Articles | Volume 18, issue 7
https://doi.org/10.5194/bg-18-2325-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2325-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modern silicon dynamics of a small high-latitude subarctic lake
Department of Geology, Lund University, Lund, Sweden
Institute of Geology and Palaeontology, Faculty of Science, Charles University, Prague, Czech Republic
Carolina Olid
Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
Johanna Stadmark
Department of Geology, Lund University, Lund, Sweden
Sherilyn C. Fritz
Department of Earth and Atmospheric Sciences and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
Sophie Opfergelt
Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Daniel J. Conley
Department of Geology, Lund University, Lund, Sweden
Related authors
Stan J. Schouten, Noé R. M. M. Schmidhauser, Martin Grosjean, Andrea Lami, Petra Boltshauser-Kaltenrieder, Jacqueline F. N. van Leeuwen, Hendrik Vogel, and Petra Zahajská
Biogeosciences, 22, 3821–3842, https://doi.org/10.5194/bg-22-3821-2025, https://doi.org/10.5194/bg-22-3821-2025, 2025
Short summary
Short summary
Climate warming speeds up lake eutrophication, creating “dead zones” where aquatic life suffocates due to oxygen depletion. The sediments of Amsoldingersee, a Swiss lake, revealed how climate shifts impacted the lake around 10 000–18 000 years ago. (1) Algal composition differed between both cold and warm periods. (2) Nutrient additions from dust controlled algal growth more than temperature. (3) Cold periods with ice cover led to oxygen depletion. (4) Algal communities recovered after anoxic phases.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Stan J. Schouten, Noé R. M. M. Schmidhauser, Martin Grosjean, Andrea Lami, Petra Boltshauser-Kaltenrieder, Jacqueline F. N. van Leeuwen, Hendrik Vogel, and Petra Zahajská
Biogeosciences, 22, 3821–3842, https://doi.org/10.5194/bg-22-3821-2025, https://doi.org/10.5194/bg-22-3821-2025, 2025
Short summary
Short summary
Climate warming speeds up lake eutrophication, creating “dead zones” where aquatic life suffocates due to oxygen depletion. The sediments of Amsoldingersee, a Swiss lake, revealed how climate shifts impacted the lake around 10 000–18 000 years ago. (1) Algal composition differed between both cold and warm periods. (2) Nutrient additions from dust controlled algal growth more than temperature. (3) Cold periods with ice cover led to oxygen depletion. (4) Algal communities recovered after anoxic phases.
Maxime Thomas, Julien Fouché, Hugues Titeux, Charlotte Morelle, Nathan Bemelmans, Melissa J. Lafrenière, Joanne K. Heslop, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3428, https://doi.org/10.5194/egusphere-2025-3428, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study examines organic carbon (OC)–mineral interactions in permafrost soils undergoing thermokarst degradation in Cape Bounty (Melville Island, Canada). Chemically stabilized OC accounts for 13 ± 5 % as organo-metallic complexes and 6 ± 2 % as associations with iron oxides. Including physical protection, up to 64 ± 10 % of OC is mineral-protected. Deeper layers show a sharp decline in mineral-bound OC, suggesting increased vulnerability to degradation when exposed by deep thaw features.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Giulia Lodi, Julia Cooke, Rebecca A. Pickering, Lucie Cassarino, Mike Murray-Hudson, Keotshephile Mosimane, and Daniel J. Conley
EGUsphere, https://doi.org/10.5194/egusphere-2024-225, https://doi.org/10.5194/egusphere-2024-225, 2024
Preprint archived
Short summary
Short summary
Papyrus, Cyperus papyrus, is abundant in the Okavango Delta. We explored nutrient and Silicon (Si) isotopes distribution in papyrus to learn more about how this species affects nutrient cycles which are still moderately understood in Botswana. We found large amounts of Si in roots, rhizomes, stems and umbels. We showed that this plant takes up lighter Si isotopes and deposits lighter isotopes first, starting in the roots, leading to an enrichment in heavy isotopes along the transpiration stream.
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cited articles
Aquino-López, M. A., Blaauw, M., Christen, J. A., and Sanderson, N. K.:
Bayesian Analysis of 210Pb Dating, J. Agric. Biol.
Envir. St., 23, 317–333,
https://doi.org/10.1007/s13253-018-0328-7, 2018. a, b
Barker, P. A., Hurrell, E. R., Leng, M. J., Plessen, B., Wolff, C., Conley,
D. J., Keppens, E., Milne, I., Cumming, B. F., Laird, K. R., Kendrick, C. P., Wynn, P. M., and Verschuren, D.: Carbon
cycling within an East African lake revealed by the carbon isotope
composition of diatom silica: a 25-ka record from Lake Challa, Mt.
Kilimanjaro, Quaternary Sci. Rev., 66, 55–63,
https://doi.org/10.1016/j.quascirev.2012.07.016, 2013. a, b
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H.,
Carvalho, L., and Juggins, S.: Diatoms, in: Tracking environmental change
using lake sediments, edited by: Smol, J. P., Birks, H. J. B., Last, W. M.,
Bradley, R. S., and Alverson, K., Springer, Dordrecht, The Netherlands, 155–202,
https://doi.org/10.1007/0-306-47668-1_8, 2002. a
Bigler, C. and Hall, R. I.: Diatoms as indicators of climatic and limnological
change in Swedish Lapland: a 100-lake calibration set and its validation for
paleoecological reconstructions, J. Paleolimnol., 27, 97–115,
https://doi.org/10.1023/A:1013562325326, 2002. a
Brodie, C. R., Casford, J. S., Lloyd, J. M., Leng, M. J., Heaton, T. H.,
Kendrick, C. P., and Yongqiang, Z.: Evidence for bias in C/N, δ13C
and δ15N values of bulk organic matter, and on environmental
interpretation, from a lake sedimentary sequence by pre-analysis acid
treatment methods, Quaternary Sci. Rev., 30, 3076–3087,
https://doi.org/10.1016/j.quascirev.2011.07.003, 2011. a
Burnett, W. C. and Dulaiova, H.: Estimating the dynamics of groundwater input
into the coastal zone via continuous radon-222 measurements, J.
Environ. Radioactiv., 69, 21–35, https://doi.org/10.1016/s0265-931x(03)00084-5,
2003. a
Campbell, D. H., Clow, D. W., Ingersoll, G. P., Mast, M. A., Spahr, N. E., and
Turk, J. T.: Processes controlling the chemistry of two snowmelt-dominated
streams in the Rocky Mountains, Water Resour. Res., 31, 2811–2821,
https://doi.org/10.1029/95wr02037, 1995. a
Chanyotha, S., Kranrod, C., and Burnett, W. C.: Assessing diffusive fluxes and
pore water radon activities via a single automated experiment, J.
Radioanal. Nucl. Ch., 301, 581–588,
https://doi.org/10.1007/s10967-014-3157-3, 2014. a, b
Clarke, J.: The occurrence and significance of biogenic opal in the regolith,
Earth-Sci. Rev., 60, 175–194, https://doi.org/10.1016/s0012-8252(02)00092-2,
2003. a
Clow, D., Schrott, L., Webb, R., Campbell, D., Torizzo, A., and Dornblaser, M.:
Ground water occurrence and contributions to streamflow in an alpine
catchment, Colorado Front Range, Groundwater, 41, 937–950,
https://doi.org/10.1111/j.1745-6584.2003.tb02436.x, 2003. a
Conger, P. S.: Accumulation of diatomaceous deposits, Journal of Sediment.
Res., 12, 55–66, https://doi.org/10.1306/d4269143-2b26-11d7-8648000102c1865d,
1942. a, b, c
Conley, D. J.: Biogenic silica as an estimate of siliceous microfossil
abundance in Great Lakes sediments, Biogeochemistry, 6, 161–179,
https://doi.org/10.1007/bf02182994, 1988. a
Conley, D. J.: An interlaboratory comparison for the measurement of biogenic
silica in sediments, Mar. Chem., 63, 39–48,
https://doi.org/10.1016/s0304-4203(98)00049-8, 1998. a
Conley, J. D. and Schelske, C.: Biogenic Silica, in: Tracking Environmental Change Using Lake Sediments, edited by: Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S., and Alverson, K., Springer, Dordrecht, The Netherlands,
281–293,
https://doi.org/10.1007/0-306-47668-1_14, 2002. a
De La Rocha, C. L., Brzezinski, M. A., and Deniro, M. J.: Fractionation of
silicon isotopes by marine diatoms during biogenic silica formation,
Geochim. Cosmochim. Ac., 61, 5051–5056,
https://doi.org/10.1016/s0016-7037(97)00300-1, 1997. a, b, c
Dimova, N. T. and Burnett, W. C.: Evaluation of groundwater discharge into
small lakes based on the temporal distribution of radon-222, Limnol.
Oceanogr., 56, 486–494, https://doi.org/10.4319/lo.2011.56.2.0486, 2011. a, b
Dimova, N. T., Burnett, W. C., Chanton, J. P., and Corbett, J. E.: Application
of radon-222 to investigate groundwater discharge into small shallow lakes,
J. Hydrol., 486, 112–122, https://doi.org/10.1016/j.jhydrol.2013.01.043,
2013. a
Fortin, M.-C. and Gajewski, K.: Assessing the use of sediment organic,
carbonate and biogenic silica content as indicators of environmental
conditions in Arctic lakes, Polar Biol., 32, 985–998,
https://doi.org/10.1007/s00300-009-0598-1, 2009. a
Frings, P. J., Clymans, W., Jeppesen, E., Lauridsen, T. L., Struyf, E., and
Conley, D. J.: Lack of steady-state in the global biogeochemical Si cycle:
emerging evidence from lake Si sequestration, Biogeochemistry, 117,
255–277, https://doi.org/10.1007/s10533-013-9944-z, 2014. a, b, c, d
Georg, R., Reynolds, B., Frank, M., and Halliday, A.: New sample preparation
techniques for the determination of Si isotopic compositions using MC-ICPMS,
Chem. Geol., 235, 95–104,
https://doi.org/10.1016/j.chemgeo.2006.06.006, 2006. a, b, c, d
Georg, R., West, A., Basu, A., and Halliday, A.: Silicon fluxes and isotope
composition of direct groundwater discharge into the Bay of Bengal and the
effect on the global ocean silicon isotope budget, Earth Planet.
Sci. Lett., 283, 67–74, https://doi.org/10.1016/j.epsl.2009.03.041, 2009. a
Hood, J. L., Roy, J. W., and Hayashi, M.: Importance of groundwater in the
water balance of an alpine headwater lake, Geophys. Res. Lett., 33, L13405,
https://doi.org/10.1029/2006gl026611, 2006. a, b, c
Hurley, J. P., Armstrong, D. E., Kenoyer, G. J., and Bowser, C. J.: Ground
water as a silica source for diatom production in a precipitation-dominated
lake, Science, 227, 1576–1578, https://doi.org/10.1126/science.227.4694.1576, 1985. a, b, c
Huth, A., Leydecker, A., Sickman, J., and Bales, R.: A two-component
hydrograph separation for three high-elevation catchments in the Sierra
Nevada, California, Hydrol. Process., 18, 1721–1733,
https://doi.org/10.1002/hyp.1414, 2004. a
ISO NORM: Guide to expression of uncertainty in measurement, Corrected and
Reprinted, International Organization for Standardization, Geneva,
Switzerland, 1995. a
Johnson, T. C., Brown, E. T., and Shi, J.: Biogenic silica deposition in Lake
Malawi, East Africa over the past 150,000 years, Palaeogeogr.
Palaeocl., 303, 103–109,
https://doi.org/10.1016/j.palaeo.2010.01.024, 2011. a
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, The R
Journal, 5, 144–161, https://doi.org/10.32614/rj-2013-014, 2013. a
Kaplan, M. R., Wolfe, A. P., and Miller, G. H.: Holocene environmental
variability in southern Greenland inferred from lake sediments, Quaternary
Res., 58, 149–159, https://doi.org/10.1006/qres.2002.2352, 2002. a
Leng, M. J., Swann, G. E., Hodson, M. J., Tyler, J. J., Patwardhan, S. V., and
Sloane, H. J.: The potential use of silicon isotope composition of biogenic
silica as a proxy for environmental change, Silicon, 1, 65–77,
https://doi.org/10.1007/s12633-009-9014-2, 2009. a
Liu, F., Williams, M. W., and Caine, N.: Source waters and flow paths in an
alpine catchment, Colorado Front Range, United States, Water Resour.
Res., 40, W09401, https://doi.org/10.1029/2004wr003076, 2004. a
Maavara, T., Slowinski, S., Rezanezhad, F., Van Meter, K., and Van Cappellen,
P.: The role of groundwater discharge fluxes on Si: P ratios in a major
tributary to Lake Erie, Sci. Total Environ., 622, 814–824,
https://doi.org/10.1016/j.scitotenv.2017.12.024, 2018. a, b, c
MacIntyre, S., Wanninkhof, R., and Chanton, J.: Trace gas exchange across the
air-water interface in freshwater and coastal marine environments,
Blackwell Science, 52–97, 1995. a
McKay, N. P., Kaufman, D. S., and Michelutti, N.: Biogenic silica
concentration as a high-resolution, quantitative temperature proxy at Hallet
Lake, south-central Alaska, Geophys. Res. Lett., 35, L05709,
https://doi.org/10.1029/2007gl032876, 2008. a
Newberry, T. L. and Schelske, C. L.: Biogenic silica record in the sediments
of Little Round Lake, Ontario, Hydrobiologia, 143, 293–300,
https://doi.org/10.1007/978-94-009-4047-5_37, 1986. a
Opfergelt, S. and Delmelle, P.: Silicon isotopes and continental weathering
processes: Assessing controls on Si transfer to the ocen, C. R.
Geosci., 344, 723–738, https://doi.org/10.1016/j.crte.2012.09.006, 2012. a, b
Opfergelt, S., Eiriksdottir, E. S., Burton, K. W., Einarsson, A., Siebert, C.,
Gislason, S. R., and Halliday, A. N.: Quantifying the impact of freshwater
diatom productivity on silicon isotopes and silicon fl uxes: Lake Myvatn,
Iceland, Earth Planet. Sci. Lett., 305, 73–82,
https://doi.org/10.1016/j.epsl.2011.02.043, 2011. a, b, c, d, e, f
Pienitz, R., Doran, P., and Lamoureux, S.: Origin and geomorphology of lakes
in the polar regions, Oxford University Press, Oxford, UK,
https://doi.org/10.1093/acprof:oso/9780199213887.003.0002, 2008. a
Plunkett, G. M., Whitehouse, N. J., Hall, V. A., Brown, D. M., and Baillie, M.
G. L.: A precisely-dated lake-level rise marked by diatomite formation in
northeastern Ireland, J. Quaternary Sci., 19, 3–7,
https://doi.org/10.1002/jqs.816, 2004. a
Pokrovsky, O., Reynolds, B., Prokushkin, A., Schott, J., and Viers, J.:
Silicon isotope variations in Central Siberian rivers during basalt
weathering in permafrost-dominated larch forests, Chem. Geol., 355,
103–116, https://doi.org/10.1016/j.chemgeo.2013.07.016, 2013. a, b, c
Reynolds, B. C., Aggarwal, J., Andre, L., Baxter, D., Beucher, C., Brzezinski,
M. A., Engstrom, E., Georg, R. B., Land, M., Leng, M. J., Opfergelt, S.,
Rodushkin, I., Sloane, H. J., van den Boorn, S. H. J. M., Vroon, P. Z., and
Cardinal, D.: An inter-laboratory comparison of Si isotope reference
materials, J. Anal. Atom. Spectrom., 22, 561–568,
https://doi.org/10.1039/b616755a, 2007. a
Rosén, P., Vogel, H., Cunningham, L., Reuss, N., Conley, D. J., and
Persson, P.: Fourier transform infrared spectroscopy, a new method for rapid
determination of total organic and inorganic carbon and biogenic silica
concentration in lake sediments, J. Paleolimnol., 43, 247–259,
https://doi.org/10.1007/s10933-009-9329-4, 2010. a, b, c, d, e, f
Rubensdotter, L. and Rosqvist, G.: The effect of geomorphological setting on
Holocene lake sediment variability, northern Swedish Lapland, J.
Quaternary Sci., 18, 757–767, https://doi.org/10.1002/jqs.800, 2003. a, b
Russell, J. M. and Johnson, T. C.: A high-resolution geochemical record from
Lake Edward, Uganda Congo and the timing and causes of tropical African
drought during the late Holocene, Quaternary Sci. Rev., 24,
1375–1389, https://doi.org/10.1016/j.quascirev.2004.10.003, 2005. a
Ryves, D. B., Jewson, D. H., Sturm, M., Battarbee, R. W., Flower, R. J.,
Mackay, A. W., and Granin, N. G.: Quantitative and qualitative relationships
between planktonic diatom communities and diatom assemblages in sedimenting
material and surface sediments in Lake Baikal, Siberia, Limnol.
Oceanogr., 48, 1643–1661, https://doi.org/10.4319/lo.2003.48.4.1643, 2003. a, b
Schelske, C. L.: Biogeochemical silica mass balances in Lake Michigan and Lake
Superior, Biogeochemistry, 1, 197–218, https://doi.org/10.1007/bf02187199, 1985. a
Schubert, M., Paschke, A., Lieberman, E., and Burnett, W. C.: Air-water
partitioning of 222Rn and its dependence on water temperature and
salinity, Environ. Sci. Technol., 46, 3905–3911,
https://doi.org/10.1021/es204680n, 2012. a
Struyf, E., Mörth, C.-M., Humborg, C., and Conley, D. J.: An enormous
amorphous silica stock in boreal wetlands, J. Geophys. Res.-Biogeosci., 115, G04008, https://doi.org/10.1029/2010jg001324, 2010. a, b
Sun, X., Andersson, P., Land, M., Humborg, C., and Mörth, C.-M.: Stable
silicon isotope analysis on nanomole quantities using MC-ICP-MS with a
hexapole gas-collision cell, J. Anal. Atom. Spectrom., 25,
156–162, 2010. a
Sutton, Jill N., André, Luc, Cardinal, Damien, Conley, Daniel J., De Souza, Gregory F., Dean, Jonathan, Dodd, Justin, Ehlert, Claudia, Ellwood, Michael J., Frings, Patrick J., Grasse, Patricia, Hendry, Katharine, Leng, Melanie J., Michalopoulos, Panagiotis, Panizzo, Virginia N., Swann, and George E. A.: A
review of the stable isotope bio-geochemistry of the global silicon cycle and
its associated trace elements, Front. Earth Sci., 5, 112,
https://doi.org/10.3389/feart.2017.00112, 2018. a, b
Swann, G. E. and Mackay, A. W.: Potential limitations of biogenic silica as an
indicator of abrupt climate change in Lake Baikal, Russia, J.
Paleolimnol., 36, 81–89, https://doi.org/10.1007/s10933-006-0005-7, 2006. a
Tallberg, P., Opfergelt, S., Cornelis, J.-T., Liljendahl, A., and
Weckström, J.: High concentrations of amorphous, biogenic Si (BSi)
in the sediment of a small high-latitude lake: implications for
biogeochemical Si cycling and for the use of BSi as a paleoproxy, Aquat.
Sci., 77, 293–305, https://doi.org/10.1007/s00027-014-0387-y, 2015. a
Taylor, B. N. and Kuyatt, C. E.: Guidelines for evaluating and expressing the
uncertainty of NIST measurement results,
United States Department of Commerce and Technology Administration, Gaithersburg, USA, 24 pp.,
https://doi.org/10.6028/nist.tn.1297-1993,
1994. a
Theriot, E. C., Fritz, S. C., Whitlock, C., and Conley, D. J.: Late Quaternary
rapid morphological evolution of an endemic diatom in Yellowstone Lake,
Wyomin, Paleobiology, 32, 38–54, https://doi.org/10.1666/02075.1, 2006. a
Treguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A.,
and Queguiner, B.: The silica balance in the world ocean: a reestimate,
Science, 268, 375–379, https://doi.org/10.1126/science.268.5209.375, 1995. a
Tréguer, P. J. and De La Rocha, C. L.: The world ocean silica cycle,
Annu. Rev. Mar. Sci., 5, 477–501, 2013. a
Turnipseed, D. and Sauer, V.: Discharge measurements at gaging stations,
US Geological Survey, Reston, USA, https://doi.org/10.3133/tm3A8, 2010. a
Vachon, D. and Prairie, Y. T.: The ecosystem size and shape dependence of gas
transfer velocity versus wind speed relationships in lakes, Can. J.
Fish. Aquat. Sci., 70, 1757–1764,
https://doi.org/10.1139/cjfas-2013-0241, 2013. a, b
Varela, D. E., Pride, C. J., and Brzezinski, M. A.: Biological fractionation
of silicon isotopes in Southern Ocean surface waters, Global Biogeochem.
Cy., 18, GB1047, https://doi.org/10.1029/2003gb002140, 2004. a, b, c
Wolfe, A. P., Miller, G. H., Olsen, C. A., Forman, S. L., Doran, P. T., and
Holmgren, S. U.: Geochronology of high latitude lake sediments, in:
Long-term environmental change in Arctic and Antarctic lakes, edited by: Pienitz, R., Douglas, M. S. V., and Smol, J. P.,
Dordrecht, The Netherlands, Springer, 19–52, 2004. a
Zhang, A., Zhang, J., and Liu, S.: Spatial and temporal variations of
dissolved silicon isotope compositions in a large dammed river system,
Chem. Geol., 545, 119645, https://doi.org/10.1016/j.chemgeo.2020.119645, 2020. a
Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F.: Natural
variations of δ30Si ratios during progressive basalt weathering,
Hawaiian Islands, Geochim. Cosmochim. Ac., 69, 4597–4610,
https://doi.org/10.1016/j.gca.2005.05.008, 2005. a
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude...
Altmetrics
Final-revised paper
Preprint