Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6507-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
MAST, FOCUS, University of Liège, Liège, Belgium
Luc Vandenbulcke
MAST, FOCUS, University of Liège, Liège, Belgium
Marilaure Grégoire
MAST, FOCUS, University of Liège, Liège, Belgium
Related authors
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Serafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience and the good governance of the marine environment. This paper provides an overview of the various downstream applications of ocean forecast systems that are utilized around the world.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, Jennifer Veitch, and Jorge Zavala Hidalgo
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024, https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Short summary
This study contributes to the development of methods to estimate targeted ocean ecosystem indicators, including their uncertainty, in the framework of the Copernicus Marine Service. A simplified approach is introduced to perform a 4D ensemble analysis and forecast, directly targeting selected biogeochemical variables and indicators (phenology, trophic efficiency, downward flux of organic matter). Care is taken to present the methods and discuss the reliability of the solution proposed.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Loïc Macé, Luc Vandenbulcke, Jean-Michel Brankart, Pierre Brasseur, and Marilaure Grégoire
Biogeosciences, 22, 3747–3768, https://doi.org/10.5194/bg-22-3747-2025, https://doi.org/10.5194/bg-22-3747-2025, 2025
Short summary
Short summary
The representation of light propagation in seawater is critical for modelling marine biogeochemistry. We analyse results from a radiative transfer model that accounts for the absorption and scattering of light in the ocean with their respective uncertainties. We compare these results with in situ and remote-sensed data. Our analysis highlights the benefits of accounting for model uncertainties while using advanced representations of light in modelling frameworks.
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data, 17, 3125–3140, https://doi.org/10.5194/essd-17-3125-2025, https://doi.org/10.5194/essd-17-3125-2025, 2025
Short summary
Short summary
We created the first comprehensive, high-resolution, and easily accessible bathymetry dataset for the three main branches of the Danube Delta. By combining four data sources, we obtained a detailed representation of the riverbed, with resolutions ranging from 2 to 100 m. This dataset will support future studies on water and nutrient exchanges between the Danube and the Black Sea and provide insights into the delta's buffer role within the understudied Danube–Black Sea continuum.
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Serafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience and the good governance of the marine environment. This paper provides an overview of the various downstream applications of ocean forecast systems that are utilized around the world.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, Jennifer Veitch, and Jorge Zavala Hidalgo
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Ny Riana Randresihaja, Olivier Gourgue, Lauranne Alaerts, Xavier Fettweis, Jonathan Lambrechts, Miguel De Le Court, Marilaure Grégoire, and Emmanuel Hanert
EGUsphere, https://doi.org/10.5194/egusphere-2025-634, https://doi.org/10.5194/egusphere-2025-634, 2025
Preprint archived
Short summary
Short summary
Coastal areas face rising flood threats as storms intensifies with climate change. With an advanced model of the Scheldt Estuary-North Sea, we studied how detailed atmospheric data must be to predict storm surge peaks in estuaries. We found that high-resolution atmospheric data gives the best results, and coarser data with same resolution as current global climate models give poorer results. We show that investing in localized, high-resolution atmospheric data can significantly improve results.
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024, https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Short summary
This study contributes to the development of methods to estimate targeted ocean ecosystem indicators, including their uncertainty, in the framework of the Copernicus Marine Service. A simplified approach is introduced to perform a 4D ensemble analysis and forecast, directly targeting selected biogeochemical variables and indicators (phenology, trophic efficiency, downward flux of organic matter). Care is taken to present the methods and discuss the reliability of the solution proposed.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Estrella Olmedo, Verónica González-Gambau, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Marilaure Gregoire, Aida Álvera-Azcárate, Luminita Buga, and Marie-Hélène Rio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-364, https://doi.org/10.5194/essd-2021-364, 2021
Revised manuscript not accepted
Short summary
Short summary
We present the first dedicated satellite salinity product in the Black Sea. We use the measurements provided by the European Soil Moisture and Ocean Salinity mission. We introduce enhanced algorithms for dealing with the contamination produced by the Radio Frequency Interferences that strongly affect this basin. We also provide a complete quality assessment of the new product and give an estimated accuracy of it.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE
T. Automat. Contr., 19, 716–723, 1974. a
Andersen, T., Carstensen, J., Hernandez-Garcia, E., and Duarte, C. M.:
Ecological thresholds and regime shifts: approaches to identification, Trends
Ecol. Evol., 24, 49–57, 2009. a
Bittig, H. C., Fiedler, B., Scholz, R., Krahmann, G., and Körtzinger, A.:
Time response of oxygen optodes on profiling platforms and its dependence on
flow speed and temperature, Limnol. Oceanogr., 12, 617–636,
https://doi.org/10.4319/lom.2014.12.617, 2014. a
Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., and Monfray, P.:
Climate-induced oceanic oxygen fluxes: Implications for the contemporary
carbon budget, Global Biogeochem. Cy., 16, https://doi.org/10.1029/2001gb001445, 2002. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science,
359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018. a, b
Buesseler, K. O., Livingston, H. D., and Casso, S. A.: Mixing between oxic and
anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes, Deep-Sea Res., 38, 725–745, https://doi.org/10.1016/S0198-0149(10)80006-8, 1991. a
Capet, A., Troupin, C., Carstensen, J., Grégoire, M., and Beckers, J.-M.:
Untangling spatial and temporal trends in the variability of the Black Sea
Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending
procedure, Ocean Dynam., 64, 315–324, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m
Capet, A., Vandenbulcke, L., and Grégoire, M.: Black Sea cold intermediate layer cold content from in-situ and modelling sources (1955-2019), [Data set], available at: https://doi.org/10.5281/zenodo.3691960, last access: 28 February 2020. a
Coppola, L., Prieur, L., Taupier-Letage, I., Estournel, C., Testor, P.,
Lefèvre, D., Belamari, S., LeReste, S., and Taillandier, V.: Observation
of oxygen ventilation into deep waters through targeted deployment of
multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013, J.
Geophys. Res.-Oceans, 122, 6325–6341, 2017. a
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011. a, b
European Centre for Medium-Range Weather Forecasts: ECMWF Public Datasets, available at: https://apps.ecmwf.int/datasets/, last access: 1 August 2019. a
Gregg, M. and Yakushev, E.: Surface ventilation of the Black Sea's cold
intermediate layer in the middle of the western gyre, Geophys. Res. Lett.,
32, 3, https://doi.org/10.1029/2004gl021580, 2005. a, b
Grégoire, M. and Lacroix, G.: Study of the oxygen budget of the Black Sea
waters using a 3D coupled hydrodynamical–biogeochemical model, J. Mar.
Syst., 31, 175–202, https://doi.org/10.1016/S0924-7963(01)00052-5, 2001. a
Grégoire, M., Beckers, J. M., Nihoul, J. C. J., and Stanev, E.:
Reconnaissance of the main Black Sea's ecohydrodynamics by means of a 3D
interdisciplinary model, J. Mar. Syst., 16, 85–105,
https://doi.org/10.1016/S0924-7963(97)00101-2, 1998. a
IFREMER: Coriolis: In situ data for operational oceanography, available at: http://www.coriolis.eu.org/, last access: 3 March 2020. a
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in a
warming world, Annu. Rev. Mar. Sci, 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010. a
Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Camilloni, I.,
Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., Meehl, G. A., Prather, M.,
Sarr, A., Schar, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., and Wang,
H. J.: Near-term climate change: projections and predictability, in: Climate
change 2013: the physical science basis: contribution to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, 76 pp., 2014. a
Korotaev, G., Knysh, V., and Kubryakov, A.: Study of formation process of cold
intermediate layer based on reanalysis of Black Sea hydrophysical fields for
1971–1993, Izv. Atmos. Ocean. Phys., 50, 35–48, 2014. a
Kubryakov, A. A., Stanichny, S. V., Zatsepin, A. G., and Kremenetskiy, V. V.:
Long-term variations of the Black Sea dynamics and their impact on the marine
ecosystem, J. Mar. Syst., 163, 80–94, 2016. a
Lee, B.-S., Bullister, J. L., Murray, J. W., and Sonnerup, R. E.: Anthropogenic
chlorofluorocarbons in the Black Sea and the Sea of Marmara, Deep-Sea Res.
Pt. I, 49, 895–913, https://doi.org/10.1016/S0967-0637(02)00005-5, 2002. a, b
Long, M. C., Deutsch, C., and Ito, T.: Finding forced trends in oceanic oxygen,
Global Biogeochem. Cy., 30, 381–397, 2016. a
Macias, D., Garcia-Gorriz, E., and Stips, A.: Understanding the causes of
recent warming of mediterranean waters. How much could be attributed to
climate change?, PLoS One, 8, e81591, https://doi.org/10.1371/journal.pone.0081591, 2013. a
MEDOC group: Observation of formation of deep water in the
Mediterranean Sea, 1969, Nature, 227, 1037–1040, 1970. a
Miladinova, S., Stips, A., Garcia-Gorriz, E., and Macias Moy, D.: Black Sea
thermohaline properties: Long-term trends and variations, J. Geophys.
Res.-Oceans, 122, 5624–5644, https://doi.org/10.1002/2016JC012644, 2017. a
Murray, J. W., Jannasch, H. W., Honjo, S., Anderson, R. F., Reeburgh, W. S.,
Top, Z., Friederich, G. E., Codispoti, L. A., and Izdar, E.: Unexpected
changes in the oxic/anoxic interface in the Black Sea, Nature, 338, 411–413,
https://doi.org/10.1038/338411a0, 1989. a
Murray, J. W., Top, Z., and Özsoy, E.: Hydrographic properties and
ventilation of the Black Sea, Deep-Sea Res., 38, 663–689,
https://doi.org/10.1016/S0198-0149(10)80003-2, 1991. a
Nardelli, B. B., Colella, S., Santoleri, R., Guarracino, M., and Kholod, A.: A
re-analysis of Black Sea surface temperature, J. Mar. Syst., 79, 50–64,
2010. a
Oguz, T., Dippner, J. W., and Kaymaz, Z.: Climatic regulation of the Black
Sea hydro-meteorological and ecological properties at
interannual-to-decadal time scales, J. Mar. Syst., 60, 235–254,
https://doi.org/10.1016/j.jmarsys.2005.11.011, 2006. a, b, c
Ostrovskii, A. G. and Zatsepin, A. G.: Intense ventilation of the Black Sea
pycnocline due to vertical turbulent exchange in the Rim Current area, Deep
Sea Res. Pt. I, 116, 1–13, 2016. a
Öszoy, E. and Ünlüata, U.: Oceanography of the Black Sea: a
review of some recent results., Earth-Sci. Rev., 42, 231–272, 1997. a
Piotukh, V., Zatsepin, A., Kazmin, A., and Yakubenko, V.: Impact of the Winter
Cooling on the Variability of the Thermohaline Characteristics of the Active
Layer in the Black Sea, Oceanology, 51, 221–230, https://doi.org/10.1134/s0001437011020123, 2011. a
Sakınan, S. and Gücü, A. C.: Spatial distribution of the Black Sea
copepod, Calanus euxinus, estimated using multi-frequency acoustic
backscatter, ICES J. Mar. Sci., 74, 832–846, 2017. a
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335, https://doi.org/10.1038/nature21399, 2017. a
Simonov, A. and Altman, E.: Hydrometeorology and Hydrochemistry of the USSR
Seas, The Black Sea, 4, 430 pp., 1991. a
Stanev, E., Bowman, M., Peneva, E., and Staneva, J.: Control of Black Sea
intermediate water mass formation by dynamics and topography: Comparison of
numerical simulations, surveys and satellite data, J. Mar. Res., 61, 59–99,
https://doi.org/10.1357/002224003321586417, 2003. a, b, c, d
Stanev, E., He, Y., Grayek, S., and Boetius, A.: Oxygen dynamics in the Black
Sea as seen by Argo profiling floats, Geophys. Res. Lett., 40, 3085–3090,
2013. a
Stanev, E. V., He, Y., Staneva, J., and Yakushev, E.: Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide – Argo float observations and numerical modelling, Biogeosciences, 11, 5707–5732, https://doi.org/10.5194/bg-11-5707-2014, 2014. a
Stanev, E. V., Poulain, P.-M., Grayek, S., Johnson, K. S., Claustre, H., and
Murray, J. W.: Understanding the Dynamics of the Oxic-Anoxic Interface in the
Black Sea, Geophys. Res. Lett., 45, 864–871, 2018. a
Staneva, J. and Stanev, E.: Cold intermediate water formation in the Black Sea.
Analysis on numerical model simulations, in: Sensitivity to Change: Black
Sea, Baltic Sea and North Sea, Springer, 375–393, 1997. a
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H.,
Dausse, D., Labaste, M., Karstensen, J., Hayes, D., et al.: Multiscale
Observations of Deep Convection in the Northwestern Mediterranean Sea During
Winter 2012–2013 Using Multiple Platforms, J. Geophys. Res.-Oceans, 123, 1745–1776, https://doi.org/10.1002/2016jc012671, 2017. a
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.-M.,
Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A.,
Lenartz, F., Toussaint, M.-E., and Beckers, J.-M.: Generation of analysis and consistent error fields using the Data
Interpolating Variational Analysis (DIVA), Ocean Model., 52, 90–101, 2012. a
von Schuckmann, K., Traon, P.-Y. L., Aaboe, S., Fanjul, E. A., Autret, E.,
Axell, L., Aznar, R., Benincasa, M., Bentamy, A., Boberg, F.,
Bourdallé-Badie, R., Nardelli, B. B., Brando, V. E., Bricaud, C., Breivik,
L.-A., Brewin, R. J., Capet, A., Ceschin, A., Ciliberti, S., Cossarini, G.,
de Alfonso, M., de Pascual Collar, A., de Kloe, J., Deshayes, J., Desportes,
C., Drévillon, M., Drillet, Y., Droghei, R., Dubois, C., Embury, O.,
Etienne, H., Fratianni, C., Lafuente, J. G., Sotillo, M. G., Garric, G.,
Gasparin, F., Gerin, R., Good, S., Gourrion, J., Grégoire, M., Greiner, E.,
Guinehut, S., Gutknecht, E., Hernandez, F., Hernandez, O., Høyer, J.,
Jackson, L., Jandt, S., Josey, S., Juza, M., Kennedy, J., Kokkini, Z.,
Korres, G., Kõuts, M., Lagemaa, P., Lavergne, T., Cann, B. L., Legeais,
J.-F., Lemieux-Dudon, B., Levier, B., Lien, V., Maljutenko, I., Manzano, F.,
Marcos, M., Marinova, V., Masina, S., Mauri, E., Mayer, M., Melet, A.,
Mélin, F., Meyssignac, B., Monier, M., Müller, M., Mulet, S., Naranjo, C.,
Notarstefano, G., Paulmier, A., Gomez, B. P., Gonzalez, I. P., Peneva, E.,
Perruche, C., Peterson, K. A., Pinardi, N., Pisano, A., Pardo, S., Poulain,
P.-M., Raj, R. P., Raudsepp, U., Ravdas, M., Reid, R., Rio, M.-H., Salon, S.,
Samuelsen, A., Sammartino, M., Sammartino, S., Sandø, A. B., Santoleri, R.,
Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Stoffelen, A.,
Storto, A., Szerkely, T., Tamm, S., Tietsche, S., Tinker, J., Tintore, J.,
Trindade, A., van Zanten, D., Verhoef, A., Vandenbulcke, L., Verbrugge, N.,
Viktorsson, L., Wakelin, S. L., Zacharioudaki, A., and Zuo, H.: Copernicus
Marine Service Ocean State Report, J. Oper. Oceanogr., 11, 1–142,
https://doi.org/10.1080/1755876X.2018.1489208, 2018. a
Short summary
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m contains enough oxygen to support marine life such as fish. This oxygenation depth has been shown to be decreasing (1955–2019). Here, we evidence that atmospheric warming induced a clear shift in an important ventilation mechanism. We highlight the impact of this shift on oxygenation. There are important implications for marine life and carbon and nutrient cycling if this new ventilation regime persists.
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m...
Altmetrics
Final-revised paper
Preprint