Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees?
Bertold Mariën
CORRESPONDING AUTHOR
PLECO (Plants and Ecosystems), Department of Biology, University of
Antwerp, 2160 Wilrijk, Belgium
Inge Dox
PLECO (Plants and Ecosystems), Department of Biology, University of
Antwerp, 2160 Wilrijk, Belgium
Hans J. De Boeck
PLECO (Plants and Ecosystems), Department of Biology, University of
Antwerp, 2160 Wilrijk, Belgium
Patrick Willems
Hydraulics Division, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven,
Belgium
Sebastien Leys
PLECO (Plants and Ecosystems), Department of Biology, University of
Antwerp, 2160 Wilrijk, Belgium
Dimitri Papadimitriou
IDLab (Internet Data Lab), Department of Mathematics and Computer
Science, University of Antwerp, 2000 Antwerp, Belgium
Matteo Campioli
PLECO (Plants and Ecosystems), Department of Biology, University of
Antwerp, 2160 Wilrijk, Belgium
Related authors
No articles found.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Łukasz Gruss, Patrick Willems, Paweł Tomczyk, Jaroslav Pollert Jr., Jaroslav Pollert Sr., Christoph Märtner, Stanisław Czaban, and Mirosław Wiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-860, https://doi.org/10.5194/egusphere-2025-860, 2025
Short summary
Short summary
A new extension of the generalized extreme value distribution, namely the dual gamma generalized extreme value distribution developed by Nascimento, Bourguignony, and Leão (2016), displays superior performance in fitting most samples and is sensitive to trends, especially under non-stationary conditions such as climate change.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Cited articles
Banks, J. M., Percival, G. C., and Rose, G.: Variations in seasonal drought
tolerance rankings, Trees, 33, 1063–1072, https://doi.org/10.1007/s00468-019-01842-5, 2019.
Barigah, T. S., Charrier, O., Douris, M., Bonhomme, M., Herbette, S.,
Ameglio, T., Fichot, R., Brignolas, F., and Cochard, H.: Water
stress-induced xylem hydraulic failure is a causal factor of tree mortality
in beech and poplar, Ann. Bot.-London, 112, 1431–1437, https://doi.org/10.1093/aob/mct204, 2013.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Benbella, M. and Paulsen, G. M.: Efficacy of Treatments for Delaying
Senescence of Wheat Leaves: II. Senescence and Grain Yield under Field
Conditions, Agron. J., 90, 332–338, https://doi.org/10.2134/agronj1998.00021962009000030004x, 1998.
Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A. M.,
Jansson, S., Strauss, S. H., and Nilsson, O.: CO/FT regulatory module
controls timing of flowering and seasonal growth cessation in trees,
Science, 312, 1040–1043, https://doi.org/10.1126/science.1126038, 2006.
Bolte, A., Czajkowski, T., Cocozza, C., Tognetti, R., de Miguel, M.,
Psidova, E., Ditmarova, L., Dinca, L., Delzon, S., Cochard, H., Raebild, A.,
de Luis, M., Cvjetkovic, B., Heiri, C., and Muller, J.: Desiccation and
Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica
L.) Populations under Extreme Drought Conditions, Front. Plant Sci., 7, 751, https://doi.org/10.3389/fpls.2016.00751, 2016.
Brelsford, C. C., Trasser, M., Paris, T., Hartikainen, S. M., and Robson, T.
M.: Understory light quality affects leaf pigments and leaf phenology in
different plant functional types, bioRxiv, 829036, https://doi.org/10.1101/829036, 2019.
Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree
roots respond to drought, Front. Plant Sci., 6, 547, https://doi.org/10.3389/fpls.2015.00547, 2015.
Buck, A. L.: New Equations for Computing Vapor Pressure and Enhancement
Factor, J. Appl. Meteorol., 20, 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:Nefcvp>2.0.Co;2, 1981.
Bultot, F., Coppens, A., and Dupriez, G. L.: Estimation de
l'évapotranspiration potentielle en Belgique: (procédure
révisée), Institut royal météorologique de Belgique, Brussels, Belgium, 1983.
Campioli, M., Verbeeck, H., Van den Bossche, J., Wu, J., Ibrom, A.,
D'Andrea, E., Matteucci, G., Samson, R., Steppe, K., and Granier, A.: Can
decision rules simulate carbon allocation for years with contrasting and
extreme weather conditions? A case study for three temperate beech forests,
Ecol. Model., 263, 42–55, https://doi.org/10.1016/j.ecolmodel.2013.04.012, 2013.
Carrara, A., Kowalski, A. S., Neirynck, J., Janssens, I. A., Yuste, J. C.,
and Ceulemans, R.: Net ecosystem CO2 exchange of mixed forest in Belgium
over 5 years, Agr. Forest Meteorol., 119, 209–227, https://doi.org/10.1016/S0168-1923(03)00120-5, 2003.
Chelle, M., Evers, J. B., Combes, D., Varlet-Grancher, C., Vos, J., and
Andrieu, B.: Simulation of the three-dimensional distribution of the
red:far-red ratio within crop canopies, New Phytol., 176, 223–234,
https://doi.org/10.1111/j.1469-8137.2007.02161.x, 2007.
Chiang, C., Olsen, J. E., Basler, D., Bankestad, D., and Hoch, G.: Latitude
and Weather Influences on Sun Light Quality and the Relationship to Tree
Growth, Forests, 10, 610, https://doi.org/10.3390/f10080610, 2019.
Crabbe, R. A., Dash, J., Rodriguez-Galiano, V. F., Janous, D., Pavelka, M.,
and Marek, M. V.: Extreme warm temperatures alter forest phenology and
productivity in Europe, Sci. Total Environ., 563–564, 486–495, https://doi.org/10.1016/j.scitotenv.2016.04.124, 2016.
De Boeck, H. J. and Verbeeck, H.: Drought-associated changes in climate and their relevance for ecosystem experiments and models, Biogeosciences, 8, 1121–1130, https://doi.org/10.5194/bg-8-1121-2011, 2011.
De Boeck, H. J., De Groote, T., and Nijs, I.: Leaf temperatures in
glasshouses and open-top chambers, New Phytol., 194, 1155–1164, https://doi.org/10.1111/j.1469-8137.2012.04117.x, 2012.
De Vos, B.: Capability of PlantCare Mini-Logger technology for monitoring of
soil water content and temperature in forest soils: test results of 2015,
Reports of Research Institute for Nature and Forest, Instituut voor Natuur-
en Bosonderzoek, 85 pp., 2016.
Estiarte, M. and Penuelas, J.: Alteration of the phenology of leaf
senescence and fall in winter deciduous species by climate change: effects
on nutrient proficiency, Global Change Biol., 21, 1005–1017, https://doi.org/10.1111/gcb.12804, 2015.
Fox, J. and Weisberg, S.: An {R} Companion to Applied Regression, edn. 3, Sage, Thousand Oaks, California, USA, 2019.
Fracheboud, Y., Luquez, V., Bjorken, L., Sjodin, A., Tuominen, H., and
Jansson, S.: The control of autumn senescence in European aspen, Plant
Physiol., 149, 1982–1991, https://doi.org/10.1104/pp.108.133249, 2009.
Franklin, K. A. and Quail, P. H.: Phytochrome functions in Arabidopsis
development, J. Exp. Bot., 61, 11–24, https://doi.org/10.1093/jxb/erp304, 2010.
Fu, Y. S., Campioli, M., Vitasse, Y., De Boeck, H. J., Van den Berge, J., AbdElgawad, H., Asard, H., Piao, S., Deckmyn, G., and Janssens, I. A.: Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species, P. Natl. Acad. Sci. USA, 111, 7355–7360, https://doi.org/10.1073/pnas.1321727111, 2014.
Fu, Y. H., Piao, S., Delpierre, N., Hao, F., Hänninen, H., Liu, Y., Sun,
W., Janssens, I. A., and Campioli, M.: Larger temperature response of autumn
leaf senescence than spring leaf-out phenology, Global Change Biol., 24,
2159–2168, https://doi.org/10.1111/gcb.14021, 2018.
Gallinat, A. S., Primack, R. B., and Wagner, D. L.: Autumn, the neglected
season in climate change research, Trends Ecol. Evol., 30, 169–176, https://doi.org/10.1016/j.tree.2015.01.004, 2015.
Gárate-Escamilla, H., Brelsford, C. C., Hampe, A., Robson, T. M., and
Garzón, M. B.: Greater capacity to exploit warming temperatures in
northern populations of European beech is partly driven by delayed leaf
senescence, Agr. Forest Meteorol., 284, 107908, https://doi.org/10.1016/j.agrformet.2020.107908, 2020.
Garnier, S.: viridis: Default Color Maps from “matplotlib”, R package version 0.5.1 edn., available at: https://CRAN.R-project.org/package=viridis (last access: 2 June 2021), 2018.
Gill, A. L., Gallinat, A. S., Sanders-DeMott, R., Rigden, A. J., Short Gianotti, D. J., Mantooth, J. A., and Templer, P. H.: Changes in autumn
senescence in northern hemisphere deciduous trees: a meta-analysis of autumn
phenology studies, Ann. Bot.-London, 116, 875–888, https://doi.org/10.1093/aob/mcv055, 2015.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Stat. Sci., 1, 297–310, 1986.
Holm, G.: Chlorophyll Mutations in Barley, Acta Agr. Scand., 4, 457–471, https://doi.org/10.1080/00015125409439955, 1954.
Hörtensteiner, S. and Feller, U.: Nitrogen metabolism and
remobilization during senescence, J. Exp. Bot., 53, 927–937, https://doi.org/10.1093/jexbot/53.370.927, 2002.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General
Parametric Models, Biometrical J., 50, 346–363, 2008.
IPCC: Climate change 2014: synthesis report, in: Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, IPCC, Geneva, Switzerland, p. 10, 2014.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, R package version 0.2.4 edn., available at: https://CRAN.R-project.org/package=ggpubr (last access: 2 June 2021), 2019.
Keskitalo, J., Bergquist, G., Gardestrom, P., and Jansson, S.: A cellular
timetable of autumn senescence, Plant Physiol., 139, 1635–1648, https://doi.org/10.1104/pp.105.066845, 2005.
Kint, V., Aertsen, W., Campioli, M., Vansteenkiste, D., Delcloo, A., and
Muys, B.: Radial growth change of temperate tree species in response to
altered regional climate and air quality in the period 1901–2008,
Climate Change, 115, 343–363, https://doi.org/10.1007/s10584-012-0465-x, 2012.
KMI: Klimatologisch seizoenoverzicht, zomer 2017, available at: https://www.meteo.be/resources/climateReportWeb/klimatologisch_seizoenoverzicht_2017_S3.pdf (last access: 2 June 2021), 2017a.
KMI: Klimatologisch seizoenoverzicht, herfst 2017, available at: https://www.meteo.be/resources/climateReportWeb/klimatologisch_seizoenoverzicht_2017_S4.pdf (last access: 2 June 2021), 2017b.
KMI: Klimatologisch seizoenoverzicht, lente 2017, available at: https://www.meteo.be/resources/climateReportWeb/klimatologisch_seizoenoverzicht_2017_S2.pdf (last access: 2 June 2021), 2017c.
KMI: Klimatologisch seizoenoverzicht, herfst 2018, available at: https://www.meteo.be/resources/climateReportWeb/klimatologisch_seizoenoverzicht_2018_S4.pdf (last access: 2 June 2021), 2018a.
KMI: Klimatologisch seizoenoverzicht, zomer 2018, available at: https://www.meteo.be/resources/climateReportWeb/klimatologisch_seizoenoverzicht_2018_S3.pdf (last access: 2 June 2021), 2018b.
KMI: Klimatologisch seizoenoverzicht, herfst 2019, available at: https://www.meteo.be/resources/climatology/pdf/klimatologisch_seizoenoverzicht_2019_S4.pdf (last access: 2 June 2021), 2019a.
KMI: Klimatologisch seizoenoverzicht, zomer 2019, available at: https://www.meteo.be/resources/climatology/pdf/klimatologisch_seizoenoverzicht_2019_S3.pdf (last access: 2 June 2021), 2019b.
Kobayashi, Y. and Weigel, D.: Move on up, it's time for change – Mobile
signals controlling photoperiod-dependent flowering, Gene. Dev., 21,
2371–2384, https://doi.org/10.1101/gad.1589007, 2007.
Koike, T.: Autumn coloring, photosynthetic performance and leaf development
of deciduous broad-leaved trees in relation to forest succession,
Tree Physiol., 7, 21–32, https://doi.org/10.1093/treephys/7.1-2-3-4.21, 1990.
Koornneef, M., Hanhart, C. J., and van der Veen, J. H.: A genetic and
physiological analysis of late flowering mutants in Arabidopsis thaliana,
Mol. Gen. Genet., 229, 57–66, https://doi.org/10.1007/bf00264213, 1991.
Kwon, J., Khoshimkhujaev, B., Lee, J., Ho, I., Park, K., and Choi, H. G.:
Growth and Yield of Tomato and Cucumber Plants in Polycarbonate or Glass
Greenhouses, Korean J. Hortic. Sci., 35, 79–87, https://doi.org/10.12972/kjhst.20170009, 2017.
Legris, M., Klose, C., Burgie, E. S., Rojas, C. C. R., Neme, M.,
Hiltbrunner, A., Wigge, P. A., Schäfer, E., Vierstra, R. D., and Casal,
J. J.: Phytochrome B integrates light and temperature signals in Arabidopsis, Science, 354, 897–900, https://doi.org/10.1126/science.aaf5656, 2016.
Legris, M., Ince, Y., and Fankhauser, C.: Molecular mechanisms underlying
phytochrome-controlled morphogenesis in plants, Nat. Commun., 10, 5219, https://doi.org/10.1038/s41467-019-13045-0, 2019.
Leul, M. and Zhou, W.: Alleviation of waterlogging damage in winter rape by
application of uniconazole: Effects on morphological characteristics,
hormones and photosynthesis, Field Crop. Res., 59, 121–127, https://doi.org/10.1016/S0378-4290(98)00112-9, 1998.
Leuzinger, S., Zotz, G., Asshoff, R., and Korner, C.: Responses of deciduous
forest trees to severe drought in Central Europe, Tree Physiol., 25, 641–650, https://doi.org/10.1093/treephys/25.6.641, 2005.
Mancinelli, A. L. and Rabino, I.: The “High Irradiance Responses” of Plant
Photomorphogenesis, Bot. Rev., 44, 129–180, 1978.
Mariën, B., Balzarolo, M., Dox, I., Leys, S., Lorene, M. J., Geron, C.,
Portillo-Estrada, M., AbdElgawad, H., Asard, H., and Campioli, M.: Detecting
the onset of autumn leaf senescence in deciduous forest trees of the
temperate zone, New Phytol., 224, 166–176, https://doi.org/10.1111/nph.15991, 2019.
Mariën, B., Dox, I., J. De Boeck, H., Willems, P., Leys, S., Papadimitriou, D., and Campioli, M.: Does drought advance the onset of autumn leaf senescence in temperature deciduous forest trees: data and R scripts, Biogeosciences, Zenodo, https://doi.org/10.5281/zenodo.4559535, 2021.
Matile, P.: Biochemistry of Indian summer: physiology of autumnal leaf
coloration, Exp. Gerontol., 35, 145–158, https://doi.org/10.1016/S0531-5565(00)00081-4, 2000.
Medawar, P. B.: The Uniqueness of the individual, Methuen Publishing, London, UK, 1957.
Menzel, A., Helm, R., and Zang, C.: Patterns of late spring frost leaf
damage and recovery in a European beech (Fagus sylvatica L.) stand in
south-eastern Germany based on repeated digital photographs, Front. Plant Sci., 6, 110, https://doi.org/10.3389/fpls.2015.00110, 2015.
Michelson, I. H., Ingvarsson, P. K., Robinson, K. M., Edlund, E., Eriksson,
M. E., Nilsson, O., and Jansson, S.: Autumn senescence in aspen is not
triggered by day length, Physiol. Plantarum, 162, 123–134, https://doi.org/10.1111/ppl.12593, 2018.
Munné-Bosch, S. and Alegre, L.: Die and let live: leaf senescence
contributes to plant survival under drought stress, Funct. Plant Biol., 31, 203–216, https://doi.org/10.1071/fp03236, 2004.
Neff, M. M., Fankhauser, C., and Chory, J.: Light: an indicator of time and
place, Gene. Dev., 14, 257–271, 2000.
Niinemets, Ü.: Responses of forest trees to single and multiple
environmental stresses from seedlings to mature plants: Past stress history,
stress interactions, tolerance and acclimation, Forest Ecol. Manag., 260,
1623–1639, https://doi.org/10.1016/j.foreco.2010.07.054, 2010.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G.,
Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N.,
Scott, R. L., Wang, L. X., and Phillips, R. P.: The increasing importance of
atmospheric demand for ecosystem water and carbon fluxes,
Nat. Clim. Change, 6, 1023–1027, https://doi.org/10.1038/Nclimate3114, 2016.
Pedersen, E. J., Miller, D. L., Simpson, G. L., and Ross, N.: Hierarchical
generalized additive models in ecology: an introduction with mgcv, PeerJ, 7,
e6876, https://doi.org/10.7717/peerj.6876, 2019.
Penman, H. L.: Natural evaporation from open water, hare soil and grass,
P. Roy. Soc. Lond. A Mat., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948.
Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A.,
Mäenpää, M., Matsubara, S., and Pons, T.: A meta-analysis of
plant responses to light intensity for 70 traits ranging from molecules to
whole plant performance, New Phytol., 223, 1073–1105, https://doi.org/10.1111/nph.15754, 2019.
Pšidová, E., Ditmarová, L., Jamnická, G., Kurjak, D.,
Majerová, J., Czajkowski, T., and Bolte, A.: Photosynthetic response of
beech seedlings of different origin to water deficit, Photosynthetica, 53,
187–194, https://doi.org/10.1007/s11099-015-0101-x, 2015.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2020.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O.,
and Toomey, M.: Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system, Agr. Forest Meteorol., 169, 156–173, https://doi.org/10.1016/j.agrformet.2012.09.012, 2013.
Rigby, R. A. and Stasinopoulos, D. M.: Generalized additive models for
location, scale and shape, J. Roy. Stat. Soc. C-App., 54, 507–544,
https://doi.org/10.1111/j.1467-9876.2005.00510.x, 2005.
Rose, N. L., Yang, H., Turner, S. D., and Simpson, G. L.: An assessment of
the mechanisms for the transfer of lead and mercury from atmospherically
contaminated organic soils to lake sediments with particular reference to
Scotland, UK, Geochim. Cosmochim. Ac., 82, 113–135, https://doi.org/10.1016/j.gca.2010.12.026, 2012.
Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., and Scherer-Lorenzen, M.: Light, in: Plant Ecol., edited by: Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., and Scherer-Lorenzen, M., Springer Berlin Heidelberg, Berlin, Heidelberg, 57–90, 2019.
Seyednasrollah, B., Young, A. M., Li, X., Milliman, T., Ault, T., Frolking,
S., Friedl, M., and Richardson, A. D.: Sensitivity of Deciduous Forest
Phenology to Environmental Drivers: Implications for Climate Change Impacts
Across North America, Geophys. Res. Lett., 47, e2019GL086788, https://doi.org/10.1029/2019gl086788, 2020.
Simpson, G. L.: gratia: Graceful “ggplot”-Based Graphics and Other Functions for GAMs Fitted Using “mgcv”, R package version 0.3.0. edn., available at: https://CRAN.R-project.org/package=gratia (last access: 2 June 2021), 2020.
Smith, H.: Light Quality, Photoperception, and Plant Strategy,
Ann. Rev. Plant Physio., 33, 481–518, https://doi.org/10.1146/annurev.pp.33.060182.002405, 1982.
Turcsan, A., Steppe, K., Sarkozi, E., Erdelyi, E., Missoorten, M., Mees, G.,
and Mijnsbrugge, K. V.: Early Summer Drought Stress During the First Growing
Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea), Front. Plant Sci., 7, 193, https://doi.org/10.3389/fpls.2016.00193, 2016.
Van den Berge, J., Naudts, K., Zavalloni, C., Janssens, I. A., Ceulemans,
R., and Nijs, I.: Altered response to nitrogen supply of mixed grassland
communities in a future climate: a controlled environment microcosm study,
Plant Soil, 345, 375–385, https://doi.org/10.1007/s11104-011-0789-8, 2011.
van der Werf, G. W., Sass-Klaassen, U. G. W., and Mohren, G. M. J.: The
impact of the 2003 summer drought on the intra-annual growth pattern of
beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the
Netherlands, Dendrochronologia, 25, 103–112, https://doi.org/10.1016/j.dendro.2007.03.004, 2007.
Vander Mijnsbrugge, K., Turcsan, A., Maes, J., Duchene, N., Meeus, S.,
Steppe, K., and Steenackers, M.: Repeated Summer Drought and Re-watering
during the First Growing Year of Oak (Quercus petraea) Delay Autumn
Senescence and Bud Burst in the Following Spring, Front. Plant Sci., 7, 419, https://doi.org/10.3389/fpls.2016.00419, 2016.
Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A.,
Chuine, I., and Delzon, S.: Assessing the effects of climate change on the
phenology of European temperate trees, Agr. Forest Meteorol.,
151, 969–980, https://doi.org/10.1016/j.agrformet.2011.03.003, 2011.
Vito, M. and Muggeo, R.: segmented: an R Package to Fit Regression Models
with Broken-Line Relationships, R News, 8, 20–25, 2008.
Vonwettstein, D.: Chlorophyll-letale und der submikroskopische Formwechsel
der Plastiden, Exp. Cell Res., 12, 427–506, https://doi.org/10.1016/0014-4827(57)90165-9, 1957.
Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., and Peng, Y.: Temporal
Trends and Spatial Variability of Vegetation Phenology over the Northern
Hemisphere during 1982–2012, PLoS ONE, 11, e0157134, https://doi.org/10.1371/journal.pone.0157134, 2016.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, USA, 2009.
Wickham, H., Francois, R., Henry, L., and Müller, K.: dplyr: A Grammar
of Data Manipulation, R package version 0.7.4 edn., available at: https://CRAN.R-project.org/package=dplyr (last access: 2 June 2021), 2018.
Wilke, C. O.: cowplot: Streamlined Plot Theme and Plot Annotations for
“ggplot2”, R package version 1.0.0 edn., available at: https://CRAN.R-project.org/package=ggridges (last access: 2 June 2021), 2019.
Willems, P.: Compound intensity/duration/frequency-relationships of extreme
precipitation for two seasons and two storm types, J. Hydrol.,
233, 189–205, https://doi.org/10.1016/s0022-1694(00)00233-x, 2000.
Willems, P.: Multidecadal oscillatory behaviour of rainfall extremes in
Europe, Climate Change, 120, 931–944, https://doi.org/10.1007/s10584-013-0837-x, 2013.
Wolfe, B. T., Sperry, J. S., and Kursar, T. A.: Does leaf shedding protect
stems from cavitation during seasonal droughts? A test of the hydraulic fuse
hypothesis, New Phytol., 212, 1007–1018, https://doi.org/10.1111/nph.14087, 2016.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models,
J. Roy. Stat. Soc. B, 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Xie, Y. and Wilson, A. M.: Change point estimation of deciduous forest land
surface phenology, Remote Sens. Environ., 240, 111698, https://doi.org/10.1016/j.rse.2020.111698, 2020.
Yanovsky, M. J. and Kay, S. A.: Molecular basis of seasonal time
measurement in Arabidopsis, Nature, 419, 308–312, https://doi.org/10.1038/nature00996, 2002.
Zeileis, A. and Hothorn, T.: Diagnostic Checking in Regression
Relationships, R News, 2, 7–10, 2002.
Zeng, H., Jia, G., and Epstein, H.: Recent changes in phenology over the
northern high latitudes detected from multi-satellite data,
Environ. Res. Lett., 6, 045508, https://doi.org/10.1088/1748-9326/6/4/045508, 2011.
Zuur, A. F., Ieno, E. N., and Smith, G.: Analysing Ecological Data, Statistics for Biology and Health, Zuur, New York, XXVI, 672, 2007.
Zuur, A. F., Ieno, E. N., and Elphick, C. S.: A protocol for data
exploration to avoid common statistical problems, Methods Ecol. Evol., 1,
3–14, https://doi.org/10.1111/j.2041-210X.2009.00001.x, 2010.
Zuur, A. F., Ieno, E. N., and Freckleton, R.: A protocol for conducting and
presenting results of regression-type analyses, Methods Ecol. Evol., 7,
636–645, https://doi.org/10.1111/2041-210x.12577, 2016.
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still...
Altmetrics
Final-revised paper
Preprint