Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5365-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5365-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Institut für Mineralogie, Leibniz Universität Hannover, Callinstraße 3, 30167 Hannover, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen, Leobener Straße 8, 28359 Bremen, Germany
Claire Rollion-Bard
Institut de physique du globe de Paris, CNRS, Université de Paris, 75005 Paris, France
Ingo Horn
Institut für Mineralogie, Leibniz Universität Hannover, Callinstraße 3, 30167 Hannover, Germany
Grit Steinhoefel
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Albert Benthien
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Klaus-Uwe Richter
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Matthieu Buisson
Institut de physique du globe de Paris, CNRS, Université de Paris, 75005 Paris, France
Pascale Louvat
Institut de physique du globe de Paris, CNRS, Université de Paris, 75005 Paris, France
Jelle Bijma
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Related authors
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Cited articles
Blamart, D., Rollion-Bard, C., Meibom, A., Cuif, J.-P., Juillet-Leclerc, A., and
Dauphin, Y.: Correlation of boron isotopic composition with ultrastructure in the deep-sea coral
Lophelia pertusa: Implications for biomineralization and paleo-pH,
Geochem. Geophy. Geosy., 8, Q12001, https://doi.org/10.1029/2007GC001686, 2007.
Branson, O., Kaczmarek, K., Redfern, S. A. T., Misra, S., Langer, G., Tyliszczak, T.,
Bijma, J., and Elderfield, H.: The coordination and distribution of B in foraminiferal calcite,
Earth Planet. Sc. Lett., 416, 67–72, https://doi.org/10.1016/j.epsl.2015.02.006, 2015.
Fietzke, J., Heinemann, A., Taubner, I., Böhm, F., Erez, J., and Eisenhauer, A.:
Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards
as reference material, J. Anal. At. Spectrom., 25, 1953, https://doi.org/10.1039/c0ja00036a, 2010.
Fietzke, J., Ragazzola, F., Halfar, J., Dietze, H., Foster, L. C., Hansteen, T. H.,
Eisenhauer, A., and Steneck, R. S.: Century-scale trends and seasonality in pH and temperature for
shallow zones of the Bering Sea, P. Natl. Acad. Sci. USA, 112, 2960–2965,
https://doi.org/10.1073/pnas.1419216112, 2015.
Gaillardet, J., Lemarchand, D., Göpel, C., and Manhès, G.: Evaporation and
Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions,
Geostand. Newsl., 25, 67–75, https://doi.org/10.1111/j.1751-908X.2001.tb00788.x, 2001.
Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and concentration in modern
marine carbonates, Geochim. Cosmochim. Ac., 56, 537–543, https://doi.org/10.1016/0016-7037(92)90151-8,
1992.
Hönisch, B., Bickert, T., and Hemming, N. G.: Modern and Pleistocene boron isotope
composition of the benthic foraminifer Cibicidoides wuellerstorfi, Earth
Planet. Sci. Lett., 272, 309–318, https://doi.org/10.1016/j.epsl.2008.04.047, 2008.
Horn, I. and von Blanckenburg, F.: Investigation on elemental and isotopic fractionation
during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma
mass spectrometry, Spectrochim. Acta B-At. Spectrosc., 62, 410–422,
https://doi.org/10.1016/j.sab.2007.03.034, 2007.
Howes, E. L., Kaczmarek, K., Raitzsch, M., Mewes, A., Bijma, N., Horn, I., Misra, S.,
Gattuso, J.-P., and Bijma, J.: Decoupled carbonate chemistry controls on the incorporation of
boron into Orbulina universa, Biogeosciences, 14, 415–430, https://doi.org/10.5194/bg-14-415-2017,
2017.
Inoue, M., Nohara, M., Okai, T., Suzuki, A., and Kawahata, H.: Concentrations of Trace
Elements in Carbonate Reference Materials Coral JCp-1 and Giant Clam JCt-1 by Inductively
Plasma-Mass Spectrometry, Geostand. Geoanal. Res., 28, 411–416, 2004.
Kaczmarek, K., Horn, I., Nehrke, G., and Bijma, J.: Simultaneous determination of
δ11B and B ∕ Ca ratio in marine biogenic carbonates at nanogram level, Chem. Geol.,
392, 32–42, https://doi.org/10.1016/j.chemgeo.2014.11.011, 2015a.
Kaczmarek, K., Langer, G., Nehrke, G., Horn, I., Misra, S., Janse, M., and Bijma, J.:
Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate
chemistry, Biogeosciences, 12, 1753–1763, https://doi.org/10.5194/bg-12-1753-2015, 2015b.
Kasemann, S. A., Schmidt, D. N., Bijma, J., and Foster, G. L.: In situ boron isotope
analysis in marine carbonates and its application for foraminifera and palaeo-pH, Chem. Geol.,
260, 138–147, https://doi.org/10.1016/j.chemgeo.2008.12.015, 2009.
Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A.: Experimental
measurement of boron isotope fractionation in seawater, Earth Planet. Sci. Lett., 248, 276–285,
https://doi.org/10.1016/j.epsl.2006.05.034, 2006.
Louvat, P., Moureau, J., Paris, G., Bouchez, J., Noireaux, J., and Gaillardet, J.: A
fully automated direct injection nebulizer (d-DIHEN) for MC-ICP-MS isotope analysis: application
to boron isotope ratio measurements, J. Anal. At. Spectrom., 29, 1698–1707,
https://doi.org/10.1039/C4JA00098F, 2014.
Malherbe, J., Penen, F., Isaure, M.-P., Frank, J., Hause, G., Dobritzsch, D., Gontier,
E., Horréard, F., Hillion, F., and Schaumlöffel, D.: A New Radio Frequency Plasma Oxygen
Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and
Detection of Electropositive Elements at Single Cell Level, Anal. Chem., 88, 7130–7136,
https://doi.org/10.1021/acs.analchem.6b01153, 2016.
Mayk, D., Fietzke, J., Anagnostou, E., and Paytan, A.: LA-MC-ICP-MS study of boron
isotopes in individual planktonic foraminifera: A novel approach to obtain seasonal variability
patterns, Chem. Geol., 531, 119351, https://doi.org/10.1016/j.chemgeo.2019.119351, 2020.
Misra, S., Owen, R., Kerr, J., Greaves, M., and Elderfield, H.: Determination of
δ11B by HR-ICP-MS from mass limited samples: Application to natural carbonates
and water samples, Geochim. Cosmochim. Ac., 140, 531–552, https://doi.org/10.1016/j.gca.2014.05.047, 2014.
Okai, T., Suzuki, A., Terashima, S., Inoue, M., Nohara, M., Kawahata, H., and Imai, N.:
Collaborative Analysis of GSJ/AIST Geochemical Reference Materials JCp-1 (Coral) and JCt-1 (Giant
Clam), Chikyu Kagaku, 38, 281–286, 2004.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B ∕ Ca
in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth Planet. Sc. Lett.,
302, 403–413, https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Raitzsch, M. and Hönisch, B.: Cenozoic boron isotope variations in benthic
foraminifers, Geology, 41, 591–594, https://doi.org/10.1130/G34031.1, 2013.
Raitzsch, M., Hathorne, E. C., Kuhnert, H., Groeneveld, J., and Bickert, T.: Modern and
late Pleistocene B ∕ Ca ratios of the benthic foraminifer Planulina wuellerstorfi
determined with laser ablation ICP-MS, Geology, 39, 1039–1042, https://doi.org/10.1130/G32009.1, 2011.
Raitzsch, M., Bijma, J., Benthien, A., Richter, K.-U., Steinhoefel, G., and Kučera,
M.: Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic – A
multispecies approach using habitat preference of planktonic foraminifera, Earth
Planet. Sc. Lett., 487, 138–150, https://doi.org/10.1016/j.epsl.2018.02.002, 2018.
Raitzsch, M., Bijma, J., Bickert, T., Schulz, M., Holbourn, A., and Kučera, M.:
Eccentricity-paced atmospheric carbon-dioxide variations across the middle Miocene climate
transition, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-96, in review, 2020.
R Core Team: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, available at: https://www.R-project.org (last
access: 29 February 2020), 2018.
Rollion-Bard, C. and Blamart, D.: In: Biomineralization Sourcebook: Characterization of
Biominerals and Biomimetic Materials, pp. 249–261, CRC Press, Taylor & Francis Group, Boca
Raton, FL, 2014.
Rollion-Bard, C., Erez, J., and Zilberman, T.: Intra-shell oxygen isotope ratios in the benthic foraminifera genus Amphistegina and the influence of seawater carbonate chemistry and temperature on this ratio, Geochim. Cosmochim. Ac., 72, 6006–6014, https://doi.org/10.1016/j.gca.2008.09.013, 2008.
Rollion-Bard, C. and Erez, J.: Intra-shell boron isotope ratios in the symbiont-bearing
benthic foraminiferan Amphistegina lobifera: Implications for δ11B vital
effects and paleo-pH reconstructions, Geochim. Cosmochim. Ac., 74, 1530–1536,
https://doi.org/10.1016/j.gca.2009.11.017, 2010.
Rollion-Bard, C., Chaussidon, M., and France-Lanord, C.: pH control on oxygen isotopic
composition of symbiotic corals, Earth Planet. Sc. Lett., 215, 275–288,
https://doi.org/10.1016/S0012-821X(03)00391-1, 2003.
Sadekov, A., Lloyd, N. S., Misra, S., Trotter, J., D'Olivo, J., and McCulloch, M.:
Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using
laser ablation multicollector-ICPMS, J. Anal. At. Spectrom., 34, 550–560,
https://doi.org/10.1039/C8JA00444G, 2019.
Standish, C. D., Chalk, T. B., Babila, T. L., Milton, J. A., Palmer, M. R. and Foster,
G. L.: The effect of matrix interferences on in situ boron isotope analysis by laser ablation
multi-collector inductively coupled plasma mass spectrometry, Rapid Commun. Mass Sp., 33,
959–968, https://doi.org/10.1002/rcm.8432, 2019.
Steinhoefel, G., Horn, I., and von Blanckenburg, F.: Matrix-independent Fe isotope
ratio determination in silicates using UV femtosecond laser ablation, Chem. Geol., 268, 67–73,
https://doi.org/10.1016/j.chemgeo.2009.07.010, 2009.
Thil, F., Blamart, D., Assailly, C., Lazareth, C. E., Leblanc, T., Butsher, J., and
Douville, E.: Development of laser ablation multi-collector inductively coupled plasma mass
spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and
application to a modern Porites coral, Rapid Commun. Mass Sp., 30, 359–371,
https://doi.org/10.1002/rcm.7448, 2016.
Vigier, N., Rollion-Bard, C., Levenson, Y., and Erez, J.: Lithium isotopes in
foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC), C.R. Geosci.,
347, 43–51, https://doi.org/10.1016/j.crte.2014.12.001, 2015.
Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S. K., Chung, C.-H., and
Lin, P.-Y.: Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable
isotope measurement by MC-ICP-MS, Talanta, 82, 1378–1384, https://doi.org/10.1016/j.talanta.2010.07.010,
2010.
Yu, J. and Elderfield, H.: Benthic foraminiferal B ∕ Ca ratios reflect deep water
carbonate saturation state, Earth Planet. Sc. Lett., 258, 73–86,
https://doi.org/10.1016/j.epsl.2007.03.025, 2007.
Yu, J., Foster, G. L., Elderfield, H., Broecker, W. S., and Clark, E.: An evaluation of
benthic foraminiferal B ∕ Ca and δ11B for deep ocean carbonate ion and pH
reconstructions, Earth Planet. Sc. Lett., 293, 114–120, https://doi.org/10.1016/j.epsl.2010.02.029, 2010.
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a...
Altmetrics
Final-revised paper
Preprint