Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Mindaugas Zilius
CORRESPONDING AUTHOR
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Irma Vybernaite-Lubiene
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Diana Vaiciute
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Donata Overlingė
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Evelina Grinienė
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Anastasija Zaiko
Coastal and Freshwater Group, Cawthron Institute, Nelson, 7042, New
Zealand
Institute of Marine Science, University of Auckland, Auckland,
Private Bag 92019, New Zealand
Stefano Bonaglia
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Department of Marine Sciences, University of Gothenburg, Box 461,
Gothenburg, 40530, Sweden
Iris Liskow
Department of Biological Oceanography, Leibniz Institute for Baltic
Sea Research, Rostock, 18119, Germany
Maren Voss
Department of Biological Oceanography, Leibniz Institute for Baltic
Sea Research, Rostock, 18119, Germany
Agneta Andersson
Department of Ecology and Environmental Sciences, Umeå University,
Umeå, 90187, Sweden
Sonia Brugel
Department of Ecology and Environmental Sciences, Umeå University,
Umeå, 90187, Sweden
Tobia Politi
Marine Research Institute, Klaipėda University, Klaipėda, 92294,
Lithuania
Paul A. Bukaveckas
CORRESPONDING AUTHOR
Center for Environmental Studies, Virginia Commonwealth University,
Richmond, VA 23284, USA
Related authors
Mindaugas Žilius, Rūta Barisevičiūtė, Stefano Bonaglia, Isabell Klawonn, Elise Lorre, Tobia Politi, Irma Vybernaite-Lubiene, Maren Voss, and Paul Bukaveckas
EGUsphere, https://doi.org/10.5194/egusphere-2023-3054, https://doi.org/10.5194/egusphere-2023-3054, 2024
Preprint archived
Short summary
Short summary
This study analyzes the mechanisms driving nitrate retention and elimination within a large estuarine system. Simultaneous measurements of pelagic and benthic processes provide insight into how nitrates are transformed. Finally, our findings are consistent with the paradigm that eutrophication favors a shift from benthic to pelagic-dominated processes.
Noémie Choisnard, Josephin Lemke, Jenny Fabian, Iris Liskow, Heide Schulz-Vogt, and Maren Voss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3514, https://doi.org/10.5194/egusphere-2025-3514, 2025
Short summary
Short summary
We studied nitrogen cycling during a coastal upwelling event off central Chile using nitrate isotope measurements and high-precision oxygen sensors. Our results show that microbes actively perform nitrification even under extremely low oxygen conditions. This reveals previously overlooked activity in oxygen minimum zones and highlights the need for high-resolution data to better understand nutrient dynamics and ocean productivity.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Mindaugas Žilius, Rūta Barisevičiūtė, Stefano Bonaglia, Isabell Klawonn, Elise Lorre, Tobia Politi, Irma Vybernaite-Lubiene, Maren Voss, and Paul Bukaveckas
EGUsphere, https://doi.org/10.5194/egusphere-2023-3054, https://doi.org/10.5194/egusphere-2023-3054, 2024
Preprint archived
Short summary
Short summary
This study analyzes the mechanisms driving nitrate retention and elimination within a large estuarine system. Simultaneous measurements of pelagic and benthic processes provide insight into how nitrates are transformed. Finally, our findings are consistent with the paradigm that eutrophication favors a shift from benthic to pelagic-dominated processes.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Paul A. Bukaveckas
Biogeosciences, 19, 4209–4226, https://doi.org/10.5194/bg-19-4209-2022, https://doi.org/10.5194/bg-19-4209-2022, 2022
Short summary
Short summary
Inland waters play an important role in the global carbon cycle by storing, transforming and transporting carbon from land to sea. Comparatively little is known about carbon dynamics at the river–estuarine transition. A study of tributaries of Chesapeake Bay showed that biological processes exerted a strong effect on carbon transformations. Peak carbon retention occurred during periods of elevated river discharge and was associated with trapping of particulate matter.
Cited articles
Adam, B., Klawonn, I., Svedén, J., Bergkvist, J., Nahar, N., Walve, J.,
Littmann, S., Whitehouse, M. J., Lavik, G., Kuypers, M. M. M., and Ploug,
H.: N2-fixation, ammonium release and N-transfer to the microbial and
classical food web within a plankton community, ISME J., 10, 450–459,
https://doi.org/10.1038/ismej.2015.126, 2016.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and
Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal
in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238,
https://doi.org/10.1002/lno.10644, 2017.
Bangel, H., Schernewski, G., Bachor, A., and Landsberg-Uczciwek, M.: Spatial
pattern and long-term development of water quality in the Oder Estuary, in:
The Oder Estuary–against the background of the European Water Framework
Directive 57, edited by: Schernewski, G, and Dolch, T., Marine Science
Reports, Warnemünde, Germany, 17–65, 2004.
Bartoli, M., Zilius, M., Bresciani, M., Vaiciute, D., Vybernaite-Lubiene,
I., Petkuviene, J., Giordani, G., Daunys, D., Ruginis, T., Benelli, S.,
Giardino, C., Bukaveckas, P. A., Zemlys, P., Griniene, E., Gasiunaite, Z.
R., Lesutiene, J., Pilkaityte, R., and Baziukas-Razinkovas, A.: Drivers of
cyanobacterial blooms in a hypertrophic lagoon, Front. Mar. Sci., 5, 434,
https://doi.org/10.3389/fmars.2018.00434, 2019.
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S., Markager, S., and Riemann, L.: Significant N2
fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria
in two temperate estuaries, ISME J., 9, 273–285,
https://doi.org/10.1038/ismej.2014.119, 2015.
Berg, C., Dupont, C. L., Asplund-Samuelsson, J., Celepli, N. A., Eiler, A.,
Allen, A. E., Ekman, M., Bergman, B., and Ininbergs, K.: Dissection of
microbial community functions during a cyanobacterial bloom in the Baltic
Sea via metatranscriptomics, Front. Mar. Sci., 5, 55,
https://doi.org/10.3389/fmars.2018.00055, 2018.
Berner, Ch., Bertos-Fortis, M., Pinhassi, J., and Legrand, C.: Response of
microbial communities to changing climate conditions during summer
cyanobacterial blooms in the Baltic Sea, Front. Microbiol., 9, 1562,
https://doi.org/10.3389/fmicb.2018.01562, 2018.
Bertos-Fortis, M., Farnelid, H. M., Lindh, M. V., Casini, M., Andersson, A.,
Pinhassi, J., and Legrand, C.: Unscrambling cyanobacteria community dynamics
related to environmental factors, Front. Microbiol., 7, 625, https://doi.org/10.3389/fmicb.2016.00625, 2016.
Bombar D, Paerl, R. W., Anderson, R., and Riemann, L.: Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes, Front. Mar. Sci., 5, 6,
https://doi.org/10.3389/fmars.2018.00006, 2018.
Bresciani, M., Giardino, C., Stroppiana, D., Pilkaitytė, R., Zilius, M., Bartoli, M., and Razinkovas, A.: Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon, J. Coast. Conserv., 16, 511–519, https://doi.org/10.1007/s11852-012-0192-5, 2012.
Bresciani, M., Adamo, M., De Carolis, G., Matta, E., Pasquariello, G.,
Vaičiūtė, D., and Giardino, C.: Monitoring blooms and surface
accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and
ASAR data, Remote Sens. Environ., 146, 124–135,
https://doi.org/10.1016/j.rse.2013.07.040, 2014.
Broman, E., Zilius, M., Samuiloviene, A., Vybernaite-Lubiene, I., Politi,
T., Klawonn, I., Voss, M., Nascimento, F. J. A., and Bonaglia, S.: Active
DNRA and denitrification in oxic hypereutrophic waters, Water Res., 194, 116964
https://doi.org/10.1016/j.watres.2021.116954, 2020.
Bukaveckas. P. A., Katarzyte, M., Schlegel, A., Spuriene R., Egerton, T.,
and Vaiciute, D.: Composition and settling properties of suspended
particulate matter in estuaries of the Chesapeake Bay and Baltic Sea
regions, J. Soils Sediments, 19, 2580–2593, https://doi.org/10.1007/s11368-018-02224-z,
2019.
Cauwet, G.: Determination of dissolved organic carbon and nitrogen by high
temperature combustion, in: Methods of seawater analysis, edited by:
Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH Verlag GmbH,
Weinheim, Germany, 407–420, 1999.
Clarke, K. R. and Gorley, R. N.: PRIMER v7: User Manual/Tutorial, PRIMER-E, Plymouth, UK, 2015.
Coles, V. J., Wilson, C., and Hood, R.: Remote sensing of new production
fuelled by nitrogen, Geophys. Res. Lett., 31, L0630,
https://doi.org/10.1029/2003GL019018, 2004.
De Santi, F., Luciani, G., Bresciani, M., Giardino. C., Lovergine, F. P., Pasquariello, G., Vaiciute, D., and De Carolis, G.: Synergistic use of synthetic aperture radar and optical imagery to monitor surface accumulation of cyanobacteria in the Curonian Lagoon, J. Mar. Sci. Eng., 7, 461, https://doi.org/10.3390/jmse7120461, 2019.
Dmitrieva, O. A. and Semenova, A. S.: Seasonal dynamics and trophic
interactions of phytoplankton and zooplankton in the Vistula lagoon of the
Baltic Sea, Oceanology, 52, 785–789, https://doi.org/10.1134/S0001437012060033, 2012.
Eglite E., Wodarg D., Dutz J., Wasmund N., Nausch, G., Liskow, I.,
Schulz-bull, D., and Loick-Wilde, N.: Strategies of amino acid supply in
mesozooplankton during cyanobacteria blooms: a stable nitrogen isotope
approach, Ecosphere, 9, e02135, https://doi.org/10.1002/ecs2.2135, 2018.
Farnelid, H., Turk-Kubo, K., Muñoz-Marín, M. C., and Zehr J. P.:
New insights into the ecology of the globally significant uncultured
nitrogen-fixing symbiont UCYN-A, Aquat. Microb. Ecol., 77, 125–138,
https://doi.org/10.3354/ame01794, 2016.
Gao, Y., Cornwell, J. C., Stoecker, D. K., and Owens, M. S.: Influence of
cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes,
Limnol. Oceanogr., 59, 959–971, https://doi.org/10.4319/lo.2014.59.3.0959, 2014.
Gitelson, A. A., Schalles, J. F., and Hladik, C. M.: Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study, Remote Sens. Environ., 109, 464–472, https://doi.org/10.1016/j.rse.2007.01.016, 2007.
Gordon, H. R. and McCluney, W. R.: Estimation of the depth of sunlight
penetration in the sea for remote sensing, Appl. Opt., 14, 413–416, 1975.
Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater
analysis, 2nd edn., Verlag Berlin Chemie, Berlin, Germany, 1983.
Gruber, N.: The dynamics of the marine nitrogen cycle and its
influence on atmospheric CO2 variations, in: The ocean carbon cycle and
climate, Springer, Dordrecht, Germany, 97–148, 2004.
Hayes, N. M., Patoine, A., Haig, H. A., Simpson, G. L., Swarbrick, V. J.,
Wiik, E., and Leavitt, P. R.: Spatial and temporal variation in nitrogen
fixation and its importance to phytoplankton in phosphorus-rich lakes,
Freshw. Biol., 64, 269–283, https://doi.org/10.1111/fwb.13214, 2019.
Heinänen, A.: Bacterial numbers, biomas and productivity in the Baltic Sea: a cruise study, Mar. Ecol. Prog. Ser., 70, 283–290,
https://doi.org/10.3354/meps070283, 1991.
HELCOM: Manual of Marine Monitoring in the Combine Programme of HELCOM,
Annex C-6: guidelines concerning phytoplankton species composition,
abundance and biomass, available at: https://helcom.fi/media/publications/Guidelines-for-monitoring-phytoplankton-species-composition-abundance-and-biomass.pdf (last access: 30 August 2020),
2017.
Hoikkala, L., Tammert, H., Lignell, R., Eronen-Rasimus, E., Spilling, K.,
and Kisand, V.: Autochthonous dissolved organic matter drives bacterial
community composition during a bloom of filamentous cyanobacteria, Front.
Mar. Sci., 3, 111, https://doi.org/10.3389/fmars.2016.00111, 2016.
Hood, R. R., Subramaniam, A., Maya, L. R., Carpenter, E. J., and Capone, D.
G.: Remote estimation of nitrogen fixation by Trichodesmium, Deep-Sea Res. Pt. II, 49, 123–147, https://doi.org/10.1016/S0967-0645(01)00097-2, 2002.
INFORM: INFORM Prototype/Algorithm Validation Report Update, D5.15. p.
140, available at: http://inform.vgt.vito.be/files/documents/INFORM_D5.15_v1.0.pdf (last access: 19 August 2020), 2016.
Jeffrey, S. T. and Humphrey, G. F.: New spectrophotometric equations for
determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural
phytoplankton, Biochem. Physiol. Pflanz., 167, 191–194, 1975.
Karlson, A. M. L., Duberg, J., Motwani, N. H., Hogfors, H., Klawonn, I., Ploug, H., Svedén, J. B., Garbaras, A., Sundelin, B., Hajdu, S., Larsson, U., Elmgren, R., and Gorokhova, E.: Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs, Ambio, 44, 413–426, https://doi.org/10.1007/s13280-015-0660-x, 2015.
Klawonn, I., Bonaglia, S., Bruchert, V., and Ploug, H.: Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates, ISME J., 9, 1456–1466, https://doi.org/10.1038/ismej.2014.232, 2015.
Klawonn, I., Nahar, N., Walve, J., Andersson, B., Olofsson, M., Svedén,
J. B., Littmann, S., Whitehouse, M. J., Kuypers, M. M. M., and Ploug, H.:
Cell-specific nitrogen- and carbon-fixation of cyanobacteria in a temperate
marine system (Baltic Sea), Environ. Microbiol., 18, 4596–4609,
https://doi.org/10.1111/1462-2920.13557, 2016.
Klawonn, I., Bonaglia, S., Whitehouse, M. J., Littmann, S., Tienken, D.,
Kuypers, M. M. M., Brüchert, V., and Ploug, H. Untangling hidden
nutrient dynamics: rapid ammonium cycling and single-cell ammonium
assimilation in marine plankton communities, ISME J., 13, 1960–1974,
https://doi.org/10.1038/s41396-019-0386-z, 2019.
Koroleff, F.: Determination of phosphorus, in: Methods of Seawater Analysis, 2nd ed., edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K., Verlag Chemie, Weinheim, Germany, 125–132, 1983.
Kumar, K., Mella-Herrera, R. A., and Golden, J. W.: Cyanobacterial
Heterocysts, Cold Spring Harb. Perspect. Biol., 2, a000315,
https://doi.org/10.1101/cshperspect.a000315, 2010.
Lee, S., and Fuhrman, J. A.: Relationships between biovolume and biomass of
naturally derived marine bacterioplankton, Appl. Environ. Microbiol., 53,
1298–1303, 1987.
Lesutiene, J., Bukaveckas, P. A., Gasiunaite, Z. R., Pilkaityte, R., and
Razinkovas-Baziukas, A.: Tracing the isotopic signal of a cyanobacteria
bloom through the food web of a Baltic Sea coastal lagoon, Estuar. Coast.
Shelf Sci., 138, 47–56, https://doi.org/10.1016/j.ecss.2013.12.017, 2014.
Marie, D., Simon, N., and Vaulot, D.: Phytoplankton cell counting by flow
cytometry, in: Algal Culturing Techniques, edited by: Andersen, R. A.,
Academic Press, Cambridge, USA, 253–267, 2005.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protest plankton, Limnol. Oceanogr., 45,
569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche. J.:
Methodological underestimation of oceanic nitrogen fixation rates, Plos One,
5, e12583, https://doi.org/10.1371/journal.pone.0012583, 2010.
Moisander, P. H., W. Paerl, H. W., Dyble, J., and Sivonen, K.: Phosphorus
limitation and diel control of nitrogen-fixing cyanobacteria in the Baltic
Sea. Mar. Ecol. Prog. Ser., 345, 41–50, https://doi.org/10.3354/meps06964, 2007.
Mulholland, M. R., Bernhardt, P. W., Blanco-Garcia, J. L., Mannino, A.,
Hyde, K., Mondragon, E., Turk, K., Moisander, P. H., and Zehr, J. P.: Rates
of dinitrogen fixation and the abundance of diazotrophs in North American
coastal waters between Cape Hatteras and Georges Bank, Limnol. Oceanogr.,
57, 1067–1083, https://doi.org/10.4319/lo.2012.57.4.1067, 2012.
Ohlendieck, U., Gundersen, K., Meyerhöfer, M., Fritsche, P., Nachtigall, K., and Bergmann, B.: The significance of nitrogen fixation to new production during early summer in the Baltic Sea, Biogeosciences, 4, 63–73, https://doi.org/10.5194/bg-4-63-2007, 2007.
Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch,
S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A.,
Kokkonen, P., Ledaine, I., and Niemkiewicz, E.: Biovolumes and
size-classes of phytoplankton in the Baltic Sea, in: Baltic Sea
environmental proceedings, Helsinki Commission
Baltic Marine Environment Protection Commission., No. 106, 144 pp., 2006.
Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N., and Karlson, B.: Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea, Harmful Algae, 91, 101685, https://doi.org/10.1016/j.hal.2019.101685, 2020a.
Olofsson, M., Klawonn, I., and Karlson, B.: Nitrogen fixation estimates for
the Baltic Sea indicate high rates for the previously overlooked Bothnian
Sea, Ambio, 50, 203–214, https://doi.org/10.1007/s13280-020-01331-x, 2020b.
Paerl, H. W. and Otten, T. G.: Harmful cyanobacterial blooms: causes,
consequences and controls, Microb. Ecol., 65, 995–1010,
https://doi.org/10.1007/s00248-012-0159-y, 2013.
Paerl, H. W. and Paul, V. J.: Climate change: links to global expansion of harmful cyanobacteria, Water Res., 46, 1349–1363,
https://doi.org/10.1016/j.watres.2011.08.002, 2012.
Paerl, H. W., Fulton III, R. S., Moisander, P. H., and Dyble, J.:
Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci.
World J., 1, 76–113, https://doi.org/10.1100/tsw.2001.16, 2001.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A manual of chemical and
biological methods for seawater analysis, Pergamon Press, New York, USA, 173
pp., 1984.
Pastuszak, M., Witek, Z., Nagel, K., Wielgat, M., and Grelowski, A.: Role of
the Oder estuary (southern Baltic) in transformation of the riverine
nutrient loads, J. Mar. Syst., 57, 30–54,
https://doi.org/10.1016/j.jmarsys.2005.04.005, 2005.
Perez, B. C., Day Jr., J. W., Justic, D., Lane, R. R., and Twilley, R. R.:
Nutrient stoichiometry, freshwater residence time, and nutrient retention in
a river-dominated estuary in the Mississippi Delta, Hydrobiologia, 658,
41–54, https://doi.org/10.1007/s10750-010-0472-8, 2011.
Petkuviene, J., Zilius, M., Lubiene, I., Ruginis, T., Giordani, G.,
Razinkovas-Baziukas, A., and Bartoli, M.: Phosphorus cycling in a freshwater
estuary impacted by cyanobacterial blooms, Estuaries Coast, 39,
1386–1402, https://doi.org/10.1007/s12237-016-0078-0, 2016.
Pilkaitytė, R. and Razinkovas, A.: Seasonal changes in phytoplankton
composition and nutrient limitation in a shallow Baltic lagoon, Boreal
Environ. Res., 12, 551–559, 2007.
Ptacnik, R., Andersen, T., and Tamminen, T.: Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation, Ecosystems, 13, 1201–1214, https://doi.org/10.1007/s10021-010-9380-z, 2010.
Riemann, L., Farnelid, H., and Steward, G. F.: Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters, Aquat. Microb. Ecol., 61, 235–247, https://doi.org/10.3354/ame01431, 2010.
Riddick, C., Tyler, A., Hommersom, A., Alikas, K., Kangro, K., Ligi, M.,
Bresciani, M., Antilla, S., Vaiciute, D., Bucas, M., Tiskus, E., Dionisio
Pires, M., Warren, M., and Simis, S.: D5.3: Final Validation Report, EOMORES
Project Deliverable, available at: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc8c8b49&appId=PPGMS (last access: 10 September 2020),
2019.
Rolff, C., Almesjö, L., and Elmgren, R.: Nitrogen fixation and abundance
of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper. Mar. Ecol. Prog. Ser., 332, 107–118, 2007.
Savchuk, O. P.: Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016, Front. Mar. Sci., 5, 95, https://doi.org/10.3389/fmars.2018.00095, 2018.
Semenova A. S. and Dimitrieva Î. À.: Spatial and temporal aspects of toxic
effect of harmful algae on zooplankton in the Curonian Lagoon (the Baltic
Sea) in New series 1 by Trudy AtlantNIRO, AtlantNIRO, Kaliningrad, RUS,
56–69, 2017.
Stal, L. and Walsby, A.: Photosynthesis and nitrogen fixation in a
cyanobacterial bloom in the Baltic Sea, Eur. J. Phycol., 35, 97–108,
https://doi.org/10.1080/09670260010001735681, 2000.
Svedén, J. B., Adam, B., Walve, J., Nahar, N., Musat, N., Lavik, G.,
Whitehouse, M. J., Kuypers, M. M. M., and Ploug, H.: High cell-specific
rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon
sp. at low temperatures in the Baltic Sea, FEMS Microbiol. Ecol., 91,
fiv131, https://doi.org/10.1093/femsec/fiv131, 2015.
Umgiesser, G., Zemlys, P., Erturk, A., Razinkova-Baziukas, A., Mėžinė, J., and Ferrarin, C.: Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing, Ocean Sci., 12, 391–402, https://doi.org/10.5194/os-12-391-2016, 2016.
Utermöhl, H.: Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik, Int. Assoc. Theor. Appl. Limnol., 9, 1–38, 1958.
Vaičiūtė, D., Bučas, M., Bresciani, M.,
Dabulevičienė, T., Gintauskas, J., Mėžinė, J.,
Tiškus, E., Umgiesser, G., Morkūnas, J., De Santi, F., and Bartoli,
M.: Hot moments and hotspots of cyanobacteria hyperblooms in the Curonian
Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective
analysis, Sci. Total Environ., 769, 145053,
https://doi.org/10.1016/j.scitotenv.2021.145053, 2021.
Vermote, E. F., Tanre, D., Deize, J. L., Herman, M., ad Morcrette, J. J.:
Second simulation of the satellite signal in the solar spectrum, 6S: An
overview. IEEE T. Geosci. Remote, 35, 675–686,
https://doi.org/10.1109/36.581987, 1997.
Vybernaite-Lubiene, I., Zilius, M., Giordani, G., Petkuviene, J., Vaiciute,
D., Bukaveckas, P. A., and Bartoli, M.: Effect of algal blooms on retention
of N, Si and P in Europe's largest coastal lagoon, Estuar. Coast. Shelf
Sci., 194, 217–228, https://doi.org/10.1016/j.ecss.2017.06.020, 2017.
Vybernaite-Lubiene, I., Zilius, M., Saltyte-Vaisiauske, L., and Bartoli, M.:
Recent Trends (2012–2016) of N, Si, and P export from the Nemunas River
watershed: loads, unbalanced stoichiometry, and threats for downstream
aquatic ecosystems, Water-Sui, 10, 1178, https://doi.org/10.3390/w10091178, 2018.
Walve, J. and Larsson, U.: Blooms of Baltic Sea Aphanizomenon sp. (Cyanobacteria) collapse after internal phosphorus, Aquat. Microb. Ecol., 49, 57–69, https://doi.org/10.3354/ame01130, 2007.
Wannicke, N., Benavides, M., Dalsgaard, T., Dippner, J. W., Montoya, J. P.,
and Voss, M.: New perspectives on nitrogen fixation measurements using
15N2 gas, Front. Mar. Sci., 5, 120, https://doi.org/10.3389/fmars.2018.00120,
2018.
Werdell, P. J. and Bailey, S. W.: An improved in-situ bio-optical data set
for ocean color algorithm development and satellite data product validation,
Remote Sens. Environ., 98, 122–140, https://doi.org/10.1016/j.rse.2005.07.001, 2005.
White, A. E, Granger, J., Selden, C., Gradoville, M. R., Potts, L.,
Bourbonnais, A., Fulweiler, R. W., Knapp, A., Mohr, W., Moisander, P. H.,
Tobias, C. R., Caffin, M., Wilson, S. T., Benavides, M., Bonnet, S.,
Mulholland, M. R., and Chang, X. B.: A critical review of the 15N2
tracer method to measure diazotrophic production in pelagic ecosystems,
Limnol. Oceanogr.-Meth., 18, 129–147, https://doi.org/10.1002/lom3.10353
Woodland, R. J., Holland, D.P., Beardall, J., Smith, J., Scicluna, T., and
Cook, P. L. M.: Assimilation of diazotrophic nitrogen into pelagic food
webs, Plos One, 8, e67588, https://doi.org/10.1371/journal.pone.0067588, 2013.
Zakrisson, A., Larsson, U., and Höglander, H.: Do Baltic Sea
diazotrophic cyanobacteria take up combined nitrogen in situ?, J. Plankton.
Res., 36, 1368–1380, https://doi.org/10.1093/plankt/fbu053, 2014.
Zehr, J. P., Jenkins, B. D., Short, S. M., and Steward, G. F.: Nitrogenase
gene diversity and microbial community structure: a cross-system comparison,
Environ. Microbiol., 7, 539–54, https://doi.org/10.1046/j.1462-2920.2003.00451.x,
2003.
Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S., and Bellafiore, D.: Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model, Ocean Sci., 9, 573–584, https://doi.org/10.5194/os-9-573-2013, 2013.
Zilius, M., Bartoli, M., Bresciani, M., Katarzyte, M., Ruginis, T.,
Petkuviene, J., Lubiene, I., Giardino, C., Bukaveckas, P. A., de Wit, R., and
Razinkovas-Baziukas, A.: Feedback mechanisms between cyanobacterial blooms,
transient hypoxia, and benthic phosphorus regeneration in shallow coastal
environments, Estua. Coast, 37, 680–694,
https://doi.org/10.1007/s12237-013-9717-x, 2014.
Zilius, M., Vybernaite-Lubiene, I., Vaiciute, D., Petkuviene, J., Zemlys, P., Liskow, Voss, M., Bartoli, M., and Bukaveckas, P. A.: The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon, Biogeochemistry, 141, 143–165,
https://doi.org/10.1007/s10533-018-0508-0, 2018.
Zilius, M., Samuiloviene, A., Stanislauskienė, R., Broman, E., Bonaglia,
S., Meškys, R., and Zaiko, A.: Depicting temporal, functional, and
phylogenetic patterns in estuarine diazotrophic communities from
environmental DNA and RNA, Microb. Ecol., 81, 36–51, https://doi.org/10.1007/s00248-020-01562-1,
2020.
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the...
Altmetrics
Final-revised paper
Preprint