Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Jurek Müller
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Fortunat Joos
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 21, 571–592, https://doi.org/10.5194/cp-21-571-2025, https://doi.org/10.5194/cp-21-571-2025, 2025
Short summary
Short summary
We simulated how different processes affected the carbon cycle over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean, and alter various proxy signals. We provide an assessment of the directions of regional and global proxy changes that might be expected in response to different glacial–interglacial Earth system changes in the presence of interactive marine sediments.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
Biogeosciences, 22, 19–39, https://doi.org/10.5194/bg-22-19-2025, https://doi.org/10.5194/bg-22-19-2025, 2025
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency growing proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021, https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Cited articles
Ahlström, A., Schurgers, G., and Smith, B.: The large influence of
climate model bias on terrestrial carbon cycle simulations, Environ. Res.
Lett., 12, 014004, https://doi.org/10.1088/1748-9326/12/1/014004, 2017. a
Alexandrov, G. A., Brovkin, V. A., and Kleinen, T.: The influence of climate
on peatland extent in Western Siberia since the Last Glacial Maximum, Sci.
Rep., 6, 6–11, https://doi.org/10.1038/srep24784, 2016. a
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature
changes at the Last Glacial Maximum, Clim. Past, 9, 367–376,
https://doi.org/10.5194/cp-9-367-2013, 2013. a
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland
development model 1: rationale, conceptual model, and hydrological basis,
Ecohydrology, 5, 242–255, https://doi.org/10.1002/eco.230, 2012. a
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O.,
Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based
continental climate reconstructions at 6 and 21 ka: A global synthesis,
Clim. Dyn., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011. a, b
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979. a
Blodau, C.: Carbon cycling in peatlands – A review of processes and
controls, Environ. Rev., 10, 111–134, https://doi.org/10.1139/a02-004, 2002. a
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012. a
Campos, J. R. d. R., Silva, A. C., Slater, L., Nanni, M. R., and Vidal-Torrado,
P.: Stratigraphic control and chronology of peat bog deposition in the Serra
do Espinhaço Meridional, Brazil, CATENA, 143, 167–173,
https://doi.org/10.1016/j.catena.2016.04.009, 2016. a
Cao, J., Wang, B., and Ma, L.: Attribution of Global Monsoon Response to the
Last Glacial Maximum Forcings, J. Clim., 32, 6589–6605,
https://doi.org/10.1175/jcli-d-18-0871.1, 2019. a
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers,
F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D.,
Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J., Prentice, I. C.,
Van Der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer,
I. E., Corish, Y. M., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le
Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M.,
MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, U., Swindles, G. T.,
Tuittila, E. S., Ukonmaanaho, L., Väliranta, M., Van Bellen, S., Van
Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland
carbon accumulation during the last millennium, Biogeosciences, 10,
929–944, https://doi.org/10.1016/j.protis.2013.07.005, 2013. a
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling past, present and
future peatland carbon accumulation across the pan-Arctic region,
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017,
2017a. a, b
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling Holocene peatland
dynamics with an individual-based dynamic vegetation model, Biogeosciences,
14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, 2017b. a
Cobb, A. R. and Harvey, C. F.: Scalar Simulation and Parameterization of Water
Table Dynamics in Tropical Peatlands, Water Resour. Res., 55, 9351–9377,
https://doi.org/10.1029/2019WR025411, 2019. a, b
Cresto Aleina, F., Runkle, B. R., Kleinen, T., Kutzbach, L., Schneider, J.,
and Brovkin, V.: Modeling micro-topographic controls on boreal peatland
hydrology and methane fluxes, Biogeosciences, 12, 5689–5704,
https://doi.org/10.5194/bg-12-5689-2015, 2015. a
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90,
https://doi.org/10.1038/nature21048, 2017. a, b
Dommain, R., Couwenberg, J., and Joosten, H.: Development and carbon
sequestration of tropical peat domes in south-east Asia: Links to
post-glacial sea-level changes and Holocene climate variability, Quaternary Sci.
Rev., 30, 999–1010, https://doi.org/10.1016/j.quascirev.2011.01.018, 2011. a, b
Dommain, R., Frolking, S., Jeltsch-Thömmes, A., Joos, F., Couwenberg, J.,
and Glaser, P. H.: A radiative forcing analysis of tropical peatlands before
and after their conversion to agricultural plantations, Glob. Change Biol.,
24, 5518–5533, https://doi.org/10.1111/gcb.14400, 2018. a
Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger,
M., Joos, F., Fischer, H., and Stocker, T. F.: Stable isotope constraints on
Holocene carbon cycle changes from an Antarctic ice core, Nature, 461,
507–510, https://doi.org/10.1038/nature08393, 2009. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ferretto, A., Brooker, R., Aitkenhead, M., Matthews, R., and Smith, P.:
Potential carbon loss from Scottish peatlands under climate change, Reg.
Environ. Chang., 19, 2101–2111, https://doi.org/10.1007/s10113-019-01550-3, 2019. a
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern
peatland carbon accumulation and methane emissions, Glob. Change Biol., 13,
1079–1088, https://doi.org/10.1111/j.1365-2486.2007.01339.x, 2007. a, b
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot,
J., and Richard, P. J. H.: A new model of Holocene peatland net primary
production, decomposition, water balance, and peat accumulation, Earth Syst.
Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010. a
Gallego-Sala, A. V., Charman, D. J., Harrison, S. P., Li, G., and Prentice, I. C.: Climate-driven expansion of blanket bogs in Britain during the Holocene, Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, 2016. a
Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Colin Prentice,
I., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Bjamp,
S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P.,
Carless, D., Chimner, R. A., Clifford, M., Cressey, E., Courtney-Mustaphi,
C., ois Vleeschouwer, Jong, R., Fialkiewicz-Koziel, B., Finkelstein, S. A.,
Garneau, M., Githumbi, E., Hribjlan, J., Holmquist, J., M Hughes, P. D.,
Jones, C., Jones, M. C., Karofeld, E., Klein, E. S., Kokfelt, U., Korhola,
A., Lacourse, T., Roux, G., Lamentowicz, M., Large, D., Lavoie, M., Loisel,
J., Mackay, H., MacDonald, G. M., Makila, M., Magnan, G., Marchant, R.,
Marcisz, K., Martamp, A., nez Cortizas, Massa, C., Mathijssen, P., Mauquoy,
D., Mighall, T., G Mitchell, F. J., Moss, P., Nichols, J., Oksanen, P. O.,
Orme, L., Packalen, M. S., Robinson, S., Roland, T. P., Sanderson, N. K.,
Britta Sannel, A. K., Steinberg, N., Swindles, G. T., Edward Turner, T.,
Uglow, J., Vamp, M., Bellen, S., Linden, M., Geel, B., Wang, G., Yu, Z.,
Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted
increase of the peatland carbon sink with warming, Nat. Clim. Change, 8,
907–914, https://doi.org/10.1038/s41558-018-0271-1, 2018. a
Gorham, E.: The Development of Peat Lands, Q. Rev. Biol., 32, 145–166,
https://doi.org/10.1086/401755, 1957. a
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991. a, b
Gorham, E., Lehman, C., Dyke, A., Clymo, D., and Janssens, J.: Long-term
carbon sequestration in North American peatlands, Quateranry Sci. Rev., 58,
77–82, https://doi.org/10.1016/j.quascirev.2012.09.018, 2012. a
Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F.,
Householder, E., Herold, N., and Murdiyarso, D.: An expert system model for
mapping tropical wetlands and peatlands reveals South America as the largest
contributor, Glob. Change Biol., 23, 3581–3599, https://doi.org/10.1111/gcb.13689,
2017. a, b, c, d, e, f
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif,
R., Steiger, N., and Perkins, W. A.: The last millennium climate reanalysis
project: Framework and first results, J. Geophys. Res., 121, 6745–6764,
https://doi.org/10.1002/2016JD024751, 2016. a
Halsey, L. A., Vitt, D. H., Gignac, L. D., Bryologist, T., and Summer, N.:
Sphagnum-Dominated Peatlands in North America since the Last Glacial Maximum
: Their Occurrence and Extent Sphagnum-dominated Peatlands in North America
Since the Last Glacial Maximum: Their Occurrence and Extent, Bryologist,
103, 334–352, 2000. a, b
Hanebuth, T. J., Voris, H. K., Yokoyama, Y., Saito, Y., and Okuno, J.:
Formation and fate of sedimentary depocentres on Southeast Asia's Sunda
Shelf over the past sea-level cycle and biogeographic implications,
Earth-Sci. Rev., 104, 92–110, https://doi.org/10.1016/j.earscirev.2010.09.006,
2011. a
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M.,
Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43,
671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014. a, b, c
He, F.: Simulating Transient Climate Evolution of the Last deglaciation with
CCSM3, Ph. d., University of Wisconsin-Madison, 2011. a
Henton, J. A., Craymer, M. R., Ferland, R., Dragert, H., Mazzotti, S., and
Forbes, D. L.: C Rustal Motion and Deformation, Geomatica, 60, 173–191,
2006. a
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten,
H., and Jauhiainen, J.: Current and future CO2 emissions from drained
peatlands in Southeast Asia, Biogeosciences, 7, 1505–1514,
https://doi.org/10.5194/bg-7-1505-2010, 2010. a
Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon from
land use and land cover change 1850–2015, Global Biogeochem. Cy., 31,
456–472, https://doi.org/10.1002/2016GB005546, 2017. a
Illés, G., Sutikno, S., Szatmári, G., Sandhyavitri, A.,
Pásztor, L., Kristijono, A., Molnár, G., Yusa, M., and
Székely, B.: Facing the peat CO2 threat: digital mapping of Indonesian
peatlands – a proposed methodology and its application, J. Soils Sediments,
19, 3663–3678, https://doi.org/10.1007/s11368-019-02328-0, 2019. a
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J.,
Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate
simulations of the deglaciation 21-9 thousand years before present (version
1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model
Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016. a, b
Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L., and
Joos, F.: Low terrestrial carbon storage at the Last Glacial Maximum:
Constraints from multi-proxy data, Clim. Past, 15, 849–879,
https://doi.org/10.5194/cp-15-849-2019, 2019. a
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl. Acad. Sci. USA, 105, 1425–1430, https://doi.org/10.1073/pnas.0707386105, 2008. a
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017. a
Kaplan, J. O.: Wetlands at the Last Glacial Maximum: Distribution and methane
emissions, Geophys. Res. Lett., 29, 3-1–3-4, https://doi.org/10.1029/2001GL013366,
2002. a
Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland
extent and peat accumulation: Results for the Holocene, Biogeosciences, 9,
235–248, https://doi.org/10.5194/bg-9-235-2012, 2012. a, b, c, d
Kremenetski, K. V., Velichko, A. A., Borisova, O. K., MacDonald, G. M., Smith,
L. C., Frey, K. E., and Orlova, L. A.: Peatlands of the Western Siberian
lowlands: Current knowledge on zonation, carbon content and Late Quaternary
history, Quaternary Sci. Rev., 22, 703–723, https://doi.org/10.1016/S0277-3791(02)00196-8,
2003. a
Kreuzburg, M., Ibenthal, M., Janssen, M., Rehder, G., Voss, M., Naumann, M.,
and Feldens, P.: Sub-marine Continuation of Peat Deposits From a Coastal
Peatland in the Southern Baltic Sea and its Holocene Development, Front.
Earth Sci., 6, 103 pp., https://doi.org/10.3389/feart.2018.00103,
2018. a, b, c
Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D., and
Frolking, S.: Carbon accumulation of tropical peatlands over millennia: A
modeling approach, Glob. Change Biol., 21, 431–444,
https://doi.org/10.1111/gcb.12672, 2015. a
Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres,
D. D. C., Oinonen, M., and Page, S.: The large Amazonian peatland carbon
sink in the subsiding Pastaza-Marañón foreland basin, Peru,
Glob. Change Biol., 18, 164–178, https://doi.org/10.1111/j.1365-2486.2011.02504.x,
2012. a, b
LAI, D.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19,
409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009. a
Largeron, C., Krinner, G., Ciais, P., and Brutel-Vuilmet, C.: Implementing
northern peatlands in a global land surface model: Description and evaluation
in the ORCHIDEE high-latitude version model (ORC-HL-PEAT), Geosci. Model
Dev., 11, 3279–3297, https://doi.org/10.5194/gmd-11-3279-2018, 2018. a, b
Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global
climate model, Clim. Dynam., 30, 145–160, https://doi.org/10.1007/s00382-007-0278-1,
2008. a
Lawson, I. T., Kelly, T. J., Aplin, P., Boom, A., Dargie, G., Draper, F. C.,
Hassan, P. N., Hoyos-Santillan, J., Kaduk, J., Large, D., Murphy, W., Page,
S. E., Roucoux, K. H., Sjögersten, S., Tansey, K., Waldram, M., Wedeux,
B. M., and Wheeler, J.: Improving estimates of tropical peatland area,
carbon storage, and greenhouse gas fluxes, Wetl. Ecol. Manag., 23, 327–346,
https://doi.org/10.1007/s11273-014-9402-2, 2015. a
Leifeld, J., Wüst-Galley, C., and Page, S.: Intact and managed peatland
soils as a source and sink of GHGs from 1850 to 2100, Nat. Clim. Change, 9, 945–947,
https://doi.org/10.1038/s41558-019-0615-5, 2019. a, b, c, d
Leng, L. Y., Ahmed, O. H., and Jalloh, M. B.: Brief review on climate change
and tropical peatlands, Geosci. Front., 10, 373–380,
https://doi.org/10.1016/j.gsf.2017.12.018, 2019. a
Lienert, S. and Joos, F.: A Bayesian ensemble data assimilation to constrain
model parameters and land-use carbon emissions, Biogeosciences, 15,
2909–2930, https://doi.org/10.5194/bg-15-2909-2018, 2018. a, b, c
Lindsay, R.: Peatland Classification, in: The Wetland Book, Springer
Netherlands, Dordrecht, 1515–1528, https://doi.org/10.1007/978-90-481-9659-3_341, 2018. a
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for bolling-allerod warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009. a, b
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The Holocene
temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014. a
Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran,
D., Yu, Z., Nichols, J., and Holmquist, J.: Insights and issues with
estimating northern peatland carbon stocks and fluxes since the Last Glacial
Maximum, Earth-Sci. Rev., 165, 59–80,
https://doi.org/10.1016/j.earscirev.2016.12.001, 2017. a, b, c, d, e, f, g, h, i, j, k
Lora, J. M. and Ibarra, D. E.: The North American hydrologic cycle through the
last deglaciation, Quaternary Sci. Rev., 226, 105991,
https://doi.org/10.1016/j.quascirev.2019.105991, 2019. a
Lora, J. M. and Lora, J. M.: Components and Mechanisms of Hydrologic Cycle
Changes over North America at the Last Glacial Maximum, J. Clim.,
31, 7035–7051, https://doi.org/10.1175/JCLI-D-17-0544.1, 2018. a, b
Marcott, S. a., Shakun, J. D., Clark, P. U., and Mix, A. C.: A Reconstruction
of Regional and Global Temperature for the Past 11,300 Years, Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013. a
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
location and cross-equatorial heat transport at the Last Glacial Maximum,
Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sc. Lett., 390,
69–79, https://doi.org/10.1016/j.epsl.2013.12.043, 2014. a
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005. a
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J.,
Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J. M.: Atmospheric
CO2 concentrations over the last glacial termination, Science, 291,
112–114, https://doi.org/10.1126/science.291.5501.112, 2001. a
Moore, P. D.: The ecology of peat-forming processes: a review, Int. J. Coal
Geol., 12, 89–103, https://doi.org/10.1016/0166-5162(89)90048-7, 1989. a
Morris, P. J., Belyea, L. R., and Baird, A. J.: Ecohydrological feedbacks in
peatland development: A theoretical modelling study, J. Ecol., 99,
1190–1201, https://doi.org/10.1111/j.1365-2745.2011.01842.x, 2011. a
Morris, P. J., Baird, A. J., and Belyea, L. R.: The DigiBog peatland
development model 2: ecohydrological simulations in 2D, Ecohydrology, 5,
256–268, https://doi.org/10.1002/eco.229, 2012. a
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire,
L. J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global
peatland initiation driven by regionally asynchronous warming, P. Natl.
Acad. Sci. USA, 115, 4851–4856, https://doi.org/10.1073/pnas.1717838115,
2018. a, b, c, d
Nichols, J. E. and Peteet, D. M.: Rapid expansion of northern peatlands and
doubled estimate of carbon storage, Nat. Geosci., 12, 917–922,
https://doi.org/10.1038/s41561-019-0454-z, 2019. a
Packalen, M. S., Finkelstein, S. A., and McLaughlin, J. W.: Carbon storage and
potential methane production in the Hudson Bay Lowlands since mid-Holocene
peat initiation, Nat. Commun., 5, 1–8, https://doi.org/10.1038/ncomms5078, 2014. a
Page, S. and Baird, A.: Peatlands and Global Change: Response and Resilience,
Ssrn, Annu. Rev. Environ. Res., 41, 35–57, https://doi.org/10.1146/annurev-environ-110615-085520, 2016. a
Peltier, W.: Global glacial isostasy and the surface of the ice-age earth: The
ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149,
https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a, b
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., Aurela, M.,
Bernhofer, C., Brümmer, C., Bret-Harte, S., Chu, H., Chen, J., Desai,
A. R., Dušek, J., Euskirchen, E. S., Fortuniak, K., Flanagan, L. B.,
Friborg, T., Grygoruk, M., Gogo, S., Grünwald, T., Hansen, B. U., Holl,
D., Humphreys, E., Hurkuck, M., Kiely, G., Klatt, J., Kutzbach, L., Largeron,
C., Laggoun-Défarge, F., Lund, M., Lafleur, P. M., Li, X., Mammarella,
I., Merbold, L., Nilsson, M. B., Olejnik, J., Ottosson-Löfvenius, M.,
Oechel, W., Parmentier, F. J. W., Peichl, M., Pirk, N., Peltola, O., Pawlak,
W., Rasse, D., Rinne, J., Shaver, G., Peter Schmid, H., Sottocornola, M.,
Steinbrecher, R., Sachs, T., Urbaniak, M., Zona, D., and Ziemblinska, K.:
ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and
energy fluxes on daily to annual scales, Geosci. Model Dev., 11, 497–519,
https://doi.org/10.5194/gmd-11-497-2018, 2018. a, b
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019. a, b, c
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and
Kasibhatla, P. S.: Global Fire Emissions Database, Version 4 (GFEDv4),
https://doi.org/10.3334/ORNLDAAC/1293, 2015. a
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014. a
Ritz, S. P., Stocker, T. F., Grimalt, J. O., Menviel, L., and Timmermann, A.:
Estimated strength of the Atlantic overturning circulation during the last
deglaciation, Nat. Geosci., 6, 208–212, https://doi.org/10.1038/ngeo1723, 2013. a
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial
spatiotemporal peatland initiation and lateral expansion dynamics in North
America and northern Europe, Holocene, 23, 1596–1606,
https://doi.org/10.1177/0959683613499053, 2013. a, b
Rydin, H. and Jeglum, J. K.: The Biology of Peatlands, Oxford University
Press, https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001, 2013. a
Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Brönnimann,
S., and Tinner, W.: Warm Mediterranean mid-Holocene summers inferred from
fossil midge assemblages, Nat. Geosci., 10, 207–212,
https://doi.org/10.1038/ngeo2891, 2017. a
Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U.,
Bartlein, P. J., Mix, A. C., and Rosell-Mele, A.: Climate Sensitivity
Estimated from Temperature Reconstructions of the Last Glacial Maximum,
Science, 334, 1385–1388, https://doi.org/10.1126/science.1203513, 2011. a
Schuldt, R. J., Brovkin, V., Kleinen, T., and Winderlich, J.: Modelling
Holocene carbon accumulation and methane emissions of boreal wetlands-an
Earth system model approach, Biogeosciences, 10, 1659–1674,
https://doi.org/10.5194/bg-10-1659-2013, 2013. a
Shakun, J. D. and Carlson, A. E.: A global perspective on Last Glacial Maximum
to Holocene climate change, Quaternary Sci. Rev., 29, 1801–1816,
https://doi.org/10.1016/j.quascirev.2010.03.016, 2010. a
Shi, J. and Yan, Q.: Evolution of the Asian–African Monsoonal Precipitation
over the last 21 kyr and the Associated Dynamic Mechanisms, J. Clim., 32,
6551–6569, https://doi.org/10.1175/jcli-d-19-0074.1, 2019. a
Silvestri, S., Knight, R., Viezzoli, A., Richardson, C. J., Anshari, G. Z.,
Dewar, N., Flanagan, N., and Comas, X.: Quantification of Peat Thickness and
Stored Carbon at the Landscape Scale in Tropical Peatlands: A Comparison of
Airborne Geophysics and an Empirical Topographic Method, J. Geophys. Res.-Earth, 124, 3107–3123, https://doi.org/10.1029/2019JF005273, 2019. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. a, b
Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S.,
Bouwman, L., Xu-Ri, and Prentice, I. C.: Multiple greenhouse-gas feedbacks
from the land biosphere under future climate change scenarios, Nat. Clim.
Change, 3, 666–672, https://doi.org/10.1038/nclimate1864, 2013. a
Stocker, B. D., Yu, Z., Massa, C., and Joos, F.: Holocene peatland and
ice-core data constraints on the timing and magnitude of CO2 emissions from
past land use, P. Natl. Acad. Sci. USA, 114, 1492–1497,
https://doi.org/10.1073/pnas.1613889114, 2017. a, b
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the
bipolar seesaw, Paleoceanography, 18, 1–9, https://doi.org/10.1029/2003PA000920,
2003. a
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574,
2018. a
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E.,
Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S.,
Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick,
J. L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term
fate of permafrost peatlands under rapid climate warming, Sci. Rep., 5,
1–6, https://doi.org/10.1038/srep17951, 2015. a
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term blanket
peatland development in eastern Scotland, Biogeosciences, 16, 3977–3996,
https://doi.org/10.5194/bg-16-3977-2019, 2019. a
Talbot, J., Richard, P., Roulet, N., and Booth, R.: Assessing long-term
hydrological and ecological responses to drainage in a raised bog using
paleoecology and a hydrosequence, J. Veg. Sci., 21, 143–156,
https://doi.org/10.1111/j.1654-1103.2009.01128.x, 2010. a
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P.,
Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last
Millennium Reanalysis with an expanded proxy database and seasonal proxy
modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019. a
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and
Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost
region, Global Biogeochem. Cy., 23, 1–11, https://doi.org/10.1029/2008GB003327,
2009. a
Tchilinguirian, P., Morales, M., Oxman, B., Lupo, L., Olivera, D., and
Yacobaccio, H.: Early to Middle Holocene transition in the Pastos Chicos
record, dry Puna of Argentina, Quaternary Int., 330, 171–182,
https://doi.org/10.1016/j.quaint.2012.03.006, 2014. a
Tipping, R.: Holocene evolution of a lowland Scottish landscape: Kirkpatrick
Fleming, Part I, peat- and pollen-stratigraphic evidence for raised moss
development and climatic change, Holocene, 5, 69–81,
https://doi.org/10.1177/095968369500500108, 1995. a
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R.,
Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G.,
Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lähteenoja, O.,
Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K.,
Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C.,
Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Väliranta, M.,
Hättestrand, M., Alexanderson, H., and Brovkin, V.: Widespread global
peatland establishment and persistence over the last 130,000 y, P. Natl.
Acad. Sci. USA, 116, 201813305, https://doi.org/10.1073/pnas.1813305116, 2019. a, b, c, d, e, f, g, h, i, j
Turunen, J., Tolonen, K., Tomppo, E., and Reinikainen, A.: Estimating carbon
accumulation rates of undrained mires in Finland – Application to boreal and
subarctic regions, Holocene, 12, 69–80, https://doi.org/10.1191/0959683602hl522rp,
2002. a
Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C., and Cadillo-Quiroz,
H.: Potential shift from a carbon sink to a source in Amazonian peatlands
under a changing climate, P. Natl. Acad. Sci. USA, 115, 12407–12412,
https://doi.org/10.1073/pnas.1801317115, 2018. a
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 2. Evaluation and sensitivity of
vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008GB003413, 2009a. a, b, c, d
Wania, R., Ross, L., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of
physical land surface processes, Global Biogeochem. Cy., 23, 1–19,
https://doi.org/10.1029/2008GB003412, 2009b. a, b
Xu-Ri, Prentice, I. C., Spahni, R., and Niu, H. S.: Modelling terrestrial
nitrous oxide emissions and implications for climate feedback, New Phytol.,
196, 472–488, https://doi.org/10.1111/j.1469-8137.2012.04269.x, 2012. a
Yu, Z.: Holocene carbon flux histories of the world's peatlands: Global
carbon-cycle implications, Holocene, 21, 761–774,
https://doi.org/10.1177/0959683610386982, 2011. a, b
Yu, Z.: No support for carbon storage of > 1000 GtC in northern
peatlands Comment on the paper by Nichols & Peteet (2019) in Nature
Geoscience (12: 917–921), Nat. Geosci., in review,
https://doi.org/10.31223/osf.io/hynm7, 2019. a
Yu, Z., Loisel, J., Turetsky, M. R., Cai, S., Zhao, Y., Frolking, S.,
MacDonald, G. M., and Bubier, J. L.: Evidence for elevated emissions from
high-latitude wetlands contributing to high atmospheric CH4 concentration in
the early Holocene, Global Biogeochem. Cy., 27, 131–140,
https://doi.org/10.1002/gbc.20025, 2013.
a, b
Yu, Z., Loisel, J., Charman, D. J., Beilman, D. W., and Camill, P.: Holocene
peatland carbon dynamics in the circum-Arctic region: An introduction,
Holocene, 24, 1021–1027, https://doi.org/10.1177/0959683614540730, 2014. a
Yu, Z. C.: Northern peatland carbon stocks and dynamics: A review,
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012. a, b, c, d
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
We present an in-depth model analysis of transient peatland area and carbon dynamics over the...
Altmetrics
Final-revised paper
Preprint