range across different study regions and spatial scales.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Cited articles
Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B., and Balser, A.
W.: Elevated dissolved organic carbon biodegradability from thawing and
collapsing permafrost, J. Geophys. Res.-Biogeo., 119, 2049–2063,
https://doi.org/10.1002/2014jg002678, 2014.
ADAPT: Carbon, nitrogen and water content of the active layer from sites
across the Canadian Arctic Nordicana D21, Nordicana, Québec, Canada, https://doi.org/10.5885/45327AD-5245D08606AB4F52,
2014.
Aiken, G. R.: Fluorescence and dissolved organic matter: A chemist's
perspective: Chapter 2, 35–74, https://doi.org/10.1017/CBO9781139045452.005, Cambridge University Press, 2014.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on
dissolved organic carbon concentration and quality in lakes of SW Greenland,
Freshwater Biol., 52, 280–289, https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
Balcarczyk, K. L., Jones, J. B., Jaffé, R., and Maie, N.: Stream
dissolved organic matter bioavailability and composition in watersheds
underlain with discontinuous permafrost, Biogeochemistry, 94, 255–270,
https://doi.org/10.1007/s10533-009-9324-x, 2009.
Bintanja, R.: The impact of Arctic warming on increased rainfall, Sci. Rep.-UK,
8, 16001, https://doi.org/10.1038/s41598-018-34450-3, 2018.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim.
Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Breton, J., Prairie, Y., Vallières, C., and Laurion, I.: Limnological
properties of permafrost thaw ponds in northeastern Canada, Can. J. Fish.
Aquat. Sci., 66, 1635–1648, https://doi.org/10.1139/f09-108, 2009.
Burn, C. R.: Herschel Island Qikiqtaryuk: A Natural and Cultural History of
Yukon's Arctic Island, edited by: Burn, C. R., University of Calgary Press,
242 pp., 2012.
CAVM: Circumpolar Arctic Vegetation Map, Conservation of Arctic Flora and
Fauna (CAFF) Map, 2003.
Coch, C., Lamoureux, S. F., Knoblauch, C., Eischeid, I., Fritz, M., Obu, J.,
and Lantuit, H.: Summer rainfall DOC, solute and sediment fluxes in a small
Arctic coastal catchment on Herschel Island (Yukon Territory, Canada),
Arctic Science, 4, 750–780, https://doi.org/10.1139/as-2018-0010, 2018.
Coch, C., Juhls, B., Lamoureux, S., Lafrenière, M.,
Fritz, M., Heim, B., and Lantuit, H.: Colored dissolved
organic matter (cDOM) absorption measurements in terrestrial waters on
Herschel Island (Low Arctic) and Melville Island (High Arctic) in 2016 and
2017, PANGAEA, https://doi.org/10.1594/PANGAEA.897289, 2019.
Coch, C., Ramage, J. L., Lamoureux, S., Knoblauch, C., Meyer, H., and
Lantuit, H.: Spatial variability of dissolved organic carbon (DOC), solutes
and suspended sediment in disturbed Low Arctic coastal watersheds, J.
Geophys. Res.-Biogeo., in review, 2020.
Connolly, C. T., Khosh, M. S., Burkart, G. A., Douglas, T. A., Holmes, R.
M., Jacobson, A. D., Tank, S. E., and McClelland, J. W.: Watershed slope as
a predictor of fluvial dissolved organic matter and nitrate concentrations
across geographical space and catchment size in the Arctic, Environ. Res.
Lett., 13, 104015, https://doi.org/10.1088/1748-9326/aae35d, 2018.
Cory, R. M., Ward, C. P., Crump, B. C., and Kling, G. W.: Carbon cycle.
Sunlight controls water column processing of carbon in arctic fresh waters,
Science, 345, 925–928, https://doi.org/10.1126/science.1253119, 2014.
Cory, R. M., Harrold, K. H., Neilson, B. T., and Kling, G. W.: Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation, Biogeosciences, 12, 6669–6685, https://doi.org/10.5194/bg-12-6669-2015, 2015.
Drake, T. W., Tank, S. E., Zhulidov, A. V., Holmes, R. M., Gurtovaya, T.,
and Spencer, R. G. M.: Increasing Alkalinity Export from Large Russian
Arctic Rivers, Environ. Sci. Technol., 52, 8302–8308,
https://doi.org/10.1021/acs.est.8b01051, 2018.
Dvornikov, Y., Leibman, M., Heim, B., Bartsch, A., Herzschuh, U.,
Skorospekhova, T., Fedorova, I., Khomutov, A., Widhalm, B., Gubarkov, A.,
and Rößler, S.: Terrestrial CDOM in Lakes of Yamal Peninsula:
Connection to Lake and Lake Catchment Properties, Remote Sensing, 10, 167,
https://doi.org/10.3390/rs10020167, 2018.
Edwards, R. and Treitz, P.: Vegetation Greening Trends at Two Sites in the
Canadian Arctic: 1984–2015, Arct. Antarct. Alp. Res., 49, 601–619,
https://doi.org/10.1657/aaar0016-075, 2018.
Environment and Climate Change Canada, Historical Data: available at: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html, last access: 12 December 2018.
Fichot, C. G. and Benner, R.: The spectral slope coefficient of
chromophoric dissolved organic matter (S275–295) as a tracer of
terrigenous dissolved organic carbon in river-influenced ocean margins,
Limnol. Oceanogr., 57, 1453–1466, https://doi.org/10.4319/lo.2012.57.5.1453, 2012.
Fichot, C. G., Kaiser, K., Hooker, S. B., Amon, R. M., Babin, M., Belanger,
S., Walker, S. A., and Benner, R.: Pan-Arctic distributions of continental
runoff in the Arctic Ocean, Sci. Rep.-UK, 3, 1053, https://doi.org/10.1038/srep01053, 2013.
Forsström, L., Rautio, M., Cusson, M., Sorvari, S., Albert, R.-L.,
Kumagai, M., and Korhola, A.: Dissolved organic matter concentration,
optical parameters and attenuation of solar radiation in high-latitude lakes
across three vegetation zones, Ecoscience, 22, 17–31,
https://doi.org/10.1080/11956860.2015.1047137, 2015.
Fouché, J., Lafrenière, M. J., Rutherford, K., and Lamoureux, S.:
Seasonal hydrology and permafrost disturbance impacts on dissolved organic
matter composition in High Arctic headwater catchments, Arctic Science, 3,
378–405, https://doi.org/10.1139/as-2016-0031, 2017.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401, https://doi.org/10.1029/2004gl022025,
2005.
Frey, K. E., Sobczak, W. V., Mann, P. J., and Holmes, R. M.: Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia, Biogeosciences, 13, 2279–2290, https://doi.org/10.5194/bg-13-2279-2016, 2016.
Green, S. A. and Blough, N. V.: Optical absorption and fluorescence
properties of chromophoric dissolved organic matter in natural waters,
Limnol. Oceanogr., 39, 1903–1916, https://doi.org/10.4319/lo.1994.39.8.1903, 1994.
Guéguen, C., Guo, L., Yamamoto-Kawai, M., and Tanaka, N.: Colored
dissolved organic matter dynamics across the shelf-basin interface in the
western Arctic Ocean, J. Geophys. Res., 112, C05038, https://doi.org/10.1029/2006JC003584,
2007.
Guo, L., Ping, C.-L., and Macdonald, R. W.: Mobilization pathways of organic
carbon from permafrost to arctic rivers in a changing climate, Geophys. Res.
Lett., 34, L13603, https://doi.org/10.1029/2007gl030689, 2007.
Hancke, K., Hovland, E. K., Volent, Z., Pettersen, R., Johnsen, G., Moline, M., and Sakshaug, E.: Optical properties of CDOM across the Polar Front in the Barents Sea: Origin, distribution and significance, J. Marine Syst., 130, 219–227, https://doi.org/10.1016/J.JMARSYS.2012.06.006, 2014.
Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B.
D., and Bergamaschi, B. A.: Optical properties of dissolved organic matter
(DOM): Effects of biological and photolytic degradation, Limnol. Oceanogr.,
61, 1015–1032, https://doi.org/10.1002/lno.10270, 2016.
Harms, T. K., Edmonds, J. W., Genet, H., Creed, I. F., Aldred, D., Balser,
A., and Jones, J. B.: Catchment influence on nitrate and dissolved organic
matter in Alaskan streams across a latitudinal gradient, J. Geophys. Res.-Biogeo., 121, 350–369, https://doi.org/10.1002/2015jg003201, 2016.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 53, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hodgson, D. A., Vincent, J. S., and Fyles, J. G.: Quaternary geology of
central Melville Island, Northwest Territories, Geological Survey of Canada, Canada,
https://doi.org/10.4095/119784, 1984.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35,
369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Juhls, B., Overduin, P. P., Hölemann, J., Hieronymi, M., Matsuoka, A., Heim, B., and Fischer, J.: Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing, Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, 2019.
Kellerman, A. M., Kothawala, D. N., Dittmar, T., and Tranvik, L. J.:
Persistence of dissolved organic matter in lakes related to its molecular
characteristics, Nat. Geosci., 8, 454–457, https://doi.org/10.1038/ngeo2440, 2015.
Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors
affecting contemporary (1950–2004) activity of retrogressive thaw slumps on
the Aklavik Plateau, Richardson Mountains, NWT, Canada, Permafrost Periglac., 21, 1–15, https://doi.org/10.1002/ppp.666, 2010.
Lafrenière, M. J. and Lamoureux, S. F.: Thermal Perturbation and
Rainfall Runoff have Greater Impact on Seasonal Solute Loads than Physical
Disturbance of the Active Layer, Permafrost Periglac., 24, 241–251,
https://doi.org/10.1002/ppp.1784, 2013.
Lafrenière, M. J., Laurin, E., and Lamoureux, S. F.: The Impact of Snow
Accumulation on the Active Layer Thermal Regime in High Arctic Soils, Vadose
Zone J., 12, 1–13, https://doi.org/10.2136/vzj2012.0058, 2013.
Lamoureux, S. F. and Lafrenière, M. J.: Fluvial Impact of Extensive
Active Layer Detachments, Cape Bounty, Melville Island, Canada, Arct.
Antarct. Alp. Res., 41, 59–68, https://doi.org/10.1657/1938-4246(08-030)[lamoureux]2.0.co;2,
2009.
Lamoureux, S. F. and Lafrenière, M. J.: More than just snowmelt:
integrated watershed science for changing climate and permafrost at the Cape
Bounty Arctic Watershed Observatory, WIREs Water, 5, e1255,
https://doi.org/10.1002/wat2.1255, 2017.
Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and
retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea,
Yukon Territory, Canada, Geomorphology, 95, 84–102,
https://doi.org/10.1016/j.geomorph.2006.07.040, 2008.
Larouche, J. R., Abbott, B. W., Bowden, W. B., and Jones, J. B.: The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams, Biogeosciences, 12, 4221–4233, https://doi.org/10.5194/bg-12-4221-2015, 2015.
Le Fouest, V., Matsuoka, A., Manizza, M., Shernetsky, M., Tremblay, B., and
Babin, M.: Towards an assessment of riverine dissolved organic carbon in
surface waters of the western Arctic Ocean based on remote sensing and
biogeochemical modeling, Biogeosciences, 15, 1335–1346,
https://doi.org/10.5194/bg-15-1335-2018, 2018.
Lewis, T., Lafrenière, M. J., and Lamoureux, S. F.: Hydrochemical and
sedimentary responses of paired High Arctic watersheds to unusual climate
and permafrost disturbance, Cape Bounty, Melville Island, Canada, Hydrol.
Process., 26, 2003–2018, https://doi.org/10.1002/hyp.8335, 2012.
Lewkowicz, A. G.: Dynamics of active-layer detachment failures, Fosheim
Peninsula, Ellesmere Island, Nunavut, Canada, Permafrost Periglac., 18,
89–103, https://doi.org/10.1002/ppp.578, 2007.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Littlefair, C. A., Tank, S. E., and Kokelj, S. V.: Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada, Biogeosciences, 14, 5487–5505, https://doi.org/10.5194/bg-14-5487-2017, 2017.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S.,
Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and
lability of dissolved organic matter in Siberia's Kolyma River basin, J.
Geophys. Res.-Biogeo., 117, G01028, https://doi.org/10.1029/2011jg001798, 2012.
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A.,
Vonk, J. E., Holmes, R. M., and Spencer, R. G.: Utilization of ancient
permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun., 6,
7856, https://doi.org/10.1038/ncomms8856, 2015.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank,
S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.:
Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical
Measurements, Front. Earth Sci., 4, 25, https://doi.org/10.3389/feart.2016.00025, 2016.
Mannino, A., Russ, M. E., and Hooker, S. B.: Algorithm development and
validation for satellite-derived distributions of DOC and CDOM in the U.S.
Middle Atlantic Bight, J. Geophys. Res., 113, C07051, https://doi.org/10.1029/2007jc004493, 2008.
Marín-Spiotta, E., Gruley, K. E., Crawford, J., Atkinson, E. E.,
Miesel, J. R., Greene, S., Cardona-Correa, C., and Spencer, R. G. M.:
Paradigm shifts in soil organic matter research affect interpretations of
aquatic carbon cycling: transcending disciplinary and ecosystem boundaries,
Biogeochemistry, 117, 279–297, https://doi.org/10.1007/s10533-013-9949-7, 2014.
Massicotte, P., Asmala, E., Stedmon, C., and Markager, S.: Global
distribution of dissolved organic matter along the aquatic continuum: Across
rivers, lakes and oceans, Sci. Total Environ., 609, 180–191,
https://doi.org/10.1016/j.scitotenv.2017.07.076, 2017.
Mitchell, B., Kahru, M., Wieland, J., and Stramska, M.: Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, NASA Technical Memorandum, 2002.
Myers-Smith, I. H., Hik, D. S., Kennedy, C., Cooley, D., Johnstone, J. F.,
Kenney, A. J., and Krebs, C. J.: Expansion of Canopy-Forming Willows Over
the Twentieth Century on Herschel Island, Yukon Territory, Canada, Ambio,
40, 610–623, https://doi.org/10.1007/s13280-011-0168-y, 2011.
Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J.,
Schuur, E. A. G., and Davydova, A. I.: Seasonal changes in the age and
structure of dissolved organic carbon in Siberian rivers and streams,
Geophys. Res. Lett., 33, L23401, https://doi.org/10.1029/2006gl028222, 2006.
O'Donnell, J. A., Aiken, G. R., Walvoord, M. A., Raymond, P. A., Butler, K.
D., Dornblaser, M. M., and Heckman, K.: Using dissolved organic matter age
and composition to detect permafrost thaw in boreal watersheds of interior
Alaska, J. Geophys. Res.-Biogeo., 119, 2155–2170, https://doi.org/10.1002/2014jg002695, 2014.
Osterkamp, T. E.: Characteristics of the recent warming of permafrost in
Alaska, J. Geophys. Res., 112, F02S02, https://doi.org/10.1029/2006jf000578, 2007.
Poulin, B. A., Ryan, J. N., and Aiken, G. R.: Effects of iron on optical properties of dissolved organic matter, Environ. Sci. Technol., 48, 10098–10106, https://doi.org/10.1021/es502670r, 2014.
Ramage, J. L., Irrgang, A. M., Morgenstern, A., and Lantuit, H.: Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean, Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, 2018.
Ramage, J. L., Fortier, D., Hugelius, G., Lantuit, H., and Morgenstern, A.:
Distribution of carbon and nitrogen along hillslopes in three valleys on
Herschel Island, Yukon Territory, Canada, Catena, 178, 132–140,
https://doi.org/10.1016/j.catena.2019.02.029, 2019.
Rampton, V. N.: Quaternary geology of the Yukon Coastal Plain, Geological
Survey of Canada, Canada, 1982.
RStudio Team: RStudio: Integrated Development for R, Boston, MA, 2016.
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt,
R.: The impact of the permafrost carbon feedback on global climate, Environ.
Res. Lett., 9, 085003, https://doi.org/10.1088/1748-9326/9/8/085003, 2014.
Smith, C. A. S., Kennedy, C. E., Hargrave, A. E., and McKenna, K. M.: Soil
and vegetation of Herschel Island, Yukon Territory, Ottawa, ON, 101 pp., 1989.
Spence, C., Kokelj, S., and Ehsanzadeh, E.: Cold Region Hydrology in a Changing Climate, in: Proceedings of symposium H02 held during IUGG2011 in Melbourne, Australia, July 2011, IAHS publication 346, 3–8, 2011
Spence, C., Kokelj, S. V., Kokelj, S. A., McCluskie, M., and Hedstrom, N.:
Evidence of a change in water chemistry in Canada's subarctic associated
with enhanced winter streamflow, J. Geophys. Res.-Biogeo., 120, 113–127,
https://doi.org/10.1002/2014jg002809, 2015.
Spencer, R. G. M., Aiken, G. R., Wickland, K. P., Striegl, R. G., and
Hernes, P. J.: Seasonal and spatial variability in dissolved organic matter
quantity and composition from the Yukon River basin, Alaska, Global
Biogeochem. Cy., 22, GB4002, https://doi.org/10.1029/2008gb003231, 2008.
Spencer, R. G. M., Aiken, G. R., Butler, K. D., Dornblaser, M. M., Striegl,
R. G., and Hernes, P. J.: Utilizing chromophoric dissolved organic matter
measurements to derive export and reactivity of dissolved organic carbon
exported to the Arctic Ocean: A case study of the Yukon River, Alaska,
Geophys. Res. Lett., 36, L06401, https://doi.org/10.1029/2008gl036831, 2009.
Stedmon, C. A., Amon, R. M. W., Rinehart, A. J., and Walker, S. A.: The
supply and characteristics of colored dissolved organic matter (CDOM) in the
Arctic Ocean: Pan Arctic trends and differences, Mar. Chem., 124, 108–118,
https://doi.org/10.1016/j.marchem.2010.12.007, 2011.
Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A., and
Wickland, K. P.: A decrease in discharge-normalized DOC export by the Yukon
River during summer through autumn, Geophys. Res. Lett., 32, L21413,
https://doi.org/10.1029/2005gl024413, 2005.
Sulzberger, B. and Durisch-Kaiser, E.: Chemical characterization of
dissolved organic matter (DOM): A prerequisite for understanding UV-induced
changes of DOM absorption properties and bioavailability, Aquat. Sci., 71,
104–126, https://doi.org/10.1007/s00027-008-8082-5, 2009.
Tank, S. E., Fellman, J. B., Hood, E., and Kritzberg, E. S.: Beyond
respiration: Controls on lateral carbon fluxes across the
terrestrial-aquatic interface, Limnol. Oceanogr. Lett., 3, 76–88, https://doi.org/10.1002/lol2.10065,
2018.
Vantrepotte, V., Danhiez, F. P., Loisel, H., Ouillon, S., Meriaux, X.,
Cauvin, A., and Dessailly, D.: CDOM-DOC relationship in contrasted coastal
waters: implication for DOC retrieval from ocean color remote sensing
observation, Opt. Express, 23, 33–54, https://doi.org/10.1364/OE.23.000033, 2015.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015a.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, 2015b.
Walker, S. A., Amon, R. M. W., and Stedmon, C. A.: Variations in
high-latitude riverine fluorescent dissolved organic matter: A comparison of
large Arctic rivers, J. Geophys. Res.-Biogeo., 118, 1689–1702,
https://doi.org/10.1002/2013JG002320, 2013.
Wang, Y., Spencer, R. G. M., Podgorski, D. C., Kellerman, A. M., Rashid, H., Zito, P., Xiao, W., Wei, D., Yang, Y., and Xu, Y.: Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: importance of source and permafrost degradation, Biogeosciences, 15, 6637–6648, https://doi.org/10.5194/bg-15-6637-2018, 2018.
Ward, C. P. and Cory, R. M.: Chemical composition of dissolved organic
matter draining permafrost soils, Geochim. Cosmochim. Ac., 167, 63–79,
https://doi.org/10.1016/j.gca.2015.07.001, 2015.
Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W., and Cory, R. M.:
Photochemical alteration of organic carbon draining permafrost soils shifts
microbial metabolic pathways and stimulates respiration, Nat. Commun., 8, 772,
https://doi.org/10.1038/s41467-017-00759-2, 2017.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of Specific Ultraviolet Absorbance as an
Indicator of the Chemical Composition and Reactivity of Dissolved Organic
Carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Whitehead, R. F., de Mora, S., Demers, S., Gosselin, M., Monfort, P., and
Mostajir, B.: Interactions of ultraviolet-B radiation, mixing, and
biological activity on photobleaching of natural chromophoric dissolved
organic matter: A mesocosm study, Limnol. Oceanogr., 45, 278–291,
https://doi.org/10.4319/lo.2000.45.2.0278, 2000.
Woo, M.-K., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost
hydrology in the new millennium, Permafrost Periglac., 19, 237–254,
https://doi.org/10.1002/ppp.613, 2008.
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below...
Altmetrics
Final-revised paper
Preprint