Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics
Sigrid van Grinsven
CORRESPONDING AUTHOR
Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Kirsten Oswald
Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland
Bernhard Wehrli
Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland
Corinne Jegge
Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
School of Architecture, Civil and Environmental Engineering, EPFL, Swiss Federal Institute of Technology, Lausanne, Switzerland
Jakob Zopfi
Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
Moritz F. Lehmann
Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
Carsten J. Schubert
CORRESPONDING AUTHOR
Department of Surface Waters – Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland
Related authors
Sigrid van Grinsven, Noortje E. M. Janssen, Collin van Rooij, Ruben Peters, and Arnaud Temme
EGUsphere, https://doi.org/10.5194/egusphere-2025-4113, https://doi.org/10.5194/egusphere-2025-4113, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
When glaciers retreat, new land surface is revealed. Using detailed glacial retreat maps, it is possible to determine for how long a location has been ice-free. This age is used in this study to analyse how fast carbon is incorporated into the soil. Our results show that the wetness of the soil strongly determines the CO2 uptake and carbon incorporation rates. Wetlands cover a small percentage of the land surface but are nonetheless important for the carbon storage in the deglaciated area.
Sigrid van Grinsven, Natsumi Maeda, Clemens Glombitza, Mark A. Lever, and Carsten J. Schubert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3979, https://doi.org/10.5194/egusphere-2024-3979, 2025
Preprint archived
Short summary
Short summary
Algal blooms in lakes can cause large amounts of organic material to sink to the bottom, leading to low oxygen conditions and increased methane emissions. This study shows that adding oxygen to the bottom waters reduces methane emissions by 50 %, even after oxygen levels drop again. The effect was consistent across lakes with different nutrient levels. These findings suggest that oxygenation could be an effective strategy to reduce methane emissions in lakes.
Sigrid van Grinsven and Carsten Schubert
Biogeosciences, 20, 4213–4220, https://doi.org/10.5194/bg-20-4213-2023, https://doi.org/10.5194/bg-20-4213-2023, 2023
Short summary
Short summary
Agriculture relies heavily on plastic mulch films, which may be transported to aquatic environments. We investigated the breakdown of soil-biodegradable agricultural mulch films in lake sediments. After 40 weeks, films were intact, and no significant CO2 or CH4 was produced from the biodegradable mulch films. We conclude that the mulch films we used have a low biodegradability in lake sediments. The sediment lacks the microbes needed to break down the biodegradable plastics that were used here.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
Biogeosciences, 22, 4449–4466, https://doi.org/10.5194/bg-22-4449-2025, https://doi.org/10.5194/bg-22-4449-2025, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources, like algae and land-based materials, both deep and delta areas are significant methane sources, and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter did not strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Sigrid van Grinsven, Noortje E. M. Janssen, Collin van Rooij, Ruben Peters, and Arnaud Temme
EGUsphere, https://doi.org/10.5194/egusphere-2025-4113, https://doi.org/10.5194/egusphere-2025-4113, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
When glaciers retreat, new land surface is revealed. Using detailed glacial retreat maps, it is possible to determine for how long a location has been ice-free. This age is used in this study to analyse how fast carbon is incorporated into the soil. Our results show that the wetness of the soil strongly determines the CO2 uptake and carbon incorporation rates. Wetlands cover a small percentage of the land surface but are nonetheless important for the carbon storage in the deglaciated area.
Alessandra Mazzoli, Peter Reichert, Claudia Frey, Cameron M. Callbeck, Tim J. Paulus, Jakob Zopfi, and Moritz F. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4089, https://doi.org/10.5194/egusphere-2025-4089, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Nitrogen (re-)cycling in sediments plays a key role in aquatic environments, but involves many overlapping biogeochemical processes that are hard to separate. We developed a new comprehensive sedimentary nitrogen isotope model to disentangle these reactions. Using field data from a Swiss lake and statistical tools, we demonstrated the robustness and validity of our modelling framework for a broad range of applications.
Carolina F.M. de Carvalho, Moritz F. Lehmann, and Sarah G. Pati
EGUsphere, https://doi.org/10.5194/egusphere-2025-1193, https://doi.org/10.5194/egusphere-2025-1193, 2025
Short summary
Short summary
Using O2 stable isotope analysis, we determined the isotopic fractionation of biological O2 consumption by 10 flavin-dependent and 6 metalloenzymes. Metalloenzymes displayed a narrower range and lower values of isotopic fractionation than flavin-dependent enzymes. This work expands our understanding of the variability of oxygen isotopic fractionation at the enzyme level, improving the ability to study O2 dynamics from molecular to ecosystem scales.
Sigrid van Grinsven, Natsumi Maeda, Clemens Glombitza, Mark A. Lever, and Carsten J. Schubert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3979, https://doi.org/10.5194/egusphere-2024-3979, 2025
Preprint archived
Short summary
Short summary
Algal blooms in lakes can cause large amounts of organic material to sink to the bottom, leading to low oxygen conditions and increased methane emissions. This study shows that adding oxygen to the bottom waters reduces methane emissions by 50 %, even after oxygen levels drop again. The effect was consistent across lakes with different nutrient levels. These findings suggest that oxygenation could be an effective strategy to reduce methane emissions in lakes.
Sigrid van Grinsven and Carsten Schubert
Biogeosciences, 20, 4213–4220, https://doi.org/10.5194/bg-20-4213-2023, https://doi.org/10.5194/bg-20-4213-2023, 2023
Short summary
Short summary
Agriculture relies heavily on plastic mulch films, which may be transported to aquatic environments. We investigated the breakdown of soil-biodegradable agricultural mulch films in lake sediments. After 40 weeks, films were intact, and no significant CO2 or CH4 was produced from the biodegradable mulch films. We conclude that the mulch films we used have a low biodegradability in lake sediments. The sediment lacks the microbes needed to break down the biodegradable plastics that were used here.
R. Scott Winton, Silvia López-Casas, Daniel Valencia-Rodríguez, Camilo Bernal-Forero, Juliana Delgado, Bernhard Wehrli, and Luz Jiménez-Segura
Hydrol. Earth Syst. Sci., 27, 1493–1505, https://doi.org/10.5194/hess-27-1493-2023, https://doi.org/10.5194/hess-27-1493-2023, 2023
Short summary
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Anna Canning, Bernhard Wehrli, and Arne Körtzinger
Biogeosciences, 18, 3961–3979, https://doi.org/10.5194/bg-18-3961-2021, https://doi.org/10.5194/bg-18-3961-2021, 2021
Short summary
Short summary
Inland waters are usually not well restrained in terms of greenhouse gas measurements. One of these regions is the Danube Delta, Romania. Therefore, we measured continuously with sensors to collect high-resolution data for CH4 and O2 throughout the Delta. We found significant variation for all concentrations over the day and night and between regions, as well as large spatial variation throughout all regions, with large CH4 concentrations flowing in from the reed beds to the lakes.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Cited articles
Amaral, J. A. and Knowles, R.:
Growth of methanotrophs in methane and oxygen counter gradients,
FEMS Microbiol. Lett.,
126, 215–220, https://doi.org/10.1111/j.1574-6968.1995.tb07421.x, 1995.
Barker, J. F. and Fritz, P.:
Carbon isotope fractionation during microbial methane oxidation,
Nature,
293, 289–291, https://doi.org/10.1038/293289a0, 1981.
Bartlett, K. B. and Harriss, R. C.:
Review and assessment of methane emissions from wetlands,
Chemosphere,
26, 261–320, https://doi.org/10.1016/0045-6535(93)90427-7, 1993.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.:
Freshwater Methane Emissions Offset the Continental Carbon Sink,
Science,
331, 50, https://doi.org/10.1126/science.1196808, 2011.
Biderre-Petit, C., Jézéquel, D., Dugat-Bony, E., Lopes, F., Kuever, J., Borrel, G., Viollier, E., Fonty, G., and Peyret, P.:
Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake,
FEMS Microbiol. Ecol.,
77, 533–545, https://doi.org/10.1111/j.1574-6941.2011.01134.x, 2011.
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., and Grossart, H. P.:
Aquatic and terrestrial cyanobacteria produce methane,
Science Advances,
6, 1–10, https://doi.org/10.1126/sciadv.aax5343, 2020.
Blees, J., Niemann, H., Wenk, C. B., Zopfi, J., Schubert, C. J., Kirf, M. K., Veronesi, M. L., Hitz, C., and Lehmann, M. F.:
Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland),
Limnol. Oceanogr.,
59, 311–324, https://doi.org/10.4319/lo.2014.59.2.0311, 2014.
Blumenberg, M., Seifert, R., and Michaelis, W.:
Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column,
Org. Geochem.,
38, 84–91, https://doi.org/10.1016/J.ORGGEOCHEM.2006.08.011, 2007.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.:
A marine microbial consortium apparently mediating anaerobic oxidation of methane,
Nature,
407, 623–626, https://doi.org/10.1038/35036572, 2000.
Chistoserdova, L.:
Methylotrophs in natural habitats: current insights through metagenomics,
Appl. Microbiol. Biot.,
99, 5763–5779, https://doi.org/10.1007/s00253-015-6713-z, 2015.
Cline, J. D.:
Spectrophotometric determination of hydrogen sulfide in natural waters,
Limnol. Oceanogr.,
14, 454–458, https://doi.org/10.4319/lo.1969.14.3.0454, 1969.
Crevecoeur, S., Vincent, W. F., Comte, J., Matveev, A., and Lovejoy, C.:
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds,
PLoS One, 12, e0188223, https://doi.org/10.1371/journal.pone.0188223, 2017.
Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M. A., Kessler, J. D., Reeburgh, W. S., Roberts, J. A., González, L., Douglas Haffner, G., Mucci, A., Sundby, B., and Fowle, D. A.:
The methane cycle in ferruginous Lake Matano,
Geobiology,
9, 61–78, https://doi.org/10.1111/j.1472-4669.2010.00257.x, 2011.
Delsontro, T., Mcginnis, D. F., Sobek, S., Ostrovsky, I., and Wehrli, B.:
Extreme methane emissions from a swiss hydropower Reservoir: Contribution from bubbling sediments,
Environ. Sci. Technol.,
44, 2419–2425, https://doi.org/10.1021/es9031369, 2010.
Deutzmann, J. S., Stief, P., Brandes, J., and Schink, B.:
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake,
P. Natl. Acad. Sci. USA,
111, 18273–18278, https://doi.org/10.1073/pnas.1411617111, 2014.
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middelburg, J. J.:
The global abundance and size distribution of lakes, ponds, and impoundments,
Limnol. Oceanogr.,
51, 2388–2397, https://doi.org/10.4319/lo.2006.51.5.2388, 2006.
Dunfield, P. and Knowles, R.:
Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol,
Appl. Environ. Microb.,
61, 3129–3135, 1995.
Durisch-Kaiser, E., Schmid, M., Peeters, F., Kipfer, R., Dinkel, C., Diem, T., Schubert, C. J., and Wehrli, B.:
What prevents outgassing of methane to the atmosphere in Lake Tanganyika?,
J. Geophys. Res.,
116, G02022, https://doi.org/10.1029/2010JG001323, 2011.
Edgar, R.:
SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences,
bioRxiv,
https://doi.org/10.1101/074161, 2016.
Edgar, R. C.:
Search and clustering orders of magnitude faster than BLAST,
Bioinformatics,
26, 2460–2461, https://doi.org/10.1093/bioinformatics/btq461, 2010.
Edgar, R. C.:
UPARSE: Highly accurate OTU sequences from microbial amplicon reads,
Nat. Methods,
10, 996–998, https://doi.org/10.1038/nmeth.2604, 2013.
Eller, G., Känel, L., Krüger, M., Ka, L., and Kru, M.:
Cooccurrence of Aerobic and Anaerobic Methane Oxidation in the Water Column of Lake Plußsee,
Appl. Environ. Microb.,
71, 8925–8928, https://doi.org/10.1128/AEM.71.12.8925, 2005.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and Strous, M.:
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.,
Nature,
464, 543–548, https://doi.org/10.1038/nature08883, 2010.
Fenchel, T. and Blackburn, T. H.:
Bacteria and mineral cycling,
Academic Press, London, 1979.
Gibson, C. E.:
Growth rate, maintenance energy and pigmentation of planktonic Cyanophyta during one-hour light: Dark cycles,
Brit. Phycol. J.,
20, 155–161, https://doi.org/10.1080/00071618500650161, 1985.
Graf, J. S., Mayr, M. J., Marchant, H. K., Tienken, D., Hach, P. F., Brand, A., Schubert, C. J., Kuypers, M. M. M., and Milucka, J.:
Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake,
Environ. Microbiol.,
20, 2598–2614, https://doi.org/10.1111/1462-2920.14285, 2018.
Griess, P.:
“Über einige Azoverbindungen”,
Ber. Dtsch. Chem. Ges.,
12, 426–428, https://doi.org/10.1002/cber.187901201117, 1879.
Günthel, M., Klawonn, I., Woodhouse, J., Bižić, M., Ionescu, D., Ganzert, L., Kümmel, S., Nijenhuis, I., Zoccarato, L., Grossart, H. P., and Tang, K. W.:
Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission,
Limnol. Oceanogr.,
65, 2853–2865, https://doi.org/10.1002/lno.11557, 2020.
Hakala, A.:
Meromixis as a part of lake evolution; observations and a revised classification of true meromictic lakes in Finland,
Boreal Environ. Res.,
9, 37–53, 2004.
Hanson, R. S. and Hanson, T. E.:
Methanotrophic bacteria,
Microbiol. Rev.,
60, 439–471, 1996.
Hinrichs, K.-U. and Boetius, A.:
The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry,
Ocean Margin Systems, Springer, Berlin, Heidelberg,
457–477, 2002.
Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P., and Gillings, M. R.:
Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia,
Environ. Microbiol.,
3, 256–264, https://doi.org/10.1046/j.1462-2920.2001.00187.x, 2001.
Holtappels, M., Lavik, G., Jensen, M. M., and Kuypers, M. M. M.:
15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean,
Methods Enzymol.,
486, 223–251, https://doi.org/10.1016/B978-0-12-381294-0.00010-9, 2011.
Hütsch, B. W.:
Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH,
Biol. Fert. Soils,
28, 27–35, https://doi.org/10.1007/s003740050459, 1998.
Ilmavirta, V., Ilmavirta, K., and Kotimaa, A.-L.:
Phytoplanktonic primary production during the summer stagnation in the eutrophicated lakes Lovojärvi and Ormajärvi, southern Finland,
Ann. Bot. Fenn.,
11, 121–132, https://doi.org/10.2307/23725044, 1974.
Jenkins, O., Byrom, D., and Jones, D.:
Methylophilus: A New Genus of Methanol-Utilizing Bacteria,
Int. J. Syst. Bacteriol.,
37, 446–448, https://doi.org/10.1099/00207713-37-4-446, 1987.
Joyce, J. and Jewell, P. W.:
Physical controls on methane ebullition from reservoirs and lakes,
Environ. Eng. Geosci.,
9, 167–178, https://doi.org/10.2113/9.2.167, 2003.
Juutinen, S., Rantakari, M., Kortelainen, P., Huttunen, J. T., Larmola, T., Alm, J., Silvola, J., and Martikainen, P. J.: Methane dynamics in different boreal lake types, Biogeosciences, 6, 209–223, https://doi.org/10.5194/bg-6-209-2009, 2009.
Kallistova, A., Kadnikov, V., Rusanov, I., Kokryatskaya, N., Beletsky, A., Mardanov, A., Savvichev, A., Ravin, N., and Pimenov, N.:
Microbial communities involved in aerobic and anaerobic methane cycling in a meromictic ferruginous subarctic lake,
Aquat. Microb. Ecol.,
82, 1–18, https://doi.org/10.3354/ame01878, 2019.
Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T., and Ojala, A.:
Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake,
Limnol. Oceanogr.,
51, 1195–1204, https://doi.org/10.4319/lo.2006.51.2.1195, 2006.
Keskitalo, J.:
The species composition and biomass of phytoplankton in the eutrophic Lake Lovojärvi, southern Finland,
Ann. Bot. Fenn.,
14, 71–81, https://www.jstor.org/stable/43922123 (available at: 19 May 2021), 1977.
Kiener, A. and Leisinger, T.:
Oxygen Sensitivity of Methanogenic Bacteria,
Syst. Appl. Microbiol.,
4, 305–312, https://doi.org/10.1016/S0723-2020(83)80017-4, 1983.
King, G.:
Ecological aspects of methane oxidation, a key determinant of global methane dynamics,
Adv. Microb. Ecol.,
431–468, 1992.
Kits, D. K., Campbell, D. J., Rosana, A. R., and Stein, L. Y.:
Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8,
Front. Microbiol.,
6, 1–11, https://doi.org/10.3389/fmicb.2015.01072, 2015a.
Kits, D. K., Klotz, M. G., and Stein, L. Y.:
Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1,
Environ. Microbiol.,
17, 3219–3232, https://doi.org/10.1111/1462-2920.12772, 2015b.
Kortelainen, P., Huttunen, J. T., Väisänen, T., Mattsson, T., Karjalainen, P., and Martikainen, P. J.:
CH4, CO2 and N2O supersaturation in 12 Finnish lakes before and after ice-melt,
SIL Proceedings, 1922–2010,
27, 1410–1414, https://doi.org/10.1080/03680770.1998.11901468, 2000.
Kortelainen, P., Pajunen, H., Rantakari, M., and Saarnisto, M.:
A large carbon pool and small sink in boreal Holocene lake sediments,
Glob. Change Biol.,
10, 1648–1653, https://doi.org/10.1111/j.1365-2486.2004.00848.x, 2004.
Kreling, J., Bravidor, J., McGinnis, D. F., Koschorreck, M., and Lorke, A.:
Physical controls of oxygen fluxes at pelagic and benthic oxyclines in a lake,
Limnol. Oceanogr.,
59, 1637–1650, https://doi.org/10.4319/lo.2014.59.5.1637, 2014.
Krom, M. D.:
Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate,
Analyst,
105, 305, https://doi.org/10.1039/an9800500305, 1980.
Magoč, T. and Salzberg, S. L.:
FLASH: Fast length adjustment of short reads to improve genome assemblies,
Bioinformatics,
27, 2957–2963, https://doi.org/10.1093/bioinformatics/btr507, 2011.
Martinez-Cruz, K., Leewis, M. C., Herriott, I. C., Sepulveda-Jauregui, A., Anthony, K. W., Thalasso, F., and Leigh, M. B.:
Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments,
Sci. Total Environ.,
607–608, 23–31, https://doi.org/10.1016/j.scitotenv.2017.06.187, 2017.
Mayr, M. J., Zimmermann, M., Dey, J., Brand, A., Wehrli, B., and Bürgmann, H.:
Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn,
Communications Biology,
3, 1–9, https://doi.org/10.1038/s42003-020-0838-z, 2020.
McMurdie, P. J. and Holmes, S.:
Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data,
PLoS One,
8, 1–11, https://doi.org/10.1371/journal.pone.0061217, 2013.
Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., and Thiel, V.:
Microbial Reefs in the Black Sea fueled by anaerobic Oxidation of Methane,
Science, 297, 1013–1015, https://doi.org/10.1126/science.1072502, 2002.
Michmerhuizen, C. M., Striegl, R. G., and McDonald, M. E.:
Potential methane emission from north-temperate lakes following ice melt,
Limnol. Oceanogr.,
41, 985–991, https://doi.org/10.4319/lo.1996.41.5.0985, 1996.
Milucka, J., Kirf, M., Lu, L., Krupke, A., Lam, P., Littmann, S., Kuypers, M. M. M., and Schubert, C. J.:
Methane oxidation coupled to oxygenic photosynthesis in anoxic waters,
ISME J.,
9, 1991–2002, https://doi.org/10.1038/ismej.2015.12, 2015.
Miracle, M., Vicente, E., and Pedrós-Alió, C.:
Biological studies of Spanish meromictic and stratified karstic lakes,
Limnetica,
8, 59–77, 1992.
Monchamp, M. E., Walser, J. C., Pomati, F., and Spaak, P.:
Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes,
Appl. Environ. Microb.,
82, 6472–6482, https://doi.org/10.1128/AEM.02174-16, 2016.
Norði, K. à., Thamdrup, B., and Schubert, C. J.:
Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment,
Limnol. Oceanogr.,
58, 546–554, https://doi.org/10.4319/lo.2013.58.2.0546, 2013.
Orphan, V. J., House, C. H., and Hinrichs, K.:
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis,
Science,
293, 484–488, https://doi.org/10.1126/science.1061338, 2001.
Oshkin, I. Y., Beck, D. A., Lamb, A. E., Tchesnokova, V., Benuska, G., McTaggart, T. L., Kalyuzhnaya, M. G., Dedysh, S. N., Lidstrom, M. E., and Chistoserdova, L.:
Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response,
ISME J.,
9, 1–11, https://doi.org/10.1038/ismej.2014.203, 2014.
Oswald, K., Milucka, J., Brand, A., Littmann, S., Wehrli, B., Kuypers, M. M. M., and Schubert, C. J.:
Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes,
PLoS One,
10, e0132574, https://doi.org/10.1371/journal.pone.0132574, 2015.
Oswald, K., Milucka, J., Brand, A., Hach, P., Littmann, S., Wehrli, B., Kuypers, M. M. M., and Schubert, C. J.:
Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters,
Limnol. Oceanogr.,
61, S101–S118, https://doi.org/10.1002/lno.10312, 2016a.
Oswald, K., Jegge, C., Tischer, J., Berg, J., Brand, A., Miracle, M. R., Soria, X., Vicente, E., Lehmann, M. F., Zopfi, J., and Schubert, C. J.:
Methanotrophy under versatile conditions in the water column of the ferruginous meromictic Lake La Cruz (Spain),
Front. Microbiol.,
7, 1–16, https://doi.org/10.3389/fmicb.2016.01762, 2016b.
Panganiban, A. T., Patt, T. E., Hart, W., and Hanson, R. S.:
Oxidation of methane in the absence of oxygen in lake water samples,
Appl. Environ. Microb.,
37, 303–309, https://doi.org/10.1128/aem.37.2.303-309.1979, 1979.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.:
Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples,
Environ. Microbiol.,
18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Peeters, F., Encinas Fernandez, J., and Hofmann, H.:
Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs,
Sci. Rep.-UK,
9, 1–10, https://doi.org/10.1038/s41598-018-36530-w, 2019.
Pernthaler, A., Pernthaler, J., and Amann, R.:
Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria,
Appl. Environ. Microb.,
68, 3094–3101, https://doi.org/10.1128/AEM.68.6.3094-3101.2002, 2002.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O.:
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,
Nucleic Acids Res.,
41 (Database issue), D590-6, https://doi.org/10.1093/nar/gks1219, 2013.
Rappé, M. S. and Giovannoni, S. J.:
The Uncultured Microbial Majority,
Annu. Rev. Microbiol.,
57, 369–394, https://doi.org/10.1146/annurev.micro.57.030502.090759, 2003.
Reeburgh, W. S.:
Oceanic Methane Biogeochemistry,
Chem. Rev.,
107, 486–513, https://doi.org/10.1021/cr050362v, 2007.
Reed, D. C., Deemer, B. R., van Grinsven, S., and Harrison, J. A.:
Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?,
Biogeochemistry,
134, 29–39, https://doi.org/10.1007/s10533-017-0356-3, 2017.
Rissanen, A. J., Saarenheimo, J., Tiirola, M., Peura, S., Aalto, S. L., Karvinen, A., and Nykänen, H.:
Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters,
Aquat. Microb. Ecol.,
81, 257–276, https://doi.org/10.3354/ame01874, 2018.
Rissanen, A. J., Saarela, T., Jäntti, H., Buck, M., Peura, S., Aalto, S. L., Ojala, A., Pumpanen, J., Tiirola, M., Elvert, M., and Nykänen, H.:
Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes,
FEMS Microbiol. Ecol.,
97, 1–16, https://doi.org/10.1093/femsec/fiaa252, 2021.
Rudd, J. W. M.:
Methane cycling in aquatic environments,
Advances in Aquatic Microbiology,
1, 77–150, 1980.
Rudd, J. W. M. and Hamilton, R. D.:
Factors controlling rates of methane oxidation and the distribution of the methane oxidizers in a small stratified lake,
Arch. Hydrobiol.,
75, 522–538, https://doi.org/10.1126/science.aad7154, 1975.
Rudd, J. W. M., Furutani, A., Flett, R. J., and Hamilton, R. D.:
Factors controlling methane oxidation in shield lakes: The role of nitrogen fixation and oxygen concentration,
Limnol. Oceanogr.,
21, 357–364, https://doi.org/10.4319/lo.1976.21.3.0357, 1976.
Saarnisto, M., Huttunen, P., and Tolonen, K.:
Annual lamination of sediments in Lake Lovojärvi, southern Finland, during the past 600 years,
Ann. Bot. Fenn.,
14, 35–45, https://www.jstor.org/stable/23726048 (last access: 19 May 2021), 1977.
Saxton, M. A., Samarkin, V. A., Schutte, C. A., Bowles, M. W., Madigan, M. T., Cadieux, S. B., Pratt, L. M., and Joye, S. B.:
Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic methanotrophy in permanently ice-covered Lake Fryxell, Antarctica,
Limnol. Oceanogr.,
61, S119–S130, https://doi.org/10.1002/lno.10320, 2016.
Scheller, S., Yu, H., Chadwick, G. L., and Mcglynn, S. E.:
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction,
Science,
351, 703–707, 2016.
Schmieder, R. and Edwards, R.:
Quality control and preprocessing of metagenomic datasets,
Bioinformatics,
27, 863–864, https://doi.org/10.1093/bioinformatics/btr026, 2011.
Schubert, C. J., Lucas, F. S., Durisch-Kaiser, E., Stierli, R., Diem, T., Scheidegger, O., Vazquez, F., and Muller, B.:
Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland),
Aquat. Sci.,
72, 455–466, https://doi.org/10.1007/s00027-010-0148-5, 2010.
Schubert, C. J., Vazquez, F., Loesekann-Behrens, T., Knittel, K., Tonolla, M., and Boetius, A.:
Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno),
FEMS Microbiol. Ecol.,
76, 26–38, https://doi.org/10.1111/j.1574-6941.2010.01036.x, 2011.
Simola, H.:
Micro-stratigraphy of sediment laminations deposited in a chemically stratifying eutrophic lake during the years 1913–1976,
Ecography,
2, 160–168, https://doi.org/10.1111/j.1600-0587.1979.tb00696.x, 1979.
Simola, H., Hanski, I., and Liukkonen, M.:
Stratigraphy, species richness and seasonal dynamics of plankton diatoms during 418 years in Lake Lovojärvi, South Finland,
Ann. Bot. Fenn.,
27, 241–259, https://www.jstor.org/stable/23725364 (last access: 19 May 2021), 1990.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and Eckert, W.:
Geochemical evidence for iron-mediated anaerobic oxidation of methane,
Limnol. Oceanogr.,
56, 1536–1544, https://doi.org/10.4319/lo.2011.56.4.1536, 2011.
Smith, G. J., Angle, J. C., Solden, L. M., Daly, R. A., Johnston, M. D., Borton, M. A., Wolfe, R., Stefanik, K. C., Morin, T. H., Gil, B., and Wrighton, K. C.:
Members of the Genus Methylobacter Are Inferred To Account for the Majority of Aerobic Methane Oxidation in Oxic Soils from a Freshwater Wetland,
mBio,
9, 1–17, https://doi.org/10.1128/mbio.00815-18, 2018.
Stookey, L. L.:
Ferrozine – a new spectrophotometric reagent for iron,
Anal. Chem.,
42, 779–781, https://doi.org/10.1021/ac60289a016, 1970.
Su, G., Zopfi, J., Yao, H., Steinle, L., Niemann, H., and Lehmann, M. F.:
Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane by archaea in lake sediments,
Limnol. Oceanogr.,
65, 863–875, https://doi.org/10.1002/lno.11354, 2020.
Sundh, I., Bastviken, D., and Tranvik, L. J.:
Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes,
Appl. Environ. Microb.,
71, 6746–6752, https://doi.org/10.1128/AEM.71.11.6746-6752.2005, 2005.
Taipale, S., Kankaala, P., Hahn, M., Jones, R., and Tiirola, M.:
Methane-oxidizing and photoautotrophic bacteria are major producers in a humic lake with a large anoxic hypolimnion,
Aquat. Microb. Ecol.,
64, 81–95, https://doi.org/10.3354/ame01512, 2011.
Tavormina, P. L., Kellermann, M. Y., Antony, C. P., Tocheva, E. I., Dalleska, N. F., Jensen, A. J., Valentine, D. L., Hinrichs, K. U., Jensen, G. J., Dubilier, N., and Orphan, V. J.:
Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti,
Mol. Microbiol.,
103, 242–252, https://doi.org/10.1111/mmi.13553, 2017.
Thottathil, S. D., Reis, P. C. J., and Prairie, Y. T.:
Methane oxidation kinetics in northern freshwater lakes,
Biogeochemistry,
143, 105–116, https://doi.org/10.1007/s10533-019-00552-x, 2019.
Tolonen, K., Tolonen, M., Honkasalo, L., Lehtovaara, A., Sorsa, K., and Sundberg, K.:
The influence of of prehistoric and historic land use on Lake Lampellonjärvi, South Finland,
Luonnon Tutkija,
80, 1–15, 1976.
Valenzuela, E. I., Avendaño, K. A., Balagurusamy, N., Arriaga, S., Nieto-Delgado, C., Thalasso, F., and Cervantes, F. J.:
Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments,
Sci. Total Environ.,
650, 2674–2684, https://doi.org/10.1016/J.SCITOTENV.2018.09.388, 2019.
Van Bodegom, P., Stams, F., Mollema, L., Boeke, S., and Leffelaar, P.:
Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere,
Appl. Environ. Microb.,
67, 3586–3597, https://doi.org/10.1128/AEM.67.8.3586-3597.2001, 2001.
van Grinsven, S., Sinninghe Damsté, J. S., and Villanueva, L.:
Assessing the effect of humic substances and Fe(III) as potential electron acceptors for anaerobic methane oxidation in a marine anoxic system,
Microorganisms,
8, 1–15, https://doi.org/10.3390/microorganisms8091288, 2020a.
van Grinsven, S., Sinninghe Damsté, J. S., Abdala Asbun, A., Engelmann, J. C., Harrison, J., and Villanueva, L.:
Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition,
Environ. Microbiol.,
22, 766–782, https://doi.org/10.1111/1462-2920.14886, 2020b.
van Grinsven, S., Sinninghe Damsté, J. S., Harrison, J., Polerecky, L., and Villanueva, L.:
Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water,
Limnol. Oceanogr.,
2, 1–14, https://doi.org/10.1002/lno.11648, 2020c.
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Van Cappellen, P.:
The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters,
Appl. Geochem.,
15, 785–790, https://doi.org/10.1016/S0883-2927(99)00097-9, 2000.
Walter, K. M., Smith, L. C., and Chapin, S. F.:
Methane bubbling from northern lakes: Present and future contributions to the global methane budget,
Philos. T. R. Soc. A,
365, 1657–1676, https://doi.org/10.1098/rsta.2007.2036, 2007.
Wei, X. M., He, R., Chen, M., Su, Y., and Ma, R. C.:
Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2-availability,
Environ. Sci. Pollut. R.,
23, 7517–7528, https://doi.org/10.1007/s11356-015-6017-y, 2016.
Whiticar, M. J.:
Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane,
Chem. Geol.,
161, 291–314, https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Wiesenburg, D. A. and Guinasso, N. L.:
Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water,
J. Chem. Eng. Data,
24, 356–360, https://doi.org/10.1021/je60083a006, 1979.
Zheng, Y., Wang, H., Liu, Y., Zhu, B., Li, J., Yang, Y., Qin, W., Chen, L., Wu, X., Chistoserdova, L., and Zhao, F.:
Methane-Dependent Mineral Reduction by Aerobic Methanotrophs under Hypoxia,
Environ. Sci. Tech. Let.,
7, 606–612, https://doi.org/10.1021/acs.estlett.0c00436, 2020.
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little...
Altmetrics
Final-revised paper
Preprint