Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3087-2021
https://doi.org/10.5194/bg-18-3087-2021
Research article
 | 
20 May 2021
Research article |  | 20 May 2021

Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics

Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert

Related authors

Soil-biodegradable plastic films do not decompose in a lake sediment over 9 months of incubation
Sigrid van Grinsven and Carsten Schubert
Biogeosciences, 20, 4213–4220, https://doi.org/10.5194/bg-20-4213-2023,https://doi.org/10.5194/bg-20-4213-2023, 2023
Short summary

Related subject area

Biogeochemistry: Limnology
Soil-biodegradable plastic films do not decompose in a lake sediment over 9 months of incubation
Sigrid van Grinsven and Carsten Schubert
Biogeosciences, 20, 4213–4220, https://doi.org/10.5194/bg-20-4213-2023,https://doi.org/10.5194/bg-20-4213-2023, 2023
Short summary
Anthropogenic activities significantly increase annual greenhouse gas (GHG) fluxes from temperate headwater streams in Germany
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023,https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Role of formation and decay of seston organic matter in the fate of methylmercury within the water column of a eutrophic lake
Laura Balzer, Carluvy Baptista-Salazar, Sofi Jonsson, and Harald Biester
Biogeosciences, 20, 1459–1472, https://doi.org/10.5194/bg-20-1459-2023,https://doi.org/10.5194/bg-20-1459-2023, 2023
Short summary
Contrasting activation energies of litter-associated respiration and P uptake drive lower cumulative P uptake at higher temperatures
Nathan J. Tomczyk, Amy D. Rosemond, Anna Kaz, and Jonathan P. Benstead
Biogeosciences, 20, 191–204, https://doi.org/10.5194/bg-20-191-2023,https://doi.org/10.5194/bg-20-191-2023, 2023
Short summary
Conceptual models of dissolved carbon fluxes considering interannual typhoon responses under extreme climates in a two-layer stratified lake
Hao-Chi Lin, Keisuke Nakayama, Jeng-Wei Tsai, and Chih-Yu Chiu
EGUsphere, https://doi.org/10.5194/egusphere-2022-852,https://doi.org/10.5194/egusphere-2022-852, 2022
Short summary

Cited articles

Amaral, J. A. and Knowles, R.: Growth of methanotrophs in methane and oxygen counter gradients, FEMS Microbiol. Lett., 126, 215–220, https://doi.org/10.1111/j.1574-6968.1995.tb07421.x, 1995. 
Barker, J. F. and Fritz, P.: Carbon isotope fractionation during microbial methane oxidation, Nature, 293, 289–291, https://doi.org/10.1038/293289a0, 1981. 
Bartlett, K. B. and Harriss, R. C.: Review and assessment of methane emissions from wetlands, Chemosphere, 26, 261–320, https://doi.org/10.1016/0045-6535(93)90427-7, 1993. 
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater Methane Emissions Offset the Continental Carbon Sink, Science, 331, 50, https://doi.org/10.1126/science.1196808, 2011. 
Biderre-Petit, C., Jézéquel, D., Dugat-Bony, E., Lopes, F., Kuever, J., Borrel, G., Viollier, E., Fonty, G., and Peyret, P.: Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake, FEMS Microbiol. Ecol., 77, 533–545, https://doi.org/10.1111/j.1574-6941.2011.01134.x, 2011. 
Download
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Altmetrics
Final-revised paper
Preprint