Research article
15 Jul 2020
Research article | 15 Jul 2020
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Thomas Rosset et al.
Related authors
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020,https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Hydrological control of dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland: a water-table based modelling approach
Léonard Bernard-Jannin, Stéphane Binet, Sébastien Gogo, Fabien Leroy, Christian Défarge, Nevila Jozja, Renata Zocatelli, Laurent Perdereau, and Fatima Laggoun-Défarge
Hydrol. Earth Syst. Sci., 22, 4907–4920, https://doi.org/10.5194/hess-22-4907-2018,https://doi.org/10.5194/hess-22-4907-2018, 2018
Short summary
Related subject area
Denitrification, carbon and nitrogen emissions over the Amazonian wetlands
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sanchez-Pérez
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-3,https://doi.org/10.5194/bg-2020-3, 2020
Revised manuscript accepted for BG
Short summary
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019,https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019,https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019,https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019,https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019,https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019,https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary
Luke C. Jeffrey, Damien T. Maher, Scott G. Johnston, Kylie Maguire, Andrew D. L. Steven, and Douglas R. Tait
Biogeosciences, 16, 1799–1815, https://doi.org/10.5194/bg-16-1799-2019,https://doi.org/10.5194/bg-16-1799-2019, 2019
Short summary
Multi-year effect of wetting on CH4 flux at taiga–tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH4
Ryo Shingubara, Atsuko Sugimoto, Jun Murase, Go Iwahana, Shunsuke Tei, Maochang Liang, Shinya Takano, Tomoki Morozumi, and Trofim C. Maximov
Biogeosciences, 16, 755–768, https://doi.org/10.5194/bg-16-755-2019,https://doi.org/10.5194/bg-16-755-2019, 2019
Short summary
Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence
Wiebke Münchberger, Klaus-Holger Knorr, Christian Blodau, Verónica A. Pancotto, and Till Kleinebecker
Biogeosciences, 16, 541–559, https://doi.org/10.5194/bg-16-541-2019,https://doi.org/10.5194/bg-16-541-2019, 2019
Short summary
Fluvial organic carbon fluxes from oil palm plantations on tropical peatland
Sarah Cook, Mick J. Whelan, Chris D. Evans, Vincent Gauci, Mike Peacock, Mark H. Garnett, Lip Khoon Kho, Yit Arn Teh, and Susan E. Page
Biogeosciences, 15, 7435–7450, https://doi.org/10.5194/bg-15-7435-2018,https://doi.org/10.5194/bg-15-7435-2018, 2018
Short summary
Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight
Ariane Arias-Ortiz, Pere Masqué, Jordi Garcia-Orellana, Oscar Serrano, Inés Mazarrasa, Núria Marbà, Catherine E. Lovelock, Paul S. Lavery, and Carlos M. Duarte
Biogeosciences, 15, 6791–6818, https://doi.org/10.5194/bg-15-6791-2018,https://doi.org/10.5194/bg-15-6791-2018, 2018
Short summary
Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter
Peter Mueller, Lisa M. Schile-Beers, Thomas J. Mozdzer, Gail L. Chmura, Thomas Dinter, Yakov Kuzyakov, Alma V. de Groot, Peter Esselink, Christian Smit, Andrea D'Alpaos, Carles Ibáñez, Magdalena Lazarus, Urs Neumeier, Beverly J. Johnson, Andrew H. Baldwin, Stephanie A. Yarwood, Diana I. Montemayor, Zaichao Yang, Jihua Wu, Kai Jensen, and Stefanie Nolte
Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018,https://doi.org/10.5194/bg-15-3189-2018, 2018
Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018,https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Small spatial variability in methane emission measured from a wet patterned boreal bog
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018,https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary
The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources
Jonathan P. Ritson, Richard E. Brazier, Nigel J. D. Graham, Chris Freeman, Michael R. Templeton, and Joanna M. Clark
Biogeosciences, 14, 2891–2902, https://doi.org/10.5194/bg-14-2891-2017,https://doi.org/10.5194/bg-14-2891-2017, 2017
Short summary
Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting
Sung-Ching Lee, Andreas Christen, Andrew T. Black, Mark S. Johnson, Rachhpal S. Jassal, Rick Ketler, Zoran Nesic, and Markus Merkens
Biogeosciences, 14, 2799–2814, https://doi.org/10.5194/bg-14-2799-2017,https://doi.org/10.5194/bg-14-2799-2017, 2017
Short summary
Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth
Eva van den Elzen, Martine A. R. Kox, Sarah F. Harpenslager, Geert Hensgens, Christian Fritz, Mike S. M. Jetten, Katharina F. Ettwig, and Leon P. M. Lamers
Biogeosciences, 14, 1111–1122, https://doi.org/10.5194/bg-14-1111-2017,https://doi.org/10.5194/bg-14-1111-2017, 2017
Short summary
Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere
Paul J. Hanson, Jeffery S. Riggs, W. Robert Nettles, Jana R. Phillips, Misha B. Krassovski, Leslie A. Hook, Lianhong Gu, Andrew D. Richardson, Donald M. Aubrecht, Daniel M. Ricciuto, Jeffrey M. Warren, and Charlotte Barbier
Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017,https://doi.org/10.5194/bg-14-861-2017, 2017
Short summary
Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands
Yingying Tang, Sarah F. Harpenslager, Monique M. L. van Kempen, Evi J. H. Verbaarschot, Laury M. J. M. Loeffen, Jan G. M. Roelofs, Alfons J. P. Smolders, and Leon P. M. Lamers
Biogeosciences, 14, 755–766, https://doi.org/10.5194/bg-14-755-2017,https://doi.org/10.5194/bg-14-755-2017, 2017
Short summary
Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation
Merten Minke, Jürgen Augustin, Andrei Burlo, Tatsiana Yarmashuk, Hanna Chuvashova, Annett Thiele, Annette Freibauer, Vitalij Tikhonov, and Mathias Hoffmann
Biogeosciences, 13, 3945–3970, https://doi.org/10.5194/bg-13-3945-2016,https://doi.org/10.5194/bg-13-3945-2016, 2016
Short summary
Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China
Lei Zhao, Christopher W. N Anderson, Guangle Qiu, Bo Meng, Dingyong Wang, and Xinbin Feng
Biogeosciences, 13, 2429–2440, https://doi.org/10.5194/bg-13-2429-2016,https://doi.org/10.5194/bg-13-2429-2016, 2016
Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016,https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Seasonal dynamics of carbon and nutrients from two contrasting tropical floodplain systems in the Zambezi River basin
A. L. Zuijdgeest, R. Zurbrügg, N. Blank, R. Fulcri, D. B. Senn, and B. Wehrli
Biogeosciences, 12, 7535–7547, https://doi.org/10.5194/bg-12-7535-2015,https://doi.org/10.5194/bg-12-7535-2015, 2015
Short summary
Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015,https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion
A. Berchet, I. Pison, F. Chevallier, J.-D. Paris, P. Bousquet, J.-L. Bonne, M. Y. Arshinov, B. D. Belan, C. Cressot, D. K. Davydov, E. J. Dlugokencky, A. V. Fofonov, A. Galanin, J. Lavrič, T. Machida, R. Parker, M. Sasakawa, R. Spahni, B. D. Stocker, and J. Winderlich
Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015,https://doi.org/10.5194/bg-12-5393-2015, 2015
Carbon stocks and soil sequestration rates of tropical riverine wetlands
M. F. Adame, N. S. Santini, C. Tovilla, A. Vázquez-Lule, L. Castro, and M. Guevara
Biogeosciences, 12, 3805–3818, https://doi.org/10.5194/bg-12-3805-2015,https://doi.org/10.5194/bg-12-3805-2015, 2015
Short summary
WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015,https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Cited articles
Austnes, E.: Effects of storm events on mobilisation of dissolved organic
matter (DOM) in a Welsh peatland catchment, Biogeochemistry, 99,
157–173, https://doi.org/10.1007/s10533-009-9399-4, 2010.
Austnes, K., Evans, C. D., Eliot-Laize, C., Naden, P. S., and Old, G. H.:
Effects of storm events on mobilisation and in-stream processing of
dissolved organic matter (DOM) in a Welsh peatland catchment,
Biogeochemistry, 99, 157–173, https://doi.org/10.1007/s10533-009-9399-4, 2010.
Bernard-Jannin, L., Binet, S., Gogo, S., Leroy, F., Défarge, C., Jozja, N., Zocatelli, R., Perdereau, L., and Laggoun-Défarge, F.: Hydrological control of dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland: a water-table based modelling approach, Hydrol. Earth Syst. Sci., 22, 4907–4920, https://doi.org/10.5194/hess-22-4907-2018, 2018.
Billett, M. F., Deacon, C. M., Palmer, S. M., Dawson, J. J. C., and Hope, D.:
Connecting organic carbon in stream water and soils in a peatland catchment,
J. Geophys. Res., 111, G02010, https://doi.org/10.1029/2005JG000065, 2006.
Binet, S., Gogo, S., and Laggoun-Défarge, F.: A water-table dependent
reservoir model to investigate the effect of drought and vascular plant
invasion on peatland hydrology, J. Hydrol., 499, 132–139,
https://doi.org/10.1016/j.jhydrol.2013.06.035, 2013.
Birkel, C., Broder, T., and Biester, H.: Nonlinear and threshold-dominated
runoff generation controls DOC export in a small peat catchment, J. Geophys.
Res.-Biogeo., 122, 498–513, https://doi.org/10.1002/2016JG003621, 2017.
Blaen, P. J., Khamis, K., Lloyd, C., Comer-Warner, S., Ciocca, F., Thomas,
R. M., MacKenzie, A. R., and Krause, S.: High-frequency monitoring of
catchment nutrient exports reveals highly variable storm event responses and
dynamic sourc
e zone activation, J. Geophys. Res.-Biogeo., 122, 2265–2281, https://doi.org/10.1002/2017JG003904, 2017.
Blodau, C., Basiliko, N., and Moore, T. R.: Carbon turnover in peatland
mesocosms exposed to different water table levels, Biogeochemistry, 67,
331–351, https://doi.org/10.1023/B:BIOG.0000015788.30164.e2, 2004.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D. M.: Response characteristics of DOC flushing in an alpine catchment.
Hydrological Process., 11, 1635–1647, 1997.
Broder, T. and Biester, H.: Hydrologic controls on DOC, As and Pb export from a polluted peatland – the importance of heavy rain events, antecedent moisture conditions and hydrological connectivity, Biogeosciences, 12, 4651–4664, https://doi.org/10.5194/bg-12-4651-2015, 2015.
Broder, T. and Biester, H.: Linking major and trace element concentrations
in a headwater stream to DOC release and hydrologic conditions in a bog and
peaty riparian zone, Appl. Geochem., 87, 188–201,
https://doi.org/10.1016/j.apgeochem.2017.11.003, 2017.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012.
Brown, L. E., Holden, J., Palmer, S. M., Johnston, K., Ramchunder, S. J., and
Grayson, R.: Effects of fire on the hydrology, biogeochemistry, and ecology
of peatland river systems, Freshw. Sci., 34, 1406–1425,
https://doi.org/10.1086/683426, 2015.
Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E.,
Siegel, D. I., Tremblay, L. B., and Cooper, W. T.: Radiocarbon evidence for
the importance of surface vegetation on fermentation and methanogenesis in
contrasting types of boreal peatlands, Global Biogeochem. Cy., 22, GB4022,
https://doi.org/10.1029/2008GB003274, 2008.
Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J.
S.: Radiocarbon and stable carbon isotopic evidence for transport and
transformation of dissolved organic carbon, dissolved inorganic carbon, and
CH4 in a northern Minnesota peatland, Global Biogeochem. Cy., 14,
1095–1108, https://doi.org/10.1029/1999GB001221, 2000.
Clark, J. M.: Enviromental Controls on the Production and Export of
Dissolved Organic Carbon in an Upland Peat Catchment, PhD thesis, University of Leeds, available at:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503248 (last access: 17 May 2019), 2005.
Clark, J. M., Chapman, P. J., Adamson, J. K., and Lane, S. N.: Influence of
drought-induced acidification on the mobility of dissolved organic carbon in
peat soils, Glob. Change Biol., 11, 791–809,
https://doi.org/10.1111/j.1365-2486.2005.00937.x, 2005.
Clark, J. M., Lane, S. N., Chapman, P. J., and Adamson, J. K.: Export of
dissolved organic carbon from an upland peatland during storm events:
Implications for flux estimates, J. Hydrol., 347 438–447,
https://doi.org/10.1016/j.jhydrol.2007.09.030, 2007.
Clark, J. M., Lane, S. N., Chapman, P. J., and Adamson, J. K.: Link between
DOC in near surface peat and stream water in an upland catchment, Sci. Total
Environ., 404, 308–315, https://doi.org/10.1016/j.scitotenv.2007.11.002, 2008.
Clark, J. M., Ashley, D., Wagner, M., Chapman, P. J., Lane, S. N., Evans, C.
D., and Heathwaite, A. L.: Increased temperature sensitivity of net DOC
production from ombrotrophic peat due to water table draw-down, Glob. Change
Biol., 15, 794–807, https://doi.org/10.1111/j.1365-2486.2008.01683.x, 2009.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90,
https://doi.org/10.1038/nature21048, 2017.
Dawson, J. J. C., Tetzlaff, D., Speed, M., Hrachowitz, M., and Soulsby, C.:
Seasonal controls on DOC dynamics in nested upland catchments in NE
Scotland, Hydrol. Process., 25, 1647–1658, https://doi.org/10.1002/hyp.7925, 2011.
de Oliveira, G., Bertone, E., Stewart, R., Awad, J., Holland, A., O'Halloran, K., and Bird, S.: Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization, Water, 10, 1146, https://doi.org/10.3390/w10091146, 2018.
Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J., and
Helfter, C.: Role of the aquatic pathway in the carbon and greenhouse gas
budgets of a capeatland tchment, Glob. Change Biol., 16, 2750–2762,
https://doi.org/10.1111/j.1365-2486.2009.02119.x, 2010.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013.
Downing, B. D., Pellerin, B. A., Bergamaschi, B. A., Saraceno, J. F., and
Kraus, T. E. C.: Seeing the light: The effects of particles, dissolved
materials, and temperature on in situ measurements of DOM fluorescence in
rivers and streams, Limnol. Oceanogr.-Meth., 10, 767–775,
https://doi.org/10.4319/lom.2012.10.767, 2012.
Dyson, K. E., Billett, M. F., Dinsmore, K. J., Harvey, F., Thomson, A. M.,
Piirainen, S., and Kortelainen, P.: Release of aquatic carbon from two
peatland catchments in E. Finland during the spring snowmelt period,
Biogeochemistry, 103, 125–142, https://doi.org/10.1007/s10533-010-9452-3, 2011.
Fenner, N. and Freeman, C.: Drought-induced carbon loss in peatlands, Nat.
Geosci., 4, 895–900, https://doi.org/10.1038/ngeo1323, 2011.
Fraser, C. J. D., Roulet, N. T., and Lafleur, M.: Groundwater flow patterns
in a large peatland, J. Hydrol., 246, 142–154,
https://doi.org/10.1016/S0022-1694(01)00362-6, 2001.
Freeman, C., Ostle, N., and Kang, H.: An enzymic “latch” on a global carbon
store, Nature, 409, 149–149, https://doi.org/10.1038/35051650, 2001.
Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.-F., Szczypta, C., Marti, R., and Sánchez, R.: A snow cover climatology for the Pyrenees from MODIS snow products, Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, 2015.
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Grayson, R. and Holden, J.: Continuous measurement of spectrophotometric
absorbance in peatland streamwater in northern England: implications for
understanding fluvial carbon fluxes, Hydrol. Process., 26, 27–39,
https://doi.org/10.1002/hyp.8106, 2012.
Groemping, U. and Matthias, L.: relaimpo: Relative Importance of Regressors
in Linear Models, available at:
https://CRAN.R-project.org/package=relaimpo (last access: 22 May 2019), 2018.
Harell Jr., F. E.: rms: Regression Modeling Strategies. available at:
https://CRAN.R-project.org/package=rms, last access: 22 May 2019.
Holdridge, L. R., Mason, F. B., and Hatheway, W. C.: Life zone ecology, San José, Tropical Science Center, San Jose, Costa Rica, 206 pp., 1967.
Höll, B. S., Fiedler, S., Jungkunst, H. F., Kalbitz, K., Freibauer, A.,
Drösler, M., and Stahr, K.: Characteristics of dissolved organic matter
following 20 years of peatland restoration, Sci. Total Environ., 408,
78–83, https://doi.org/10.1016/j.scitotenv.2009.08.046, 2009.
Hope, D., Billett, M. F., and Cresser, M. S.: Exports of organic carbon in
two river systems in NE Scotland, J. Hydrol., 193, 61–82,
https://doi.org/10.1016/S0022-1694(96)03150-2, 1997.
Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C.: Carbon dioxide
and methane evasion from a temperate peatland stream, Limnol. Oceanogr.,
46, 847–857, https://doi.org/10.4319/lo.2001.46.4.0847, 2001.
Hribljan, J. A., Kane, E. S., Pypker, T. G., and Chimner, R. A.: The effect
of long-term water table manipulations on dissolved organic carbon dynamics
in a poor fen peatland, J. Geophys. Res.-Biogeo., 119, 577–595,
https://doi.org/10.1002/2013JG002527, 2014.
Jager, D. F., Wilmking, M., and Kukkonen, J. V. K.: The influence of summer
seasonal extremes on dissolved organic carbon export from a boreal peatland
catchment: Evidence from one dry and one wet growing season, Sci. Total
Environ., 407, 1373–1382, https://doi.org/10.1016/j.scitotenv.2008.10.005, 2009.
Jalut, G., Delibrias, G., Dagnac, J., and Mardones, M.: A palaeoecological
approach to the last 21 000 years in the Pyrénées: the peat bog of
Freychinède (alt. 1350 m, Ariège, south France), Palaeogeogr.
Palaeocl., 40, 321–336, 1982.
Jeong, J.-J., Bartsch, S., Fleckenstein, J. H., Matzner, E., Tenhunen, J.
D., Lee, S. D., Park, S. K., and Park, J.-H.: Differential storm responses of
dissolved and particulate organic carbon in a mountainous headwater stream,
investigated by high-frequency, in situ optical measurements, J. Geophys.
Res., 117, G03013, https://doi.org/10.1029/2012JG001999, 2012.
Joosten, H. and Clarke, D.: Wise use of mires and peatlands: background and
principles including a framework for decision-making, International Peat
Society and International Mire Conservation Group, Jyväskylä, Greifswald, 2002.
Juutinen, S., Väliranta, M., Kuutti, V., Laine, A. M., Virtanen, T.,
Seppä, H., Weckström, J., and Tuittila, E.-S.: Short-term and
long-term carbon dynamics in a northern peatland-stream-lake continuum: A
catchment approach, J. Geophys. Res.-Biogeo., 118, 171–183,
https://doi.org/10.1002/jgrg.20028, 2013.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.:
Controls on the dynamics of dissolved organic matter in soils: a review,
Soil Sci., 165, 277–304, 2000.
Kalbitz, K., Rupp, H., and Meissner, R.: N-, P- and DOC-dynamics in soil and
groundwater after restoration of intensively cultivated fens, in: Wetlands in
Central Europe: Soil Organisms, Soil Ecological Processes and Trace Gas
Emissions, edited by: Broll, G., Merbach, W., and Pfeiffer, E.-M.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 99–116, 2002.
Koehler, A.-K., Murphy, K., Kiely, G., and Sottocornola, M.: Seasonal
variation of DOC concentration and annual loss of DOC from an Atlantic
blanket bog in South Western Ireland, Biogeochemistry, 95, 231–242,
https://doi.org/10.1007/s10533-009-9333-9, 2009.
Köhler, S. J., Buffam, I., Laudon, H., and Bishop, K. H.: Climate's
control of intra-annual and interannual variability of total organic carbon
concentration and flux in two contrasting boreal landscape elements, J.
Geophys. Res., 113, G03012, https://doi.org/10.1029/2007JG000629, 2008.
Laudon, H., Köhler, S., and Buffam, I.: Seasonal TOC export from seven
boreal catchments in northern Sweden, Aquat. Sci., 66, 223–230,
https://doi.org/10.1007/s00027-004-0700-2, 2004.
Leach, J. A., Larsson, A., Wallin, M. B., Nilsson, M. B., and Laudon, H.:
Twelve year interannual and seasonal variability of stream carbon export
from a boreal peatland catchment, J. Geophys. Res.-Biogeo., 121,
1851–1866, https://doi.org/10.1002/2016JG003357, 2016.
Ledesma, J. L. J., Futter, M. N., Blackburn, M., Lidman, F., Grabs, T.,
Sponseller, R. A., Laudon, H., Bishop, K. H., and Köhler, S. J.: Towards
an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters,
Ecosystems, 21, 297–315, https://doi.org/10.1007/s10021-017-0149-5, 2017.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands
in global climate change mitigation strategies, Nat. Commun., 9, 1071,
https://doi.org/10.1038/s41467-018-03406-6, 2018.
Leroy, F., Gogo, S., Guimbaud, C., Bernard-Jannin, L., Hu, Z., and
Laggoun-Défarge, F.: Vegetation composition controls temperature
sensitivity of CO2 and CH4 emissions and DO
C concentration in peatlands,
Soil Biol. Biochem., 107, 164–167, https://doi.org/10.1016/j.soilbio.2017.01.005, 2017.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to global implications – a synthesis, Biogeosciences, 5, 1475–1491, https://doi.org/10.5194/bg-5-1475-2008, 2008.
Małoszewski, P., Rauert, W., Stichler, W., and Herrman, A.: Application for flow models in an alpine catchment area using tritium and deuterium data, J. Hydrol., 66, 319–330, 1983.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B.,
Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E.,
McDowell, W. H., and Pinay, G.: Biogeochemical Hot Spots and Hot Moments at
the Interface of Terrestrial and Aquatic Ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
Millet, L., Rius, D., Galop, D., Heiri, O., and Brooks, S. J.:
Chironomid-based reconstruction of Lateglacial summer temperatures from the
Ech palaeolake record (French western Pyrenees), Palaeogeogr. Palaeocl., 315–316, 86–99, https://doi.org/10.1016/j.palaeo.2011.11.014, 2012.
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman,
C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V.: Deep
instability of deforested tropical peatlands revealed by fluvial organic
carbon fluxes, Nature, 493, 660–663, https://doi.org/10.1038/nature11818, 2013.
Moore, T. R.: Dissolved iron and organic matter in northern peatlands, Soil
Sci., 145, 70–76, 1988.
Müller, D., Warneke, T., Rixen, T., Müller, M., Jamahari, S., Denis, N., Mujahid, A., and Notholt, J.: Lateral carbon fluxes and
CO2 outgassing from a tropical peat-draining river, Biogeosciences, 12, 5967–5979, https://doi.org/10.5194/bg-12-5967-2015, 2015.
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci., 12, 917–921,
https://doi.org/10.1038/s41561-019-0454-z, 2019.
Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the
composition and transport of dissolved organic carbon in a subarctic
peatland complex, J. Geophys. Res., 117, G01005, https://doi.org/10.1029/2011JG001819, 2012.
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance
of the tropical peatland carbon pool, Glob. Change Biol., 17, 798–818,
https://doi.org/10.1111/j.1365-2486.2010.02279.x, 2011.
Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C.,
Weishampel, P., and Dewey, B.: Global warming and the export of dissolved
organic carbon from boreal peatlands, Oikos, 100, 380–386,
https://doi.org/10.1034/j.1600-0706.2003.11774.x, 2003.
Posavec, K., Giacopetti, M., Materazzi, M., and Birk, S.: Method and Excel
VBA Algorithm for Modeling Master Recession Curve Using Trigonometry
Approach, Groundwater, 55, 891–898, https://doi.org/10.1111/gwat.12549, 2017.
Python Software Foundation: Python.org, Python Software Foundation, available at:
https://www.python.org/, last access: 24 June 2019.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
pulse-shunt concept, Ecology, 97, 5–16, https://doi.org/10.1890/14-1684.1, 2016.
R Core team: R: A Language and Environment for Statistical Computing, available at:
https://www.r-project.org/, last access: 18 March
2019.
Reille, M.: Nouvelles recherches pollenanalytiques à Freychinède,
Pyrénées ariegeoises, France, Laboratoire de Botanique historique et Palynologie, Marseille, 1–10 Annex., Novembre 1990.
Ritson, J. P.: The impact of climate change and management practices on
dissolved organic carbon (DOC) flux and drinking water treatment in peatland
catchments., 2015.
Ritson, J. P., Brazier, R. E., Graham, N. J. D., Freeman, C., Templeton, M. R., and Clark, J. M.: The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources, Biogeosciences, 14, 2891–2902, https://doi.org/10.5194/bg-14-2891-2017, 2017.
Rius, D., Vanniére, B., and Galop, D.: Holocene history of fire,
vegetation and land use from the central Pyrenees (France), Quaternary Res.,
77, 54–64, https://doi.org/10.1016/j.yqres.2011.09.009, 2012.
Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J., Kirchner,
J. W., Arhonditsis, G. B., Jordan, P., Kronvang, B., Halliday, S. J.,
Skeffington, R. A., Rozemeijer, J. C., Aubert, A. H., Rinke, K., and Jomaa,
S.: Sensors in the Stream: The High-Frequency Wave of the Present, Environ.
Sci. Technol., 50, 10297–10307, https://doi.org/10.1021/acs.est.6b02155, 2016.
Rodgers, P., Soulsby, C., Waldron, S., and Tetzlaff, D.: Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment, Hydrol. Earth Syst. Sci., 9, 139–155, https://doi.org/10.5194/hess-9-139-2005, 2005.
Rosset, T.: High frequency biogeochemical and hydrological monitoring in two mountainous peatlands, PANGAEA, https://doi.org/10.1594/PANGAEA.905838, 2019.
Rosset, T., Gandois, L., Le Roux, G., Teisserenc, R., Durantez Jimenez, P.,
Camboulive, T., and Binet, S.: Peatland contribution to stream organic carbon
exports from a montane watershed, J. Geophys. Res.-Biogeo., 124, 3448–3464, 2019.
Rothwell, J. J., Evans, M. G., Daniels, S. M., and Allott, T. E. H.: Baseflow
and stormflow metal concentrations in streams draining contaminated peat
moorlands in the Peak District National Park (UK), J. Hydrol., 341,
90–104, https://doi.org/10.1016/j.jhydrol.2007.05.004, 2007.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys,
E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon
accumulation in a northern peatland, Glob. Change Biol., 13, 397–411,
https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Rycroft, D. W., Williams, D. J. A., and Ingram, H. A. P.: The Transmission of
Water Through Peat: I. Review, J. Ecol., 63, 535–556, https://doi.org/10.2307/2258734, 1975.
Ryder, E., de Eyto, E., Dillane, M., Poole, R., and Jennings, E.: Identifying
the role of environmental drivers in organic carbon export from a forested
peat catchment, Sci. Total Environ., 490, 28–36,
https://doi.org/10.1016/j.scitotenv.2014.04.091, 2014.
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil
carbon: understanding and managing th
e largest terrestrial carbon pool, Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Spencer, R. G. M., Aiken, G. R., Dornblaser, M. M., Butler, K. D., Holmes,
R. M., Fiske, G., Mann, P. J., and Stubbins, A.: Chromophoric dissolved
organic matter export from U.S. rivers, Geophys. Res. Lett., 40,
1575–1579, https://doi.org/10.1002/grl.50357, 2013.
Strack, M. and Zuback, Y. C. A.: Annual carbon balance of a peatland 10 yr following restoration, Biogeosciences, 10, 2885–2896, https://doi.org/10.5194/bg-10-2885-2013, 2013.
Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw,
K., Whittington, P., and Price, J. S.: Effect of water table drawdown on
peatland dissolved organic carbon export and dynamics, Hydrol. Process.,
22, 3373–3385, https://doi.org/10.1002/hyp.6931, 2008.
Strohmeier, S., Knorr, K.-H., Reichert, M., Frei, S., Fleckenstein, J. H., Peiffer, S., and Matzner, E.: Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements, Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013,
2013.
Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., and Stevens, P. A.:
Predicting the release of metals from ombrotrophic peat due to
drought-induced acidification, Environ. Pollut., 123, 239–253,
https://doi.org/10.1016/S0269-7491(02)00375-5, 2003.
Tipping, E., Billett, M. F., Bryant, C. L., Buckingham, S., and Thacker, S.
A.: Sources and ages of dissolved organic matter in peatland streams:
evidence from chemistry mixture modelling and radiocarbon data,
Biogeochemistry, 100, 121–137, https://doi.org/10.1007/s10533-010-9409-6, 2010.
Tranvik, L. J. and Jansson, M.: Climate change (Communication arising):
Terrestrial export of organic carbon, Nature, 415, 861–862,
https://doi.org/10.1038/415861b, 2002.
Tunaley, C., Tetzlaff, D., Lessels, J., and Soulsby, C.: Linking
high-frequency DOC dynamics to the age of connected water sources, Water
Resour. Res., 52, 5232–5247, https://doi.org/10.1002/2015WR018419, 2016.
Tunaley, C., Tetzlaff, D., Wang, H., and Soulsby, C.: Spatio-temporal diel
DOC cycles in a wet, low energy, northern catchment: Highlighting and
questioning the sub-daily rhythms of catchment functioning, J. Hydrol., 563,
962–974, https://doi.org/10.1016/j.jhydrol.2018.06.056, 2018.
Walling, D. E. and Foster, I. D. L.: Variations in the natural chemical
concentration of river water during flood flows, and the lag effect: Some
further comments, J. Hydrol., 26, 237–244, https://doi.org/10.1016/0022-1694(75)90005-0, 1975.
Watras, C. J., Hanson, P. C., Stacy, T. L., Morrison, K. M., Mather, J., Hu,
Y.-H., and Milewski, P.: A temperature compensation method for CDOM
fluorescence sensors in freshwater, Limnol. Oceanogr. Meth., 9, 296–301, https://doi.org/10.4319/lom.2011.9.296, 2011.
Webb, J. R., Santos, I. R., Maher, D. T., and Finlay, K.: The Importance of
Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale
Review, Ecosystems, 22, 508–527, https://doi.org/10.1007/s10021-018-0284-7, 2018.
Whitfield, C. J., Aherne, J., Gibson, J. J., Seabert, T. A., and Watmough, S.
A.: The controls on boreal peatland surface water chemistry in Northern
Alberta, Canada, Hydrol. Process., 24, 2143–2155, https://doi.org/10.1002/hyp.7637,
2010.
Worrall, F., Burt, T. P., Jaeban, R. Y., Warburton, J., and Shedden, R.:
Release of dissolved organic carbon from upland peat, Hydrol. Process., 16, 3487–3504, https://doi.org/10.1002/hyp.1111, 2002.
Worrall, F., Burt, T. P., and Adamson, J. K.: Trends in Drought Frequency –
the Fate of DOC Export From British Peatlands, Clim. Change, 76, 339–359, https://doi.org/10.1007/s10584-006-9069-7, 2006.
Yang, L., Chang, S.-W., Shin, H.-S., and Hur, J.: Tracking the evolution of
stream DOM source during storm events using end member mixing analysis based
on DOM quality, J. Hydrol., 523, 333–341, https://doi.org/10.1016/j.jhydrol.2015.01.074, 2015.
Zheng, Y., Waldron, S., and Flowers, H.: Fluvial dissolved organic carbon
composition varies spatially and seasonally in a small catchment draining a
wind farm and felled forestry, Sci. Total Environ., 626, 785–794,
https://doi.org/10.1016/j.scitotenv.2018.01.001, 2018.