Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean carbon uptake under aggressive emission mitigation
Sean M. Ridge
Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, New York City, NY, United States
Galen A. McKinley
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, New York City, NY, United States
Related authors
No articles found.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Jake Stamell, Rea R. Rustagi, Lucas Gloege, and Galen A. McKinley
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-311, https://doi.org/10.5194/gmd-2020-311, 2020
Revised manuscript not accepted
Short summary
Short summary
Using simulated surface ocean pCO2 from Earth System Models, we test three Machine Learning methods (neural network, XGBoost, random forest) to discern their ability to reconstruct global coverage from sparse observations. Synthetic data means we can train based on real-world sampling patterns and then evaluate against the known full coverage result of the original simulation. ML approaches perform best in the open ocean, but struggle in regions of low sampling. XGBoost saw the best performance.
Cited articles
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-concentration
and carbon-climate feedbacks in CMIP5 Earth system models, J.
Climate, 26, https://doi.org/10.1175/JCLI-D-12-00494.1, 2013. a, b
Bronselaer, B. and Zanna, L.: Heat and carbon coupling reveals ocean warming
due to circulation changes, Nature, 584, 227–233,
https://doi.org/10.1038/s41586-020-2573-5, 2020. a, b, c
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis,
E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and
Marland, G.: Contributions to accelerating atmospheric CO2 growth from
economic activity, carbon intensity, and efficiency of natural sinks,
P. Natl. Acad. Sci. USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007. a
DeVries, T.: The oceanic anthropogenic CO2 sink: Storage, air-sea
fluxes, and transports over the industrial era, Global Biogeochem. Cy.,
28, 631–647, https://doi.org/10.1002/2013GB004739, 2014. a, b
Fassbender, A. J., Sabine, C. L., and Palevsky, H. I.: Nonuniform ocean
acidification and attenuation of the ocean carbon sink, Geophys. Res.
Lett., 44, 8404–8413, https://doi.org/10.1002/2017GL074389, 2017. a
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate
Projections due to Carbon Cycle Feedbacks, J. Climate, 27,
511–526, https://doi.org/10.1175/JCLI-D-12-00579.1, 2013. a, b, c, d
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019. a
Gammon, R. H., Cline, J., and Wisegarver, D.: Chlorofluoromethanes in the
northeast Pacific Ocean: Measured vertical distributions and
application as transient tracers of upper ocean mixing, J.
Geophys. Res.-Oceans, 87, 9441–9454, https://doi.org/10.1029/JC087iC12p09441,
1982. a
Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation
Models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gnanadesikan, A., Pradal, M.-A., and Abernathey, R.: Isopycnal mixing by
mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake,
Geophys. Res. Lett., 42, 4249–4255, https://doi.org/10.1002/2015GL064100,
2015. a
Graven, H. D., Gruber, N., Key, R., Khatiwala, S., and Giraud, X.: Changing
controls on oceanic radiocarbon: New insights on shallow-to-deep ocean
exchange and anthropogenic CO2 uptake, J. Geophys. Res.-Oceans, 117, C10005, https://doi.org/10.1029/2012JC008074, 2012. a, b, c
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema,
M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C.,
Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua,
T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2 from 1994
to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019. a, b, c, d
Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E.,
Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer,
P., Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., and
Séférian, R.: Consistency and Challenges in the Ocean Carbon Sink
Estimate for the Global Carbon Budget, Front. Mar. Sci., 7,
3167, https://doi.org/10.3389/fmars.2020.571720, 2020. a, b
Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story is
misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Quéré,
C. L., and Sarmiento, J. L.: An efficient and accurate representation of
complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus
B, 48, 397–417, https://doi.org/10.1034/j.1600-0889.1996.t01-2-00006.x, 1996. a, b, c, d
Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K.,
Gerber, S., and Hasselmann, K.: Global warming feedbacks on terrestrial
carbon uptake under the Intergovernmental Panel on Climate Change
(IPCC) Emission Scenarios, Global Biogeochem. Cy., 15, 891–907,
https://doi.org/10.1029/2000GB001375, 2001. a, b, c
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project:
A Community Resource for Studying Climate Change in the
Presence of Internal Climate Variability, B. Am.
Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1,
2015 (data available at: https://www.earthsystemgrid.org/, last access: 2 June 2020). a, b, c, d
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Long, M. C., Lindsay, K., Peacock, S., Moore, J. K., and Doney, S. C.:
Twentieth-Century Oceanic Carbon Uptake and Storage in CESM1(BGC), J. Climate, 26, 6775–6800, https://doi.org/10.1175/JCLI-D-12-00184.1, 2013. a
Lovenduski, N., Gruber, N., and Doney, S.: Toward a mechanistic understanding
of the decadal trends in the Southern Ocean carbon sink, Global
Biogeochem. Cy., 22, GB3016, https://doi.org/10.1029/2007GB003139, 2008. a, b, c
McKinley, G. A., Pilcher, D. J., Fay, A. R., Lindsay, K., Long, M. C., and
Lovenduski, N. S.: Timescales for detection of trends in the ocean carbon
sink, Nature, 530, 469–472, https://doi.org/10.1038/nature16958, 2016. a
McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., and Lovenduski,
N. S.: External Forcing Explains Recent Decadal Variability of the Ocean
Carbon Sink, AGU Advances, 1, e2019AV000149, https://doi.org/10.1029/2019AV000149,
2020. a, b
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011. a, b
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and
iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004. a
Munk, W. H.: Abyssal recipes, Deep-Sea Res., 13, 707–730,
https://doi.org/10.1016/0011-7471(66)90602-4, 1966. a
Oeschger, H., Siegenthaler, U., Schotterer, U., and Gugelmann, A.: A box
diffusion model to study the carbon dioxide exchange in nature, Tellus, 27,
168–192, https://doi.org/10.1111/j.2153-3490.1975.tb01671.x, 1975. a
Peters, G. P., Le Quéré, C., Andrew, R. M., Canadell, J. G., Friedlingstein,
P., Ilyina, T., Jackson, R. B., Joos, F., Korsbakken, J. I., McKinley, G. A.,
Sitch, S., and Tans, P.: Towards real-time verification of CO2
emissions, Nat. Clim. Change, 7, 848–850,
https://doi.org/10.1038/s41558-017-0013-9, 2017. a
Randerson, J., Lindsay, K., Munoz, E., Fu, W., Moore, J., Hoffman, F.,
Mahowald, N., and Doney, S.: Multicentury changes in ocean and land
contributions to the climate-carbon feedback: Carbon Cycle Feedbacks to 2300
in CESM, Global Biogeochem. Cy., 29, 744–759, https://doi.org/10.1002/2014GB005079,
2015. a, b, c, d, e
Raupach, M. R., Gloor, M., Sarmiento, J. L., Canadell, J. G., Frölicher, T. L., Gasser, T., Houghton, R. A., Le Quéré, C., and Trudinger, C. M.: The declining uptake rate of atmospheric CO2 by land and ocean sinks, Biogeosciences, 11, 3453–3475, https://doi.org/10.5194/bg-11-3453-2014, 2014. a, b, c, d, e, f, g, h, i
Redi, M. H.: Oceanic Isopycnal Mixing by Coordinate Rotation, J. Phys. Oceanogr., 12, 1154–1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2, 1982. a
Ridge, S. M. and McKinley, G. A.: sridge/qoccm: Latest Release (Version 0.1), Zenodo [code], https://doi.org/10.5281/zenodo.4718674, 2020. a
Sanderson, B. M., Oleson, K. W., Strand, W. G., Lehner, F., and O'Neill, B. C.: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario, Climatic Change, 146, 303–318, https://doi.org/10.1007/s10584-015-1567-z, 2015 (data available at: https://www.earthsystemgrid.org/, last access: 2 June 2020). a
Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., Pendergrass, A. G., Lehner, F., Strand, W. G., Lin, L., Knutti, R., and Lamarque, J. F.: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures, Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, 2017 (data available at: https://www.earthsystemgrid.org/, last access: 2 June 2020). a, b, c, d, e
Schwinger, J. and Tjiputra, J.: Ocean Carbon Cycle Feedbacks Under
Negative Emissions, Geophys. Res. Lett., 45, 5062–5070,
https://doi.org/10.1029/2018GL077790, 2018. a, b, c, d
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variations of CO2 and nutrients in the high-latitude surface
oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993. a
Tanhua, T., Körtzinger, A., Friis, K., Waugh, D. W., and Wallace, D. W. R.: An
estimate of anthropogenic CO2 inventory from decadal changes in oceanic
carbon content, P. Natl. Acad. Sci. USA, 104,
3037–3042, https://doi.org/10.1073/pnas.0606574104, 2007. a, b
Tokarska, K. B., Zickfeld, K., and Rogelj, J.: Path Independence of Carbon
Budgets When Meeting a Stringent Global Mean Temperature Target After an
Overshoot, Earth's Future, 7, 1283–1295, https://doi.org/10.1029/2019EF001312, 2019.
a
Toyama, K., Rodgers, K. B., Blanke, B., Iudicone, D., Ishii, M., Aumont, O.,
and Sarmiento, J. L.: Large Reemergence of Anthropogenic Carbon into
the Ocean's Surface Mixed Layer Sustained by the Ocean's
Overturning Circulation, J. Climate, 30, 8615–8631,
https://doi.org/10.1175/JCLI-D-16-0725.1, 2017. a, b, c
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L., and Froelicher,
T. L.: Connecting Changing Ocean Circulation with Changing Climate, J. Climate, 26, 2268–2278, https://doi.org/10.1175/JCLI-D-12-00296.1, 2013. a
Zickfeld, K., Macdougall, A. H., and Matthews, H. D.: On the proportionality
between global temperature change and cumulative CO2 emissions during
periods of net negative CO2 emissions, Environ. Res. Lett.,
11, 055006, https://doi.org/10.1088/1748-9326/11/5/055006, 2016. a
Short summary
Approximately 40 % of the CO2 emissions from fossil fuel combustion and cement production have been absorbed by the ocean. The goal of the UNFCCC Paris Agreement is to reduce humanity's emissions so as to limit global warming to no more than 2 °C, and ideally less than 1.5 °C. If we achieve this level of mitigation, the ocean's uptake of carbon will be strongly reduced. Excess carbon trapped in the near-surface ocean will begin to mix back to the surface and will limit additional uptake.
Approximately 40 % of the CO2 emissions from fossil fuel combustion and cement production have...
Altmetrics
Final-revised paper
Preprint