Articles | Volume 18, issue 10
Research article
25 May 2021
Research article |  | 25 May 2021

Sensitivity of 21st-century projected ocean new production changes to idealized biogeochemical model structure

Genevieve Jay Brett, Daniel B. Whitt, Matthew C. Long, Frank Bryan, Kate Feloy, and Kelvin J. Richards

Related authors

Competition between chaotic advection and diffusion: stirring and mixing in a 3-D eddy model
Genevieve Jay Brett, Larry Pratt, Irina Rypina, and Peng Wang
Nonlin. Processes Geophys., 26, 37–60,,, 2019
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824,,, 2024
Short summary
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435,,, 2024
Short summary
Coherency and time lag analyses between MODIS vegetation indices and climate across forest and grasslands in European temperate zone
Kinga Kulesza and Agata Hościło
EGUsphere,,, 2023
Short summary
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175,,, 2023
Short summary
Direct foliar phosphorus uptake from wildfire ash
Anton Lokshin, Daniel Palchan, and Avner Gross
EGUsphere,,, 2023
Short summary

Cited articles

Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J., and Thomas, A. C.: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans, Elem. Sci. Anth., 6,, 2018. a
Anugerahanti, P., Roy, S., and Haines, K.: Perturbed biology and physics signatures in a 1-D ocean biogeochemical model ensemble, Front. Mar. Sci., 7,, 2020. a
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the ecological underpinnings of ocean plankton blooms, Annu. Rev. Mar. Sci., 6, 167–194, 2014. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245,, 2013. a
Boyce, D. G., Lewis, M. R., and Worm, B.: Global phytoplankton decline over the past century, Nature, 466, 591–596, 2010. a
Short summary
We quantify one form of uncertainty in modeled 21st-century changes in phytoplankton growth. The supply of nutrients from deep to surface waters decreases in the warmer future ocean, but the effect on phytoplankton growth also depends on changes in available light, how much light and nutrient the plankton need, and how fast they can grow. These phytoplankton properties can be summarized as a biological timescale: when it is short, future growth decreases twice as much as when it is long.
Final-revised paper