Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Lyla L. Taylor
CORRESPONDING AUTHOR
Leverhulme Centre for Climate Change Mitigation, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
Charles T. Driscoll
Department of Civil and Environmental Engineering, 151 Link Hall,
Syracuse University, Syracuse, NY 13244, USA
Peter M. Groffman
City University of New York, Advanced Science Research Center at the Graduate Center, New York, NY 10031, USA
Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
Greg H. Rau
Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
Joel D. Blum
Department of Earth and Environmental Sciences, University of
Michigan, Ann Arbor, MI 48109, USA
David J. Beerling
Leverhulme Centre for Climate Change Mitigation, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
Related authors
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024, https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Short summary
Human-induced nitrogen (N) from fertilization and septic effluents is the primary N source in urban watersheds. We developed a model to understand how spatial and temporal patterns of these loads affect hydrologic and biogeochemical processes at the hillslope level. The comparable simulations to observations showed the ability of our model to enhance insights into current water quality conditions, identify high-N-retention locations, and plan future restorations to improve urban water quality.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Jun Zhou, Zhangwei Wang, Xiaoshan Zhang, Charles T. Driscoll, and Che-Jen Lin
Atmos. Chem. Phys., 20, 16117–16133, https://doi.org/10.5194/acp-20-16117-2020, https://doi.org/10.5194/acp-20-16117-2020, 2020
Short summary
Short summary
Mercury (Hg) emissions from natural resources have a large uncertainty, which is mainly derived from the forest. A long-term and multiplot (10) study of soil–air fluxes at subtropical and temperate forests was conducted. Forest soils are an important atmospheric Hg source, especially for subtropical forests. The compensation points imply that the atmospheric Hg concentration plays a critical role in inhibiting Hg emissions from the forest floor. Climate change can enhance soil Hg emissions.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Maha Deeb, Peter M. Groffman, Manuel Blouin, Sara Perl Egendorf, Alan Vergnes, Viacheslav Vasenev, Donna L. Cao, Daniel Walsh, Tatiana Morin, and Geoffroy Séré
SOIL, 6, 413–434, https://doi.org/10.5194/soil-6-413-2020, https://doi.org/10.5194/soil-6-413-2020, 2020
Short summary
Short summary
The goal of this study was to discuss current methods to create soils adapted for various green infrastructure (GI) designs. Investigating these new soils for several design categories of GI will provide technical information for management and design agencies. Moreover, these studies can serve as pioneer experiments to prevent recurring errors and, thus, provide improved plant growth practices. Results show that these constructed soils have a high potential to provide multiple soil functions.
Cited articles
Bailey, S., Horsley, S., Long, R., and Hallett, R.: Influence of edaphic
factors on sugar maple nutrition and health on the Allegheny Plateau,
Soil Sci. Soc. Am. J., 68, 243–252, 2004.
Balogh-Brunstad, Z., Keller, C. K., Bormann, B. T., O'Brien, R., Wang, D.,
and Hawley, G.: Chemical weathering and chemical denudation dynamics through
ecosystem development and disturbance, Global Biogeochem. Cy., 22,
GB1007, https://doi.org/10.1029/2007GB002957, 2008.
Battles, J. J., Fahey, T. J., Driscoll Jr., C. T., Blum, J. D., and Johnson,
C. E.: Restoring soil calcium reverses forest decline, Environ. Sci. Technol. Lett., 1, 15–19, 2014.
Battles, J. J., Driscoll Jr., C. T., Bailey, S. W., Blum, J. D., Buso, D. C.,
Fahey, T. J., Fisk, M., Groffman, P. M., Johnson, C., and Likens, G.: Forest
Inventory of a Calcium Amended Northern Hardwood Forest: Watershed 1, 2011,
Hubbard Brook Experimental Forest, Environmental Data Initiative, https://doi.org/10.6073/pasta/94f9084a3224c1e3e0ed38763f8dae02, 2015a.
Battles, J. J., Driscoll Jr., C. T., Bailey, S. W., Blum, J. D., Buso, D. C.,
Fahey, T. J., Fisk, M., Groffman, P. M., Johnson, C., and Likens, G.: Forest
Inventory of a Calcium Amended Northern Hardwood Forest: Watershed 1, 2006,
Hubbard Brook Experimental Forest, Environmental Data Initiative, https://doi.org/10.6073/pasta/37c5a5868158e87db2d30c2d62a57e14, 2015b.
Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson,
P. N., Bird, M., Kantzas, E., Taylor, L. L., and Sarkar, B.: Farming with
crops and rocks to address global climate, food and soil security, Nat.
Plants, 4, 138–147, 2018.
Blum, J. D.: Streamwater Ca, Sr and 87Sr/86Sr measurements on
Watershed 1 at the Hubbard Brook Experimental Forest, Environmental Data
Initiative, https://doi.org/10.6073/pasta/43ebc0f959780cfc30b7ad53cc4a3d3e, 2019.
Blum, J. D., Klaue, A., Nezat, C. A., Driscoll, C. T., Johnson, C. E.,
Siccama, T. G., Eagar, C., Fahey, T. J., and Likens, G. E.: Mycorrhizal
weathering of apatite as an important calcium source in base-poor forest
ecosystems, Nature, 417, 729–731, 2002.
Brantley, S. L., Kubicki, J. D., and White, A. F.: Kinetics of water-rock
interaction, Springer, New York, USA, 2008.
Campbell, J.: Hubbard Brook Experimental Forest (USDA Forest Service): Daily
Streamflow by Watershed, 1956–present, Environmental Data Initiative, https://doi.org/10.6073/pasta/727ee240e0b1e10c92fa28641bedb0a3, 2015.
Campbell, J.: Hubbard Brook Experimental Forest (USDA Forest Service): Daily
Mean Temperature Data, 1955–present, Environmental Data Initiative, https://doi.org/10.6073/pasta/75b416d670de920c5ace92f8f3182964, 2016.
Campbell, J. L., Driscoll, C. T., Eagar, C., Likens, G. E., Siccama, T. G.,
Johnson, C. E., Fahey, T. J., Hamburg, S. P., Holmes, R. T., and Bailey, A.
S.: Long-term trends from ecosystem research at the Hubbard Brook
Experimental Forest, Gen. Tech. Rep. NRS-17, US
Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA, USA, 41 p., 2007.
Campbell, J. L., Rustad, L. E., Boyer, E. W., Christopher, S. F., Driscoll,
C. T., Fernandez, I. J., Groffman, P. M., Houle, D., Kiekbusch, J., and
Magill, A. H.: Consequences of climate change for biogeochemical cycling in
forests of northeastern North America, Can. J. Forest Res.,
39, 264–284, 2009.
Cawley, K. M., Campbell, J., Zwilling, M., and Jaffé, R.: Evaluation of
forest disturbance legacy effects on dissolved organic matter
characteristics in streams at the Hubbard Brook Experimental Forest, New
Hampshire, Aquat. Sci., 76, 611–622, 2014.
Chetelat, B., Liu, C.-Q., Zhao, Z., Wang, Q., Li, S., Li, J., and Wang, B.:
Geochemistry of the dissolved load of the Changjiang Basin rivers:
anthropogenic impacts and chemical weathering, Geochim. Cosmochim.
Ac., 72, 4254–4277, 2008.
Cho, Y., Driscoll, C. T., Johnson, C. E., Blum, J. D., and Fahey, T. J.:
Watershed-level responses to calcium silicate treatment in a northern
hardwood forest, Ecosystems, 15, 416–434, 2012.
Curry, K. C.: Mineral Commodity Summaries: Wollastonite, available at:
https://www.usgs.gov/centers/nmic/wollastonite-statistics-and-information,
last access: 11 September 2019.
De Klein, C., Novoa, R. S. A., Ogle, S., Smith, K. A., Rochette, P., Wirth, T. C., McConkey, B. G., Mosier, A., and Rypdal, K.: N2O
emissions from managed soils, and CO2 emissions from lime and urea
application, in: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 4: Agriculture, Forestry and Other Land Use, edited by: Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Institute for Global Environmental Strategies (IGES), Intergovernmental Panel on Climate Change (IPPC), Kanagawa, Japan, 11.11–11.54,
2006.
Driscoll, C. T.: Longitudinal Stream Chemistry at the Hubbard Brook
Experimental Forest, Watershed 1, 1991–present, Environmental Data
Initiative, https://doi.org/10.6073/pasta/fcfa498c5562ee55f6e84d7588a980d2, 2016a.
Driscoll, C. T.: Longitudinal Stream Chemistry at the Hubbard Brook
Experimental Forest, Watershed 6, 1982–present, Environmental Data
Initiative, https://doi.org/10.6073/pasta/0033e820ff0e6a055382d4548dc5c90c, 2016b.
Driscoll, C. T., Bailey, S. W., Blum, J. D., Buso, D. C., Eagar, C., Fahey,
T. J., Fisk, M., Groffman, P. M., Johnson, C., Likens, G., Hamburg, S. P.,
and Siccama, T. G.: Forest Inventory of a Calcium Amended Northern Hardwood
Forest: Watershed 1, 2001, Hubbard Brook Experimental Forest, Environmental
Data Initiative, https://doi.org/10.6073/pasta/a2300121b6d594bbfcb3256ca1c300c8, 2015a.
Driscoll Jr., C. T., Bailey, S. W., Blum, J. D., Buso, D. C., Eagar, C.,
Fahey, T. J., Fisk, M., Groffman, P. M., Johnson, C., Likens, G., Hamburg,
S. P., and Siccama, T. G.: Forest Inventory of a Calcium Amended Northern
Hardwood Forest: Watershed 1, 1996, Hubbard Brook Experimental Forest.
Environmental Data Initiative, https://doi.org/10.6073/pasta/9ff720ba22aef2b40fc5d9a7b374aa52, 2015b.
Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., Tang, J., and
Mulder, J.: Acid deposition in Asia: emissions, deposition, and ecosystem
effects, Atmos. Environ., 146, 55–69, https://doi.org/10.1016/j.atmosenv.2016.07.018, 2016.
Energy Information Administration: Inventory of Power Plants in the United
States, United States Department of Energy, Washington, DC, USA, DCDOE/EIA-0095(97),
431 pp., 1997.
Energy Information Administration: Energy-Related Carbon Dioxide Emissions
by State, 2005–2016, United States Department of Energy, Washington, D.C.
20585, USA, 34 pp., 2019.
Fahey, T., Siccama, T., Driscoll, C., Likens, G., Campbell, J., Johnson, C.,
Battles, J., Aber, J., Cole, J., and Fisk, M.: The biogeochemistry of carbon
at Hubbard Brook, Biogeochemistry, 75, 109–176, 2005.
Fahey, T. J., Heinz, A. K., Battles, J. J., Fisk, M. C., Driscoll, C. T.,
Blum, J. D., and Johnson, C. E.: Fine root biomass declined in response to
restoration of soil calcium in a northern hardwood forest, Can. J. Forest Res., 46, 738–744, 2016.
Fakhraei, H. and Driscoll, C. T.: Proton and aluminum binding properties of
organic acids in surface waters of the northeastern US, Environ.
Sci. Technol., 49, 2939–2947, https://doi.org/10.1021/es504024u, 2015.
Fakhraei, H., Driscoll, C. T., Renfro, J. R., Kulp, M. A., Blett, T. F.,
Brewer, P. F., and Schwartz, J. S.: Critical loads and exceedances for
nitrogen and sulfur atmospheric deposition in Great Smoky Mountains National
Park, United States, Ecosphere, 7, e01466, https://doi.org/10.1002/ecs2.1466, 2016.
Ferree, C. and Anderson, M. G.: A map of terrestrial habitats of the
Northeastern United States: methods and approach, Nature Conservancy,
Eastern Conservation Science, Eastern Regional Office, Boston, USA, 2013.
Fuller, R., Driscoll, C., Lawrence, G., and Nodvin, S.: Processes regulating
sulphate flux after whole-tree harvesting, Nature, 325, 707–710, 1987.
Garmo, Ø. A., Skjelkvåle, B. L., de Wit, H. A., Colombo, L., Curtis,
C., Fölster, J., Hoffmann, A., Hruška, J., Høgåsen, T., and
Jeffries, D. S.: Trends in surface water chemistry in acidified areas in
Europe and North America from 1990 to 2008, Water Air Soil Poll.,
225, 1880, https://doi.org/10.1007/s11270-014-1880-6, 2014.
Godman, R. M., Yawney, H. W., and Tubbs, C. H.: Acer saccharum Marsh. sugar
maple, in: Silvics of North America Volume 2, Agriculture Handbook 654,
tech. coords. Burns, R. M. and Honkala, B. H., United States Department of
Agriculture, Forest Service, Washington, D.C., USA, 1990.
Goodale, C. L. and Aber, J. D.: The long-term effects of land-use history
on nitrogen cycling in northern hardwood forests, Ecol. Appl.,
11, 253–267, 2001.
Groffman, P. M.: Forest soil: atmosphere fluxes of carbon dioxide, nitrous
oxide and methane at the Hubbard Brook Experimental Forest, 1997–present,
Environmental Data Initiative, https://doi.org/10.6073/pasta/9d017f1a32cba6788d968dc03632ee03, 2016.
Groffman, P. M., Fisk, M. C., Driscoll, C. T., Likens, G. E., Fahey, T. J.,
Eagar, C., and Pardo, L. H.: Calcium additions and microbial nitrogen cycle
processes in a northern hardwood forest, Ecosystems, 9, 1289–1305, 2006.
Hamilton, S. K., Kurzman, A. L., Arango, C., Jin, L., and Robertson, G. P.:
Evidence for carbon sequestration by agricultural liming, Global Biogeochem. Cy., 21, GB2021, https://doi.org/10.1029/2006GB002738, 2007.
Harrison, R. B., Johnson, D. W., and Todd, D. E.: Sulfate adsorption and
desorption reversibility in a variety of forest soils, J.
Environ. Qual., 18, 419–426, 1989.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., Christina, L.,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev.
Geophys., 51, 113–149, 2013.
Hindar, A., Wright, R. F., Nilsen, P., Larssen, T., and Høgberget, R.:
Effects on stream water chemistry and forest vitality after whole-catchment
application of dolomite to a forest ecosystem in southern Norway, Forest
Ecol. Manag., 180, 509–525, 2003.
Hu, M., Chen, D., and Dahlgren, R. A.: Modeling nitrous oxide emission from
rivers: a global assessment, Glob. Change Biol., 22, 3566–3582, 2016.
Huettl, R. F. and Zoettl, H.: Liming as a mitigation tool in Germany's
declining forests – reviewing results from former and recent trials, Forest
Ecol. Manag., 61, 325–338, 1993.
Jacobson, A. D. and Blum, J. D.: Relationship between mechanical erosion
and atmospheric CO2 consumption in the New Zealand Southern Alps, Geology,
31, 865–868, 2003.
Johnson, C. E., Driscoll, C. T., Blum, J. D., Fahey, T. J., and Battles, J.
J.: Soil chemical dynamics after calcium silicate addition to a northern
hardwood forest, Soil Sci. Soc. Am. J., 78, 1458–1468,
2014.
Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E., and McDowell,
W. H.: “Acid rain”, dissolved aluminum and chemical weathering at the
Hubbard Brook Experimental Forest, New Hampshire, Geochim. Cosmochim.
Ac., 45, 1421–1437, 1981.
Köhler, S., Laudon, H., Wilander, A., and Bishop, K.: Estimating organic
acid dissociation in natural surface waters using total alkalinity and TOC,
Water Res., 34, 1425–1434, 2000.
Larssen, S., Barrett, K. J., Fiala, J., Goodwin, J., Hagen, L. O.,
Henriksen, J. F., de Leeuw, F., Tarrason, L., and van Aalst, R.: Air quality
in Europe: State and trends 1990-99, No. 4-2002, European Environment
Agency, Copenhagen, Denmark, 2003.
Lawrence, G., Sullivan, T., Burns, D., Bailey, S., Cosby, B., Dovciak, M.,
Ewing, H., McDonnel, T., Minocha, R., and Rice, K.: Acidic deposition along
the Appalachian Trail corridor and its effects on acid-sensitive terrestrial
and aquatic resources: results of the Appalachian Trail MEGA-transect
atmospheric deposition effects study, National Park Service, Fort Collins,
Colorado, USA, 2015.
Likens, G. E.: Chemistry of Bulk Precipitation at Hubbard Brook Experimental
Forest, Watershed 6, 1963–present, Environmental Data Initiative, https://doi.org/10.6073/pasta/8d2d88dc718b6c5a2183cd88aae26fb1, 2016a.
Likens, G. E.: Chemistry of Bulk Precipitation at Hubbard Brook Experimental
Forest, Watershed 1, 1963–present, Environmental Data Initiative, https://doi.org/10.6073/pasta/df90f97d15c28daeb7620b29e2384bb9, 2016b.
Likens, G. E.: Biogeochemistry of a forested ecosystem, 3rd edn., Springer
Science & Business Media, New York, USA, 208 pp., 2013.
Likens, G. E. and Bailey, S. W.: The discovery of acid rain at the Hubbard
Brook Experimental Forest: a story of collaboration and long-term research,
in: USDA Forest Service Experimental Forests and Ranges, Springer, New York, USA, 463–482, 2014.
Likens, G. E., Buso, D. C., Dresser, B. K., Bernhardt, E. S., Hall Jr., R.
O., Macneale, K. H., and Bailey, S. W.: Buffering an acidic stream in New
Hampshire with a silicate mineral, Restor. Ecol., 12, 419–428, 2004.
Littlewood, I., Watts, C., and Custance, J.: Systematic application of
United Kingdom river flow and quality databases for estimating annual river
mass loads (1975–1994), Sci. Total Environ., 210, 21–40,
1998.
Long, R. P., Horsley, S. B., Hallett, R. A., and Bailey, S. W.: Sugar maple
growth in relation to nutrition and stress in the northeastern United
States, Ecol. Appl., 19, 1454–1466, 2009.
Long, R. P., Horsley, S. B., and Hall, T. J.: Long-term impact of liming on
growth and vigor of northern hardwoods, Can. J. Forest Res.,
41, 1295–1307, 2011.
Longman, J., Palmer, M. R., and Gernon, T. M. J. A.: Viability of greenhouse
gas removal via the artificial addition of volcanic ash to the ocean,
Anthropocene, 32, 100264, https://doi.org/10.1016/j.ancene.2020.100264, 2020.
Lovett, G. M., Likens, G. E., Buso, D. C., Driscoll, C. T., and Bailey, S.
W.: The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA,
Biogeochemistry, 72, 191–232, 2005.
Lovett, G. M., Arthur, M. A., and Crowley, K. F.: Effects of calcium on the
rate and extent of litter decomposition in a northern hardwood forest,
Ecosystems, 19, 87–97, 2016.
Lundström, U., Bain, D., Taylor, A., and Van Hees, P.: Effects of
acidification and its mitigation with lime and wood ash on forest soil
processes: a review, Water, Air and Soil Pollution: Focus, 3, 5–28, 2003.
Martin, A. R., Doraisami, M., and Thomas, S. C.: Global patterns in wood
carbon concentration across the world's trees and forests, Nat.
Geosci., 11, 915–920, https://doi.org/10.1038/s41561-018-0246-x, 2018.
McLauchlan, K. K., Craine, J. M., Oswald, W. W., Leavitt, P. R., and Likens,
G. E.: Changes in nitrogen cycling during the past century in a northern
hardwood forest, P. Natl. Acad. Sci. USA, 104,
7466–7470, 2007.
Melvin, A. M., Lichstein, J. W., and Goodale, C. L.: Forest liming increases
forest floor carbon and nitrogen stocks in a mixed hardwood forest,
Ecol. Appl., 23, 1962–1975, 2013.
Mohseni, O. and Stefan, H.: Stream temperature/air temperature
relationship: a physical interpretation, J. Hydrol., 218,
128–141, 1999.
Moon, S., Chamberlain, C., and Hilley, G.: New estimates of silicate
weathering rates and their uncertainties in global rivers, Geochim.
Cosmochim. Ac., 134, 257–274, 2014.
Moosdorf, N., Renforth, P., and Hartmann, J.: Carbon dioxide efficiency of
terrestrial enhanced weathering, Environ. Sci. Technol., 48,
4809–4816, 2014.
Négrel, P., Allègre, C. J., Dupré, B., and Lewin, E.: Erosion
sources determined by inversion of major and trace element ratios and
strontium isotopic ratios in river water: the Congo Basin case, Earth
Planet. Sc. Lett., 120, 59–76, 1993.
Nezat, C. A., Blum, J. D., and Driscoll, C. T.: Patterns of Ca/Sr and
87Sr/86Sr variation before and after a whole watershed CaSiO3
addition at the Hubbard Brook Experimental Forest, USA, Geochim.
Cosmochim. Ac., 74, 3129–3142, https://doi.org/10.1016/j.gca.2010.03.013, 2010.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P.: Climate
change 2014: synthesis report. Contribution of Working Groups I, II and III
to the fifth assessment report of the Intergovernmental Panel on Climate
Change, IPCC, Geneva, Switzerland, 2014.
Parkhurst, D. L. and Appelo, C.: User's guide to PHREEQC (Version 2): A
computer program for speciation, batch-reaction, one-dimensional transport,
and inverse geochemical calculations, US Geological Survey, Denver, USA, 326 pp., 1999.
Peters, S. C., Blum, J. D., Driscoll, C. T., and Likens, G. E.: Dissolution
of wollastonite during the experimental manipulation of Hubbard Brook
Watershed 1, Biogeochemistry, 67, 309–329, https://doi.org/10.1023/B:BIOG.0000015787.44175.3f, 2004.
Renforth, P.: The potential of enhanced weathering in the UK, Int.
J. Greenh. Gas Con., 10, 229–243, 2012.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M.: Mitigation Pathways Compatible
with 1.5 ∘C in the Context of Sustainable Development, in: Global
Warming of 1.5 ∘C, an IPCC special report on the impacts of
global warming of 1.5 ∘C above pre-industrial levels and related
global greenhouse gas emission pathways, in the context of strengthening the
global response to the threat of climate change, Intergovernmental Panel on
Climate Change, available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_Low_Res.pdf (last access: 18 October 2019), 2018.
Rosi-Marshall, E. J., Bernhardt, E. S., Buso, D. C., Driscoll, C. T., and
Likens, G. E.: Acid rain mitigation experiment shifts a forested watershed
from a net sink to a net source of nitrogen, P. Natl.
Acad. Sci. USA, 113, 7580–7583, 2016.
Schaberg, P. G., Miller, E. K., and Eagar, C.: Assessing the threat that
anthropogenic calcium depletion poses to forest health and productivity, US
Department of Agriculture, Forest Service, Pacific Northwest and Southern
Research Stations, Portland, OR, USA, 37–58, 2010.
Schlesinger, W. H. and Amundson, R.: Managing for soil carbon
sequestration: Let's get realistic, Glob. Change Biol., 25, 386–389, https://doi.org/10.1111/gcb.14478, 2018.
Sebestyen, S. D., Boyer, E. W., and Shanley, J. B.: Responses of stream
nitrate and DOC loadings to hydrological forcing and climate change in an
upland forest of the northeastern United States, J. Geophys.
Res.-Biogeo., 114, G02002, https://doi.org/10.1029/2008JG000778, 2009.
Shao, S., Driscoll, C. T., Johnson, C. E., Fahey, T. J., Battles, J. J., and
Blum, J. D.: Long-term responses in soil solution and stream-water chemistry
at Hubbard Brook after experimental addition of wollastonite, Environ. Chem,
13, 528–540, 2016.
Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D'agosto, M.,
Dimitriu, D., Figueroa Meza, M., Fulton, L., Kobayashi, S., and Lah, O.:
Transport, Cambridge University Press, Cambridge, UK and New York, USA, 2014.
Sopper, W. E. and Lull, H. W.: The representativeness of small forested
experimental watersheds in northeastern United States, International
Association of Hydrological Sciences, 66, 441–456, 1965.
Stamboliadis, E., Pantelaki, O., and Petrakis, E.: Surface area production
during grinding, Miner. Eng., 22, 587–592, 2009.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of carbon dioxide removal by enhanced weathering of
rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018.
Tans, P. and Keeling, R.: Mauna Loa CO2 monthly mean data, United
States National Oceanic and Atmospheric Administration, Global Monitoring
Laboratory, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html (last access: 15 April 2020), 2017.
Teien, H.-C., Kroglund, F., Åtland, Å., Rosseland, B. O., and Salbu,
B.: Sodium silicate as alternative to liming-reduced aluminium toxicity for
Atlantic salmon (Salmo salar L.) in unstable mixing zones, Sci.
Total Environ., 358, 151–163, 2006.
The Royal Society and the Royal Academy of Engineering: Greenhouse gas
removal, 134 pp., available at:
https://royalsociety.org/topics-policy/projects/greenhouse-gas-removal (last access: 24 April 2019),
2018.
Traaen, T., Frogner, T., Hindar, A., Kleiven, E., Lande, A., and Wright, R.:
Whole-catchment liming at Tjønnstrond, Norway: an 11-year record, Water,
Air Soil Poll., 94, 163–180, 1997.
United States Environmental Protection Agency: Emissions & Generation
Resource Integrated Database (eGRID), available at:
https://www.epa.gov/sites/production/files/2018-02/egrid2016_all_files_since_1996.zip (last access: 16 September 2019), 1999.
Virta, R. L.: Minerals Yearbook: Wollastonite, available at:
https://www.usgs.gov/centers/nmic/wollastonite-statistics-and-information (last access: 21 June 2019), 2000.
Zhao, Y., Duan, L., Xing, J., Larssen, T., Nielsen, C. P., and Hao, J.: Soil
acidification in China: is controlling SO2 emissions enough?,
Environ. Sci. Technol., 43, 8021–8026, https://doi.org/10.1021/es901430n,
2009.
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil...
Altmetrics
Final-revised paper
Preprint