Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Jurek Müller
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Fortunat Joos
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972, https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency to grow proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488, https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Short summary
We apply the Adaptive Emission Reduction Approach with Earth System Models to provide simulations in which all ESMs converge at 1.5 °C and 2 °C warming levels. These simulations provide compatible emission pathways for a given warming level, uncovering uncertainty ranges previously missing in the CMIP scenarios. This new type of target-based emission-driven simulations offers a more coherent assessment across ESMs for studying both the carbon cycle and impacts under climate stabilization.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020, https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
Short summary
Despite intense focus on the ~ 190 ‰ drop in Δ14C across the deglacial
mystery interval, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. Sensitivity experiments with the computationally efficient Bern3D Earth system model suggest that our inability to reproduce the elevated Δ14C levels during the last glacial may reflect an underestimation of 14C production and/or a biased-high reconstruction of Δ14C.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Sebastian Lienert, Gianna Battaglia, Benjamin D. Stocker, Adrian Schilt, and Edward J. Brook
Biogeosciences, 16, 3997–4021, https://doi.org/10.5194/bg-16-3997-2019, https://doi.org/10.5194/bg-16-3997-2019, 2019
Short summary
Short summary
N2O concentrations were subject to strong variations accompanying glacial–interglacial but also rapid climate changes over the last 21 kyr. The sources of these N2O changes can be identified by measuring the isotopic composition of N2O in ice cores and using the distinct isotopic composition of terrestrial and marine N2O. We show that both marine and terrestrial sources increased from the last glacial to the Holocene but that only terrestrial emissions responded quickly to rapid climate changes.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
Gianna Battaglia and Fortunat Joos
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018, https://doi.org/10.5194/esd-9-797-2018, 2018
Short summary
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
Fortunat Joos and Brigitte Buchmann
Atmos. Chem. Phys., 18, 7841–7842, https://doi.org/10.5194/acp-18-7841-2018, https://doi.org/10.5194/acp-18-7841-2018, 2018
Kuno M. Strassmann and Fortunat Joos
Geosci. Model Dev., 11, 1887–1908, https://doi.org/10.5194/gmd-11-1887-2018, https://doi.org/10.5194/gmd-11-1887-2018, 2018
Short summary
Short summary
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle–climate model widely used in science and IPCC assessments. BernSCM supports up to decadal time steps with high accuracy and is suitable for studies with high computational load, e.g., integrated assessment models (IAMs). Further applications include climate risk assessment in a business, public, or educational context and the estimation of benefits of emission mitigation options.
Sebastian Lienert and Fortunat Joos
Biogeosciences, 15, 2909–2930, https://doi.org/10.5194/bg-15-2909-2018, https://doi.org/10.5194/bg-15-2909-2018, 2018
Short summary
Short summary
Deforestation, shifting cultivation and wood harvesting cause large carbon emissions, altering climate. We apply a dynamic global vegetation model in a probabilistic framework. Diverse observations are assimilated to establish an optimally performing model and a large ensemble of model versions. Land-use carbon emissions are reported for individual countries, regions and the world. We find that parameter-related uncertainties are on the same order of magnitude as process-related effects.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Sifan Gu, Zhengyu Liu, Alexandra Jahn, Johannes Rempfer, Jiaxu Zhang, and Fortunat Joos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-40, https://doi.org/10.5194/gmd-2017-40, 2017
Revised manuscript not accepted
Short summary
Short summary
This paper is the documentation of the implementation of neodymium (Nd) isotopes in the ocean model of CESM. Our model can simulate both Nd concentration and Nd isotope ratio in good agreement with observations. Our Nd-enabled ocean model makes it possible for direct model-data comparison in paleoceanographic studies, which can help to resolve some uncertainties and controversies in our understanding of past ocean evolution. Therefore, our model provides a useful tool for paleoclimate studies.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Sonja G. Keel, Fortunat Joos, Renato Spahni, Matthias Saurer, Rosemarie B. Weigt, and Stefan Klesse
Biogeosciences, 13, 3869–3886, https://doi.org/10.5194/bg-13-3869-2016, https://doi.org/10.5194/bg-13-3869-2016, 2016
Short summary
Short summary
Records of stable oxygen isotope ratios in tree rings are valuable tools for reconstructing past climatic conditions. So far, they have not been used in global dynamic vegetation models. Here we present a model that simulates oxygen isotope ratios in tree rings. Our results compare well with measurements performed in European forests. The model is useful for studying oxygen isotope patterns of tree ring cellulose at large spatial and temporal scales.
Gianna Battaglia, Marco Steinacher, and Fortunat Joos
Biogeosciences, 13, 2823–2848, https://doi.org/10.5194/bg-13-2823-2016, https://doi.org/10.5194/bg-13-2823-2016, 2016
Short summary
Short summary
The marine cycle of calcium carbonate (CaCO3) influences the distribution of CO2 between atmosphere and ocean, and thereby climate. We constrain export of biogenic CaCO3 (globally: 0.72–1.05 Gt C yr−1) and dissolution within the water column (~ 80 %) in a novel Monte Carlo set-up with the Bern3D model based on alkalinity data. Whether CaCO3 dissolves in the upper ocean remains unresolved. We recommend using constant (saturation-independent) dissolution rates in Earth system models.
M. Steinacher and F. Joos
Biogeosciences, 13, 1071–1103, https://doi.org/10.5194/bg-13-1071-2016, https://doi.org/10.5194/bg-13-1071-2016, 2016
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
B. D. Stocker, R. Spahni, and F. Joos
Geosci. Model Dev., 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-2014, https://doi.org/10.5194/gmd-7-3089-2014, 2014
Short summary
Short summary
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Here, we describe and assess the DYPTOP model that predicts the extent of inundation and the global spatial distribution of peatlands. DYPTOP makes use of high-resolution topography information and uses ecosystem water balance and peatland soil C balance criteria to simulate peatland spatial dynamics and carbon accumulation.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
R. Roth, S. P. Ritz, and F. Joos
Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, https://doi.org/10.5194/esd-5-321-2014, 2014
K. M. Keller, F. Joos, and C. C. Raible
Biogeosciences, 11, 3647–3659, https://doi.org/10.5194/bg-11-3647-2014, https://doi.org/10.5194/bg-11-3647-2014, 2014
B. Ringeval, S. Houweling, P. M. van Bodegom, R. Spahni, R. van Beek, F. Joos, and T. Röckmann
Biogeosciences, 11, 1519–1558, https://doi.org/10.5194/bg-11-1519-2014, https://doi.org/10.5194/bg-11-1519-2014, 2014
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
R. Roth and F. Joos
Clim. Past, 9, 1879–1909, https://doi.org/10.5194/cp-9-1879-2013, https://doi.org/10.5194/cp-9-1879-2013, 2013
R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu
Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-1287-2013, https://doi.org/10.5194/cp-9-1287-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
S. Zürcher, R. Spahni, F. Joos, M. Steinacher, and H. Fischer
Biogeosciences, 10, 1963–1981, https://doi.org/10.5194/bg-10-1963-2013, https://doi.org/10.5194/bg-10-1963-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
Related subject area
Biogeochemistry: Wetlands
Technical note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in inland wetland soils
Shoulder season controls on methane emissions from a boreal peatland
Patterns and drivers of organic matter decomposition in peatland open-water pools
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Assessing root-soil interactions in wetland plants: root exudation and radial oxygen loss
Decomposing the Tea Bag Index and finding slower organic matter loss rates at higher elevations and deeper soil horizons in a minerogenic salt marsh
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Reviews and Syntheses: Variable Inundation Across Earth’s Terrestrial Ecosystems
Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions
Reviews and syntheses: Greenhouse gas emissions from drained organic forest soils – synthesizing data for site-specific emission factors for boreal and cool temperate regions
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
Plant mercury accumulation and litter input to a Northern Sedge-dominated Peatland
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Sedimentary blue carbon dynamics based on chronosequential observations in a tropical restored mangrove forest
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea
Quantification of blue carbon in salt marshes of the Pacific coast of Canada
Cutting peatland CO2 emissions with water management practices
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Origin, transport, and retention of fluvial sedimentary organic matter in South Africa's largest freshwater wetland, Mkhuze Wetland System
Peat macropore networks – new insights into episodic and hotspot methane emission
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses
Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
High-resolution induced polarization imaging of biogeochemical carbon turnover hotspots in a peatland
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures
Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands
Drivers of seasonal- and event-scale DOC dynamics at the outlet of mountainous peatlands revealed by high-frequency monitoring
Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog
Microtopography is a fundamental organizing structure of vegetation and soil chemistry in black ash wetlands
Interacting effects of vegetation components and water level on methane dynamics in a boreal fen
Low methane emissions from a boreal wetland constructed on oil sand mine tailings
Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine
Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland
Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research
Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms
Modelling long-term blanket peatland development in eastern Scotland
Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina
Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog
Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland
Rhizosphere to the atmosphere: contrasting methane pathways, fluxes, and geochemical drivers across the terrestrial–aquatic wetland boundary
Purbasha Mistry, Irena F. Creed, Charles G. Trick, Eric Enanga, and David A. Lobb
Biogeosciences, 21, 4699–4715, https://doi.org/10.5194/bg-21-4699-2024, https://doi.org/10.5194/bg-21-4699-2024, 2024
Short summary
Short summary
Precise and accurate estimates of wetland organic carbon sequestration rates are crucial to track the progress of climate action goals through effective carbon budgeting. Radioisotope dating methods using cesium-137 (137Cs) and lead-210 (210Pb) are needed to provide temporal references for these estimations. The choice between using 137Cs or 210Pb, or their combination, depends on respective study objectives, with careful consideration of factors such as dating range and estimation complexity.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954, https://doi.org/10.5194/bg-21-2937-2024, https://doi.org/10.5194/bg-21-2937-2024, 2024
Short summary
Short summary
This study aims at inspecting organic matter dynamics affecting the survival and carbon sink potential of salt marshes, which are valuable yet endangered wetland environments. Measuring the organic matter content in marsh soils and its relationship with environmental variables, we observed that the organic matter accumulation varies at different scales, and it is driven by the interplay between sediment supply and vegetation, which are affected, in turn, by marine and fluvial influences.
Katherine Ann Haviland and Genevieve Noyce
EGUsphere, https://doi.org/10.5194/egusphere-2024-1547, https://doi.org/10.5194/egusphere-2024-1547, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, Spartina patens and S. americanus. We found that S. patens produces more carbon, and less oxygen, than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Satyatejas G. Reddy, W. Reilly Farrell, Fengrun Wu, Steven C. Pennings, Jonathan Sanderman, Meagan Eagle, Christopher Craft, and Amanda C. Spivak
EGUsphere, https://doi.org/10.5194/egusphere-2024-1328, https://doi.org/10.5194/egusphere-2024-1328, 2024
Short summary
Short summary
Organic matter decay in salt marsh soils is not well understood. We used the Tea Bag Index, a standardized litter approach, to test how decay changes with soil depth, elevation, and time. The index overestimated decay but one component, rooibos tea, produced comparable rates to natural litter. We found that decay was higher at shallower depths and lower marsh elevations, suggesting that hydrologic setting may be a particularly important control on organic matter loss.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190, https://doi.org/10.5194/bg-21-1173-2024, https://doi.org/10.5194/bg-21-1173-2024, 2024
Short summary
Short summary
Higher evaporation has been predicted in peatlands due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a "typical" Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.
James Stegen, Amy Burgin, Michelle Busch, Joshua Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian Deines, Julia Guimond, Peter Regier, Kenton Rod, Edward Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon Sweetman, Jianqiu Zheng, Daniel Allen, Elizabeth Herndon, Beth Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad Patel
EGUsphere, https://doi.org/10.5194/egusphere-2024-98, https://doi.org/10.5194/egusphere-2024-98, 2024
Short summary
Short summary
The loss and gain of surface water (variable inundation) is a common process across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Ting Sun and Brian A. Branfireun
Biogeosciences, 20, 2971–2984, https://doi.org/10.5194/bg-20-2971-2023, https://doi.org/10.5194/bg-20-2971-2023, 2023
Short summary
Short summary
Shrub leaves had higher mercury concentrations than sedge leaves in the sedge-dominated peatland. Dead shrub leaves leached less soluble mercury but more bioaccessible dissolved organic matter than dead sedge leaves. Leached mercury was positively related to the aromaticity of dissolved organic matter in leachate. Future plant species composition changes under climate change will affect Hg input from plant leaves to northern peatlands.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Raghab Ray, Rempei Suwa, Toshihiro Miyajima, Jeffrey Munar, Masaya Yoshikai, Maria Lourdes San Diego-McGlone, and Kazuo Nadaoka
Biogeosciences, 20, 911–928, https://doi.org/10.5194/bg-20-911-2023, https://doi.org/10.5194/bg-20-911-2023, 2023
Short summary
Short summary
Mangroves are blue carbon ecosystems known to store large amounts of organic carbon in the sediments. This study is a first attempt to apply a chronosequence (or space-for-time substitution) approach to evaluate the distribution and accumulation rate of carbon in a 30-year-old (maximum age) restored mangrove forest. Using this approach, the contribution of restored or planted mangroves to sedimentary organic carbon presents an increasing pattern with mangrove age.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Stephen G. Chastain, Karen E. Kohfeld, Marlow G. Pellatt, Carolina Olid, and Maija Gailis
Biogeosciences, 19, 5751–5777, https://doi.org/10.5194/bg-19-5751-2022, https://doi.org/10.5194/bg-19-5751-2022, 2022
Short summary
Short summary
Salt marshes are thought to be important carbon sinks because of their ability to store carbon in their soils. We provide the first estimates of how much blue carbon is stored in salt marshes on the Pacific coast of Canada. We find that the carbon stored in the marshes is low compared to other marshes around the world, likely because of their young age. Still, the high marshes take up carbon at rates faster than the global average, making them potentially important carbon sinks in the future.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Naima Iram, Emad Kavehei, Damien T. Maher, Stuart E. Bunn, Mehran Rezaei Rashti, Bahareh Shahrabi Farahani, and Maria Fernanda Adame
Biogeosciences, 18, 5085–5096, https://doi.org/10.5194/bg-18-5085-2021, https://doi.org/10.5194/bg-18-5085-2021, 2021
Short summary
Short summary
Greenhouse gas emissions were measured and compared from natural coastal wetlands and their converted agricultural lands across annual seasonal cycles in tropical Australia. Ponded pastures emitted ~ 200-fold-higher methane than any other tested land use type, suggesting the highest greenhouse gas mitigation potential and financial incentives by the restoration of ponded pastures to natural coastal wetlands.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021, https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Jérémy Guilhen, Ahmad Al Bitar, Sabine Sauvage, Marie Parrens, Jean-Michel Martinez, Gwenael Abril, Patricia Moreira-Turcq, and José-Miguel Sánchez-Pérez
Biogeosciences, 17, 4297–4311, https://doi.org/10.5194/bg-17-4297-2020, https://doi.org/10.5194/bg-17-4297-2020, 2020
Short summary
Short summary
The quantity of greenhouse gases (GHGs) released to the atmosphere by human industries and agriculture, such as carbon dioxide (CO2) and nitrous oxide (N2O), has been constantly increasing for the last few decades.
This work develops a methodology which makes consistent both satellite observations and modelling of the Amazon basin to identify and quantify the role of wetlands in GHG emissions. We showed that these areas produce non-negligible emissions and are linked to land use.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Biogeosciences, 17, 901–915, https://doi.org/10.5194/bg-17-901-2020, https://doi.org/10.5194/bg-17-901-2020, 2020
Short summary
Short summary
Many wetland systems exhibit lumpy, or uneven, soil surfaces where higher points are called hummocks and lower points are called hollows. We found that, while hummocks extended only ~ 20 cm above hollow surfaces, they exhibited distinct plant communities, plant growth, and soil properties. Differences between hummocks and hollows were the greatest in wetter sites, supporting the hypothesis that plants create and maintain their own hummocks in response to saturated soil conditions.
Terhi Riutta, Aino Korrensalo, Anna M. Laine, Jukka Laine, and Eeva-Stiina Tuittila
Biogeosciences, 17, 727–740, https://doi.org/10.5194/bg-17-727-2020, https://doi.org/10.5194/bg-17-727-2020, 2020
Short summary
Short summary
We studied the role of plant species groups in peatland methane fluxes under natural conditions and lowered water level. At a natural water level, sedges and mosses increased the fluxes. At a lower water level, the impact of plant groups on the fluxes was small. Only at a high water level did vegetation regulate the fluxes. The results are relevant for assessing peatland methane fluxes in a changing climate, as peatland water level and vegetation are predicted to change.
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020, https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary
Short summary
Natural and restored wetlands typically emit methane to the atmosphere. However, we found that a wetland constructed after oil sand mining in boreal Canada using organic soils from local peatlands had negligible emissions of methane in its first 3 years. Methane production was likely suppressed due to an abundance of alternate inorganic electron acceptors. Methane emissions may increase in the future if the alternate electron acceptors continue to decrease.
Hendrik Reuter, Julia Gensel, Marcus Elvert, and Dominik Zak
Biogeosciences, 17, 499–514, https://doi.org/10.5194/bg-17-499-2020, https://doi.org/10.5194/bg-17-499-2020, 2020
Short summary
Short summary
Using infrared spectroscopy, we developed a routine to disentangle microbial nitrogen (N) and plant N in decomposed litter. In a decomposition experiment in three wetland soils, this routine revealed preferential protein depolymerization as a decomposition-site-dependent parameter, unaffected by variations in initial litter N content. In Sphagnum peat, preferential protein depolymerization led to a N depletion of still-unprocessed litter tissue, i.e., a gradual loss of litter quality.
Kevan J. Minick, Bhaskar Mitra, Asko Noormets, and John S. King
Biogeosciences, 16, 4671–4686, https://doi.org/10.5194/bg-16-4671-2019, https://doi.org/10.5194/bg-16-4671-2019, 2019
Short summary
Short summary
Sea level rise alters hydrology and vegetation in coastal wetlands. We studied effects of freshwater, saltwater, and wood on soil microbial activity in a freshwater forested wetland. Saltwater reduced CO2/CH4 production compared to freshwater, suggesting large changes in greenhouse gas production and microbial activity are possible due to saltwater intrusion into freshwater wetlands but that the availability of C in the form of dead wood (as forests transition to marsh) may alter the magnitude.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Steffen Buessecker, Kaitlyn Tylor, Joshua Nye, Keith E. Holbert, Jose D. Urquiza Muñoz, Jennifer B. Glass, Hilairy E. Hartnett, and Hinsby Cadillo-Quiroz
Biogeosciences, 16, 4601–4612, https://doi.org/10.5194/bg-16-4601-2019, https://doi.org/10.5194/bg-16-4601-2019, 2019
Short summary
Short summary
We investigated the potential for chemical reduction of nitrite into nitrous oxide (N2O) in soils from tropical peat. Among treatments, irradiation resulted in the lowest biological interference and least change of native soil chemistry (iron and organic matter). Nitrite depletion was as high in live or irradiated soils, and N2O production was significant in all tests. Thus, nonbiological production of N2O may be widely underestimated in wetlands and tropical peatlands.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
Luke C. Jeffrey, Damien T. Maher, Scott G. Johnston, Kylie Maguire, Andrew D. L. Steven, and Douglas R. Tait
Biogeosciences, 16, 1799–1815, https://doi.org/10.5194/bg-16-1799-2019, https://doi.org/10.5194/bg-16-1799-2019, 2019
Short summary
Short summary
Wetlands represent the largest natural source of methane (CH4), so understanding CH4 drivers is important for management and climate models. We compared several CH4 pathways of a remediated subtropical Australian wetland. We found permanently inundated sites emitted more CH4 than seasonally inundated sites and that the soil properties of each site corresponded to CH4 emissions. This suggests that selective wetland remediation of favourable soil types may help to mitigate unwanted CH4 emissions.
Cited articles
Ahlström, A., Schurgers, G., and Smith, B.: The large influence of
climate model bias on terrestrial carbon cycle simulations, Environ. Res.
Lett., 12, 014004, https://doi.org/10.1088/1748-9326/12/1/014004, 2017. a
Alexandrov, G. A., Brovkin, V. A., and Kleinen, T.: The influence of climate
on peatland extent in Western Siberia since the Last Glacial Maximum, Sci.
Rep., 6, 6–11, https://doi.org/10.1038/srep24784, 2016. a, b
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A.,
Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon
emissions towards the trillionth tonne, Nature, 458, 1163–1166,
https://doi.org/10.1038/nature08019, 2009. a
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of
high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4,
444–448, https://doi.org/10.1038/ngeo1160, 2011. a
Bauer, I. E., Gignac, L. D., and Vitt, D. H.: Development of a peatland
complex in boreal western Canada: Lateral site expansion and local
variability in vegetation succession and long-term peat accumulation, Can.
J. Bot., 81, 833–847, https://doi.org/10.1139/b03-076, 2003. a
Beauregard, P., Lavoie, M., and Pellerin, S.: Recent Gray Birch (Betula
populifolia) Encroachment in Temperate Peatlands of Eastern North America,
Wetlands, 40, 351–364, https://doi.org/10.1007/s13157-019-01186-3, 2020. a, b, c
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979. a
Blodau, C.: Carbon cycling in peatlands — A review of processes and
controls, Environ. Rev., 10, 111–134, https://doi.org/10.1139/a02-004, 2002. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.5195, 2018. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton,
T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.1532, 2019. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes, J.,
Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S., Gastineau,
G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, Lionel, E., Guilyardi,
E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume,
S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G.,
Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif,
Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher,
J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw,
D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL‐CM6A‐LR Climate Model, J. Adv. Model. Earth Syst., 12, 1–52,
https://doi.org/10.1029/2019MS002010, 2020. a
Broothaerts, N., Notebaert, B., Verstraeten, G., Kasse, C., Bohncke, S., and
Vandenberghe, J.: Non-uniform and diachronous Holocene floodplain evolution:
a case study from the Dijle catchment, Belgium, J. Quaternary Sci., 29, 351–360,
https://doi.org/10.1002/jqs.2709, 2014. a, b
Byun, Y.-H., Lim, Y.-J., Shim, S., Sung, H. M., Sun, M., Kim, J., Kim, B.-H.,
Lee, J.-H., and Moon, H.: NIMS-KMA KACE1.0-G model output prepared for CMIP6
ScenarioMIP, Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.2242,
2019a. a
Byun, Y.-H., Lim, Y.-J., Sung, H. M., Kim, J., Sun, M., and Kim, B.-H.:
NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.8378, 2019b. a
Camill, P.: Permafrost thaw accelerates in boreal peatlands during late-20th
century climate warming, Clim. Change, 68, 135–152,
https://doi.org/10.1007/s10584-005-4785-y, 2005. a
Campos, J. R. d. R., Silva, A. C., Slater, L., Nanni, M. R., and Vidal-Torrado,
P.: Stratigraphic control and chronology of peat bog deposition in the Serra
do Espinhaço Meridional, Brazil, CATENA, 143, 167–173,
https://doi.org/10.1016/j.catena.2016.04.009, 2016. a
Charman, D.: Peatlands and environmental change, John Wiley & Sons Ltd., UK,
2002. a
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, 2013. a
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling past, present and
future peatland carbon accumulation across the pan-Arctic region,
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, 2017. a
Chaudhary, N., Westermann, S., Lamba, S., Shurpali, N., Sannel, A. B. K.,
Schurgers, G., Miller, P. A., and Smith, B.: Modelling past and future
peatland carbon dynamics across the pan-Arctic, Glob. Change Biol., 26,
4119–4133, https://doi.org/10.1111/gcb.15099, 2020. a, b, c
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G. K.: Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change, Nat. Clim. Change, 6,
360–369, https://doi.org/10.1038/nclimate2923, 2016. a
Cole, L. E., Bhagwat, S. A., and Willis, K. J.: Long-term disturbance dynamics
and resilience of tropical peat swamp forests, J. Ecol., 103, 16–30,
https://doi.org/10.1111/1365-2745.12329, 2015. a
Cong, M., Xu, Y., Tang, L., Yang, W., and Jian, M.: Predicting the dynamic
distribution of Sphagnum bogs in China under climate change since the last
interglacial period, PLoS One, 15, e0230969,
https://doi.org/10.1371/journal.pone.0230969, 2020. a
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90,
https://doi.org/10.1038/nature21048, 2017. a, b
de Jong, R., Blaauw, M., Chambers, F. M., Christensen, T. R., de Vleeschouwer,
F., Finsinger, W., Fronzek, S., Johansson, M., Kokfelt, U., Lamentowicz, M.,
Le Roux, G., Mauquoy, D., Mitchell, E. A., Nichols, J. E., Samaritani, E.,
and van Geel, B.: Climate and Peatlands, in: Chang. Clim. Earth Syst. Soc.,
edited by Dodson, J., Springer Netherlands, Dordrecht, 85–121,
https://doi.org/10.1007/978-90-481-8716-4_5, 2010. a
Dohong, A., Aziz, A. A., and Dargusch, P.: A review of the drivers of tropical
peatland degradation in South-East Asia, Land Use Policy, 69, 349–360,
https://doi.org/10.1016/j.landusepol.2017.09.035, 2017. a
Dommain, R., Frolking, S., Jeltsch-Thömmes, A., Joos, F., Couwenberg, J.,
and Glaser, P. H.: A radiative forcing analysis of tropical peatlands before
and after their conversion to agricultural plantations, Glob. Change Biol.,
24, 5518–5533, https://doi.org/10.1111/gcb.14400, 2018. a, b, c, d
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O’Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-446, in review, 2021. a
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John,
J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E.,
Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C.,
Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H.,
Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R.,
Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A.,
Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T.,
Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B.,
Zeng, Y., and Zhao, M.: The GFDL Earth System Model Version 4.1 (GFDL‐ESM
4.1): Overall Coupled Model Description and Simulation Characteristics, J.
Adv. Model. Earth Syst., 12, 1–56, https://doi.org/10.1029/2019MS002015, 2020. a
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3 model output
prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.4700, 2019a. a
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3 model output
prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.251, 2019b. a
Eppinga, M. B., Rietkerk, M., Wassen, M. J., and De Ruiter, P. C.: Linking
habitat modification to catastrophic shifts and vegetation patterns in bogs,
Plant Ecol., 200, 53–68, https://doi.org/10.1007/s11258-007-9309-6, 2009. a
Estop-Aragonés, C., Cooper, M. D., Fisher, J. P., Thierry, A., Garnett,
M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R.,
Sanderson, N. K., Burn, C. R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G.,
Williams, M., and Hartley, I. P.: Limited release of previously-frozen C and
increased new peat formation after thaw in permafrost peatlands, Soil Biol.
Biochem., 118, 115–129, https://doi.org/10.1016/j.soilbio.2017.12.010, 2018. a, b
Estop‐Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P.,
Czimczik, C. I., Dean, J. F., Egan, J. E., Gandois, L., Garnett, M. H.,
Hartley, I. P., Hoyt, A., Lupascu, M., Natali, S. M., O'Donnell, J. A.,
Raymond, P. A., Tanentzap, A. J., Tank, S. E., Schuur, E. A. G., Turetsky,
M., and Anthony, K. W.: Assessing the Potential for Mobilization of Old Soil
Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the
Northern Permafrost Region, Global Biogeochem. Cy., 34, 1–26,
https://doi.org/10.1029/2020GB006672, 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ferretto, A., Brooker, R., Aitkenhead, M., Matthews, R., and Smith, P.:
Potential carbon loss from Scottish peatlands under climate change, Reg.
Environ. Change, 19, 2101–2111, https://doi.org/10.1007/s10113-019-01550-3, 2019. a
Frölicher, T. L. and Joos, F.: Reversible and irreversible impacts of
greenhouse gas emissions in multi-century projections with the NCAR global
coupled carbon cycle-climate model, Clim. Dynam., 35, 1439–1459,
https://doi.org/10.1007/s00382-009-0727-0, 2010. a
Frölicher, T. L., Winton, M., and Sarmiento, J. L.: Continued global
warming after CO2 emissions stoppage, Nat. Clim. Change, 4, 40–44,
https://doi.org/10.1038/nclimate2060, 2014. a
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern
peatland carbon accumulation and methane emissions, Glob. Change Biol., 13,
1079–1088, https://doi.org/10.1111/j.1365-2486.2007.01339.x, 2007. a, b
Gajewski, K., Viau, A., Sawada, M., Atkinson, L. J., and Wilson, S.: Sphagnum
peatland distribution in North America and Eurasia during the past 21,000
years, Carbon N. Y., 15, 297–310, 2001. a
Gallego-Sala, A. V., Charman, D. J., Harrison, S. P., Li, G., and Prentice, I. C.: Climate-driven expansion of blanket bogs in Britain during the Holocene, Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, 2016. a
Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Colin Prentice,
I., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Bjamp,
S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P.,
Carless, D., Chimner, R. A., Clifford, M., Cressey, E., Courtney-Mustaphi,
C., Vleeschouwer, O., Jong, R., Fialkiewicz-Koziel, B., Finkelstein, S. A.,
Garneau, M., Githumbi, E., Hribjlan, J., Holmquist, J., M Hughes, P. D.,
Jones, C., Jones, M. C., Karofeld, E., Klein, E. S., Kokfelt, U., Korhola,
A., Lacourse, T., Roux, G., Lamentowicz, M., Large, D., Lavoie, M., Loisel,
J., Mackay, H., MacDonald, G. M., Makila, M., Magnan, G., Marchant, R.,
Marcisz, K., Martamp, A., Cortizas, N., Massa, C., Mathijssen, P., Mauquoy,
D., Mighall, T., G Mitchell, F. J., Moss, P., Nichols, J., Oksanen, P. O.,
Orme, L., Packalen, M. S., Robinson, S., Roland, T. P., Sanderson, N. K.,
Britta Sannel, A. K., Steinberg, N., Swindles, G. T., Edward Turner, T.,
Uglow, J., Vamp, M., Bellen, S., Linden, M., Geel, B., Wang, G., Yu, Z.,
Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted
increase of the peatland carbon sink with warming, Nat. Clim. Change, 8,
907–914, https://doi.org/10.1038/s41558-018-0271-1, 2018. a, b, c
Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J.,
Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H.,
Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J.,
Sanderman, J., and Hole, D. G.: Protecting irrecoverable carbon in Earth's
ecosystems, Nat. Clim. Change, 10, 287–295,
https://doi.org/10.1038/s41558-020-0738-8, 2020. a
Gorham, E.: The Development of Peat Lands, Q. Rev. Biol., 32, 145–166,
https://doi.org/10.1086/401755, 1957. a
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991. a
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and
spatial aspects of peatland initiation following deglaciation in North
America, Quaternary Sci. Rev., 26, 300–311,
https://doi.org/10.1016/j.quascirev.2006.08.008, 2007. a
Gorham, E., Lehman, C., Dyke, A., Clymo, D., and Janssens, J.: Long-term
carbon sequestration in North American peatlands, Quaternary Sci. Rev., 58,
77–82, https://doi.org/10.1016/j.quascirev.2012.09.018, 2012. a
Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F.,
Householder, E., Herold, N., and Murdiyarso, D.: An expert system model for
mapping tropical wetlands and peatlands reveals South America as the largest
contributor, Glob. Change Biol., 23, 3581–3599, https://doi.org/10.1111/gcb.13689,
2017. a, b
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun., 11, 1–5,
https://doi.org/10.1038/s41467-020-15499-z, 2020. a
Guo, D. and Wang, H.: CMIP5 permafrost degradation projection:A comparison
among different regions, J. Geophys. Res.-Atmos., 121, 4499–4517,
https://doi.org/10.1002/2015JD024108, 2016. a
Haapalehto, T. O., Vasander, H., Jauhiainen, S., Tahvanainen, T., and Kotiaho,
J. S.: The effects of peatland restoration on water-table depth, elemental
concentrations, and vegetation: 10 years of changes, Restor. Ecol., 19,
587–598, https://doi.org/10.1111/j.1526-100X.2010.00704.x, 2011. a
Halsey, L. A., Vitt, D. H., Gignac, L. D., Bryologist, T., and Summer, N.:
Sphagnum-Dominated Peatlands in North America since the Last Glacial Maximum: Their Occurrence and Extent Sphagnum-dominated Peatlands in North America
Since the Last Glacial Maximum : Their Occurrence and Extent, Bryologist,
103, 334–352, https://doi.org/10.1639/0007-2745(2000)103[0334:SDPINA]2.0.CO;2, 2000. a
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M.,
Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43,
671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014. a
Heijmans, M. M. P. D., van der Knaap, Y. A. M., Holmgren, M., and Limpens, J.:
Persistent versus transient tree encroachment of temperate peat bogs:
effects of climate warming and drought events, Glob. Change Biol., 19,
2240–2250, https://doi.org/10.1111/gcb.12202, 2013. a
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B., Aurela, M., Barr,
A. G., Black, T. A., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A.,
Euskirchen, E. S., Flanagan, L. B., Friborg, T., Garneau, M., Grelle, A.,
Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H., Isabelle, P.-E., Iwata,
H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lapshina, E.,
Lindroth, A., Löfvenius, M. O., Lohila, A., Mammarella, I., Marsh, P.,
Moore, P. A., Maximov, T., Nadeau, D. F., Nicholls, E. M., Nilsson, M. B.,
Ohta, T., Peichl, M., Petrone, R. M., Prokushkin, A., Quinton, W. L., Roulet,
N., Runkle, B. R. K., Sonnentag, O., Strachan, I. B., Taillardat, P.,
Tuittila, E.-S., Tuovinen, J.-P., Turner, J., Ueyama, M., Varlagin, A.,
Vesala, T., Wilmking, M., Zyrianov, V., and Schulze, C.: The biophysical
climate mitigation potential of boreal peatlands during the growing season,
Environ. Res. Lett., 15, 104004, https://doi.org/10.1088/1748-9326/abab34,
2020a. a
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M., Barr,
A. G., Black, T. A., Blanken, P. D., Carey, S. K., Chen, J., Chi, J., Desai,
A. R., Dunn, A., Euskirchen, E. S., Flanagan, L. B., Forbrich, I., Friborg,
T., Grelle, A., Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H.,
Isabelle, P. E., Iwata, H., Jassal, R., Korkiakoski, M., Kurbatova, J.,
Kutzbach, L., Lindroth, A., Löfvenius, M. O., Lohila, A., Mammarella,
I., Marsh, P., Maximov, T., Melton, J. R., Moore, P. A., Nadeau, D. F.,
Nicholls, E. M., Nilsson, M. B., Ohta, T., Peichl, M., Petrone, R. M.,
Petrov, R., Prokushkin, A., Quinton, W. L., Reed, D. E., Roulet, N. T.,
Runkle, B. R., Sonnentag, O., Strachan, I. B., Taillardat, P., Tuittila,
E. S., Tuovinen, J. P., Turner, J., Ueyama, M., Varlagin, A., Wilmking, M.,
Wofsy, S. C., and Zyrianov, V.: Increasing contribution of peatlands to
boreal evapotranspiration in a warming climate, Nat. Clim. Change, 10,
555–560, https://doi.org/10.1038/s41558-020-0763-7, 2020b. a, b
Hergoualc'h, K. and Verchot, L. V.: Stocks and fluxes of carbon associated
with land use change in Southeast Asian tropical peatlands: A review, Global
Biogeochem. Cy., 25, GB2001, https://doi.org/10.1029/2009GB003718, 2011. a
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P.,
Kostka, J., Hanson, P. J., Keller, J. K., and Bridgham, S. D.: Massive
peatland carbon banks vulnerable to rising temperatures, Nat. Commun., 11,
2373, https://doi.org/10.1038/s41467-020-16311-8, 2020. a
Hoyt, A. M., Chaussard, E., Seppalainen, S. S., and Harvey, C. F.: Widespread
subsidence and carbon emissions across Southeast Asian peatlands, Nat.
Geosci., 13, 435–440, https://doi.org/10.1038/s41561-020-0575-4, 2020. a, b, c, d
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald,
G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C.,
Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland carbon and
nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA,
117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020. a, b
Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti,
L., Barthelmes, A., and Popp, A.: Peatland protection and restoration are
key for climate change mitigation, Environ. Res. Lett., 15, 104093,
https://doi.org/10.1088/1748-9326/abae2a, 2020. a
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin,
K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa,
T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan,
J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz,
O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E.,
Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang,
X.: Harmonization of global land use change and management for the period
850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464,
https://doi.org/10.5194/gmd-13-5425-2020, 2020. a, b
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections, Com- mitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b
Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of
peat decomposition to climate change through water-table feedback, Nat.
Geosci., 1, 763–766, https://doi.org/10.1038/ngeo331, 2008. a
Jiang, L., Song, Y., Sun, L., Song, C., Wang, X., Ma, X., Liu, C., and Gao, J.:
Effects of warming on carbon emission and microbial abundances across
different soil depths of a peatland in the permafrost region under anaerobic
condition, Appl. Soil Ecol., 156, 103712,
https://doi.org/10.1016/j.apsoil.2020.103712, 2020. a
John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp,
H., Wilson, C., Zadeh, N. T., Dunne, J. P., Dussin, R., Horowitz, L. W.,
Krasting, J. P., Lin, P., Malyshev, S., Naik, V., Ploshay, J., Shevliakova,
E., Silvers, L., Stock, C., Winton, M., and Zeng, Y.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.1414, 2018. a
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C.,
and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw
in boreal peatlands, Glob. Change Biol., 23, 1109–1127,
https://doi.org/10.1111/gcb.13403, 2017. a, b
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl. Acad. Sci. USA, 105, 1425–1430, https://doi.org/10.1073/pnas.0707386105, 2008. a
Kimmel, K. and Mander, Ü.: Ecosystem services of peatlands: Implications
for restoration, Prog. Phys. Geogr., 34, 491–514,
https://doi.org/10.1177/0309133310365595, 2010. a
Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland
extent and peat accumulation: Results for the Holocene, Biogeosciences, 9,
235–248, https://doi.org/10.5194/bg-9-235-2012, 2012. a
Kluber, L. A., Johnston, E. R., Allen, S. A., Nicholas Hendershot, J.,
Hanson, P. J., and Schadt, C. W.: Constraints on microbial communities,
decomposition and methane production in deep peat deposits, PLoS One, 15,
1–20, https://doi.org/10.1371/journal.pone.0223744, 2020. a
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T.,
and Weckström, J.: The importance of northern peatland expansion to
the late-Holocene rise of atmospheric methane, Quaternary Sci. Rev., 29,
611–617, https://doi.org/10.1016/j.quascirev.2009.12.010, 2010. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held,
I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.8597, 2018. a
Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres,
D. D. C., Oinonen, M., and Page, S.: The large Amazonian peatland carbon
sink in the subsiding Pastaza-Marañón foreland basin, Peru,
Glob. Change Biol., 18, 164–178, https://doi.org/10.1111/j.1365-2486.2011.02504.x,
2012. a, b
LAI, D.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19,
409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009. a
Lara, M. J., Genet, H., McGuire, A. D., Euskirchen, E. S., Zhang, Y., Brown, D.
R. N., Jorgenson, M. T., Romanovsky, V., Breen, A., and Bolton, W. R.:
Thermokarst rates intensify due to climate change and forest fragmentation
in an Alaskan boreal forest lowland, Glob. Change Biol., 22, 816–829,
https://doi.org/10.1111/gcb.13124, 2016. a
Largeron, C., Krinner, G., Ciais, P., and Brutel-Vuilmet, C.: Implementing
northern peatlands in a global land surface model: Description and evaluation
in the ORCHIDEE high-latitude version model (ORC-HL-PEAT), Geosci. Model
Dev., 11, 3279–3297, https://doi.org/10.5194/gmd-11-3279-2018, 2018. a
Lawrence, D. M., Slater, A. G., and Swenson, S. C.: Simulation of present-day
and future permafrost and seasonally frozen ground conditions in CCSM4, J.
Clim., 25, 2207–2225, https://doi.org/10.1175/JCLI-D-11-00334.1, 2012. a
Le Stum-Boivin, É., Magnan, G., Garneau, M., Fenton, N. J., Grondin,
P., and Bergeron, Y.: Spatiotemporal evolution of paludification associated
with autogenic and allogenic factors in the black spruce–moss boreal forest
of Québec, Canada, Quaternary Res., 91, 650–664,
https://doi.org/10.1017/qua.2018.101, 2019. a
Lee, J., Kim, J., Sun, M.-A., Kim, B.-H., Moon, H., Sung, H. M., Kim, J., and
Byun, Y.-H.: Evaluation of the Korea Meteorological Administration Advanced
Community Earth-System model (K-ACE), Asia-Pacific J. Atmos. Sci., 56,
381–395, https://doi.org/10.1007/s13143-019-00144-7, 2020. a
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in
global climate change mitigation strategies, Nat. Commun., 9, 1071,
https://doi.org/10.1038/s41467-018-03406-6, 2018. a
Leifeld, J., Wüst-Galley, C., and Page, S.: Intact and managed peatland
soils as a source and sink of GHGs from 1850 to 2100, Nat. Clim. Change, 9,
945–947, https://doi.org/10.1038/s41558-019-0615-5, 2019. a, b, c
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Li, C., Grayson, R., Holden, J., and Li, P.: Erosion in peatlands: Recent
research progress and future directions, Earth-Sci. Rev., 185, 870–886,
https://doi.org/10.1016/j.earscirev.2018.08.005, 2018. a
Lienert, S. and Joos, F.: A Bayesian ensemble data assimilation to constrain
model parameters and land-use carbon emissions, Biogeosciences, 15,
2909–2930, https://doi.org/10.5194/bg-15-2909-2018, 2018. a, b
Lindsay, R.: Peatland Classification, in: Wetl. B., Springer
Netherlands, Dordrecht, 1515–1528, https://doi.org/10.1007/978-90-481-9659-3_341, 2018. a
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for bolling-allerod warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009. a
Loisel, J. and Bunsen, M.: Abrupt Fen-Bog Transition Across Southern
Patagonia: Timing, Causes, and Impacts on Carbon Sequestration, Front. Ecol.
Evol., 8, 1–19, https://doi.org/10.3389/fevo.2020.00273, 2020. a
Loisel, J., Yu, Z., Parsekian, A., Nolan, J., and Slater, L.: Quantifying
landscape morphology influence on peatland lateral expansion using
ground-penetrating radar (GPR) and peat core analysis, J. Geophys. Res.-Biogeo., 118, 373–384, https://doi.org/10.1002/jgrg.20029, 2013. a
Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran,
D., Yu, Z., Nichols, J., and Holmquist, J.: Insights and issues with
estimating northern peatland carbon stocks and fluxes since the Last Glacial
Maximum, Earth-Sci. Rev., 165, 59–80,
https://doi.org/10.1016/j.earscirev.2016.12.001, 2017. a, b
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G.,
Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J.,
Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla,
C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L.,
Garneau, M., Moore, T., Sannel, A. B., Page, S., Väliranta, M.,
Bechtold, M., Brovkin, V., Cole, L. E., Chanton, J. P., Christensen, T. R.,
Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S.,
Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt,
A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T.,
Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M.,
Minkkinen, K., Moss, P., Naafs, B. D., Nichols, J., O'Donnell, J., Payne, R.,
Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P.,
Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot,
J., Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future
vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11,
70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021. a
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C.,
and Velichko, A. A.: Rapid Early Development of Circumarctic Peatlands and
Atmospheric CH4 and CO2 Variations, Science, 314, 285–288,
https://doi.org/10.1126/science.1131722, 2006. a
Magnússon, R. Í., Limpens, J., Huissteden, J., Kleijn, D., Maximov,
T. C., Rotbarth, R., Sass‐Klaassen, U., and Heijmans, M. M. P. D.: Rapid
Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in
the Siberian Lowland Tundra, J. Geophys. Res.-Biogeo., 125, 1–20,
https://doi.org/10.1029/2019JG005618, 2020. a, b, c
Mamet, S. D., Chun, K. P., Kershaw, G. G., Loranty, M. M., and Peter Kershaw,
G.: Recent Increases in Permafrost Thaw Rates and Areal Loss of Palsas in
the Western Northwest Territories, Canada, Permafrost Periglac., 28,
619–633, https://doi.org/10.1002/ppp.1951, 2017. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H.,
Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz‐de‐la‐Cuesta, D., Jungclaus, J., Kleinen, T., Kloster,
S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,
Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W.,
Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H.,
Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H.,
Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U.,
Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J., Tian, F.,
Voigt, A., Vrese, P., Wieners, K., Wilkenskjeld, S., Winkler, A., and
Roeckner, E.: Developments in the MPI‐M Earth System Model version 1.2
(MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth
Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1, 24–29,
https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E.,
Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G.,
Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N.,
Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M.,
Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared
socio-economic pathway (SSP) greenhouse gas concentrations and their
extensions to 2500, Geosci. Model Dev., 13, 3571–3605,
https://doi.org/10.5194/gmd-13-3571-2020, 2020. a
Minayeva, T. Y. and Sirin, A. A.: Peatland biodiversity and climate change,
Biol. Bull. Rev., 2, 164–175, https://doi.org/10.1134/s207908641202003x, 2012. a
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005. a
Moore, P. D.: The ecology of peat-forming processes: a review, Int. J. Coal
Geol., 12, 89–103, https://doi.org/10.1016/0166-5162(89)90048-7, 1989. a
Morris, P. J., Belyea, L. R., and Baird, A. J.: Ecohydrological feedbacks in
peatland development: A theoretical modelling study, J. Ecol., 99,
1190–1201, https://doi.org/10.1111/j.1365-2745.2011.01842.x, 2011. a
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire,
L. J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global
peatland initiation driven by regionally asynchronous warming, P. Natl.
Acad. Sci. USA, 115, 4851–4856, https://doi.org/10.1073/pnas.1717838115, 2018. a
Müller, J. and Joos, F.: Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4627681, 2021.
Nugent, K. A., Strachan, I. B., Roulet, N. T., Strack, M., Frolking, S., and
Helbig, M.: Prompt active restoration of peatlands substantially reduces
climate impact, Environ. Res. Lett., 14, 124030,
https://doi.org/10.1088/1748-9326/ab56e6, 2019. a
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A., Schuur, E., and Turetsky,
M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016. a
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein,
P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl,
G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model
Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9,
3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Packalen, M. S., Finkelstein, S. A., and McLaughlin, J. W.: Carbon storage and
potential methane production in the Hudson Bay Lowlands since mid-Holocene
peat initiation, Nat. Commun., 5, 1–8, https://doi.org/10.1038/ncomms5078, 2014. a
Page, S. and Baird, A.: Peatlands and Global Change: Response and Resilience,
Annu. Rev. Environ. Resour., 41, 35–57,
https://doi.org/10.1146/annurev-environ-110615-085520, 2016. a, b, c, d
Page, S. E. and Hooijer, A.: In the line of fire: The peatlands of Southeast
Asia, Philos. Trans. R. Soc. B, 371,
https://doi.org/10.1098/rstb.2015.0176, 2016. a
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance
of the tropical peatland carbon pool, Glob. Change Biol., 17, 798–818,
https://doi.org/10.1111/j.1365-2486.2010.02279.x, 2011. a, b, c, d
Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M.: Accelerated
thawing of subarctic peatland permafrost over the last 50 years, Geophys.
Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020358, 2004. a
Pellerin, S. and Lavoie, C.: Recent expansion of jack pine in peatlands of
southeastern Québec: A paleoecological study, Écoscience, 10,
247–257, https://doi.org/10.1080/11956860.2003.11682772, 2003. a, b, c
Pinceloup, N., Poulin, M., Brice, M.-H., and Pellerin, S.: Vegetation changes
in temperate ombrotrophic peatlands over a 35 year period, PLoS One, 15,
e0229146, https://doi.org/10.1371/journal.pone.0229146, 2020. a, b
Posa, M. R. C., Wijedasa, L. S., and Corlett, R. T.: Biodiversity and
conservation of tropical peat swamp forests, Bioscience, 61, 49–57,
https://doi.org/10.1525/bio.2011.61.1.10, 2011. a
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., Aurela, M.,
Bernhofer, C., Brümmer, C., Bret-Harte, S., Chu, H., Chen, J., Desai,
A. R., Dušek, J., Euskirchen, E. S., Fortuniak, K., Flanagan, L. B.,
Friborg, T., Grygoruk, M., Gogo, S., Grünwald, T., Hansen, B. U., Holl,
D., Humphreys, E., Hurkuck, M., Kiely, G., Klatt, J., Kutzbach, L., Largeron,
C., Laggoun-Défarge, F., Lund, M., Lafleur, P. M., Li, X., Mammarella,
I., Merbold, L., Nilsson, M. B., Olejnik, J., Ottosson-Löfvenius, M.,
Oechel, W., Parmentier, F. J. W., Peichl, M., Pirk, N., Peltola, O., Pawlak,
W., Rasse, D., Rinne, J., Shaver, G., Peter Schmid, H., Sottocornola, M.,
Steinbrecher, R., Sachs, T., Urbaniak, M., Zona, D., and Ziemblinska, K.:
ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and
energy fluxes on daily to annual scales, Geosci. Model Dev., 11, 497–519,
https://doi.org/10.5194/gmd-11-497-2018, 2018. a
Ribeiro, K., Pacheco, F. S., Ferreira, J. W., de Sousa-Neto, E. R., Hastie, A.,
Krieger Filho, G. C., Alvalá, P. C., Forti, M. C., and Ometto, J. P.:
Tropical peatlands and their contribution to the global carbon cycle and
climate change, Glob. Change Biol., 27, 489–505, https://doi.org/10.1111/gcb.15408,
2021. a
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical,
Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.9754, 2019a. a
Rong, X.: CAMS CAMS-CSM1.0 model output prepared for CMIP6 ScenarioMIP,
Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.11004, 2019b. a
Rong, X., Li, J., Chen, H., Xin, Y., Su, J., Hua, L., Zhou, T., Qi, Y., Zhang,
Z., Zhang, G., and Li, J.: The CAMS Climate System Model and a Basic
Evaluation of Its Climatology and Climate Variability Simulation, J.
Meteorol. Res., 32, 839–861, https://doi.org/10.1007/s13351-018-8058-x, 2018. a
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial
spatiotemporal peatland initiation and lateral expansion dynamics in North
America and northern Europe, Holocene, 23, 1596–1606,
https://doi.org/10.1177/0959683613499053, 2013. a, b
Rydin, H. and Jeglum, J. K.: The Biology of Peatlands, Oxford University
Press, https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001, 2013. a
Sawada, M., Viau, A. E., and Gajewski, K.: The biogeography of aquatic
macrophytes in North America since the Last Glacial Maximum, J. Biogeogr.,
30, 999–1017, https://doi.org/10.1046/j.1365-2699.2003.00866.x, 2003. a
Schuldt, R. J., Brovkin, V., Kleinen, T., and Winderlich, J.: Modelling
Holocene carbon accumulation and methane emissions of boreal wetlands-an
Earth system model approach, Biogeosciences, 10, 1659–1674,
https://doi.org/10.5194/bg-10-1659-2013, 2013. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-c., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka,
J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z.,
Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth
System Model (NorESM2) and key climate response of CMIP6 DECK, historical,
and scenario simulations, Geosci. Model Dev., 13, 6165–6200,
https://doi.org/10.5194/gmd-13-6165-2020, 2020. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y.,
Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H.,
Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model
output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.8036, 2019a. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y.,
Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H.,
Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model
output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.604, 2019b. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. a
Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S.,
Bouwman, L., Xu-Ri, and Prentice, I. C.: Multiple greenhouse-gas feedbacks
from the land biosphere under future climate change scenarios, Nat. Clim.
Chang., 3, 666–672, https://doi.org/10.1038/nclimate1864, 2013. a
Stocker, B. D., Feissli, F., Strassmann, K. M., Spahni, R., and Joos, F.: Past
and future carbon fluxes from land use change, shifting cultivation and wood
harvest, Tellus B, 66,
https://doi.org/10.3402/tellusb.v66.23188, 2014a. a
Stocker, B. D., Yu, Z., Massa, C., and Joos, F.: Holocene peatland and
ice-core data constraints on the timing and magnitude of CO2 emissions from
past land use, P. Natl. Acad. Sci. USA, 114, 1492–1497,
https://doi.org/10.1073/pnas.1613889114, 2017. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y.,
Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A.,
Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The
Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12,
4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019a. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.3610, 2019b. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.1317, 2019c. a
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E.,
Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S.,
Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick,
J. L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term
fate of permafrost peatlands under rapid climate warming, Sci. Rep., 5,
1–6, https://doi.org/10.1038/srep17951, 2015. a, b, c
Swindles, G. T., Morris, P. J., Wheeler, J., Smith, M. W., Bacon, K. L.,
Edward Turner, T., Headley, A., and Galloway, J. M.: Resilience of
peatland ecosystem services over millennial timescales: Evidence from a
degraded British bog, J. Ecol., 104, 621–636,
https://doi.org/10.1111/1365-2745.12565, 2016. a
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P.,
Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T.,
Barr, I. D., Blaauw, M., Blundell, A., Chambers, F. M., Charman, D. J.,
Feurdean, A., Galloway, J. M., Gałka, M., Green, S. M., Kajukało, K.,
Karofeld, E., Korhola, A., Lamentowicz, Ł., Langdon, P., Marcisz, K.,
Mauquoy, D., Mazei, Y. A., McKeown, M. M., Mitchell, E. A. D., Novenko, E.,
Plunkett, G., Roe, H. M., Schoning, K., Sillasoo, Ü., Tsyganov, A. N.,
van der Linden, M., Väliranta, M., and Warner, B.: Widespread drying
of European peatlands in recent centuries, Nat. Geosci., 12, 922–928,
https://doi.org/10.1038/s41561-019-0462-z, 2019. a, b
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term blanket
peatland development in eastern Scotland, Biogeosciences, 16, 3977–3996,
https://doi.org/10.5194/bg-16-3977-2019, 2019. a
Talbot, J., Richard, P., Roulet, N., and Booth, R.: Assessing long-term
hydrological and ecological responses to drainage in a raised bog using
paleoecology and a hydrosequence, J. Veg. Sci., 21, 143–156,
https://doi.org/10.1111/j.1654-1103.2009.01128.x, 2010. a
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R.,
Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G.,
Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lähteenoja, O.,
Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K.,
Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C.,
Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Väliranta, M.,
Hättestrand, M., Alexanderson, H., and Brovkin, V.: Widespread global
peatland establishment and persistence over the last 130,000 y, P. Natl.
Acad. Sci. USA, 116, 201813305, https://doi.org/10.1073/pnas.1813305116, 2019. a, b, c, d
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook,
E. R., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H.,
Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E. S.,
Waddington, J. M., White, J. R., Wickland, K. P., and Wilmking, M.: A
synthesis of methane emissions from 71 northern, temperate, and subtropical
wetlands, Glob. Change Biol., 20, 2183–2197, https://doi.org/10.1111/gcb.12580, 2014. a, b
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., and
Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat.
Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015. a, b
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020. a, b
Voigt, C., Marushchak, M. E., Mastepanov, M., Lamprecht, R. E., Christensen,
T. R., Dorodnikov, M., Jackowicz‐Korczyński, M., Lindgren, A.,
Lohila, A., Nykänen, H., Oinonen, M., Oksanen, T., Palonen, V., Treat,
C. C., Martikainen, P. J., and Biasi, C.: Ecosystem carbon response of an
Arctic peatland to simulated permafrost thaw, Glob. Change Biol., 25,
1746–1764, https://doi.org/10.1111/gcb.14574, 2019. a, b
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.5070, 2019a. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.12322, 2019b. a
Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov,
V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., and Iakovlev, N. G.:
Simulation of the present-day climate with the climate model INMCM5, Clim.
Dynam., 49, 3715–3734, https://doi.org/10.1007/s00382-017-3539-7, 2017. a
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K.,
and Moore, P. A.: Hydrological feedbacks in northern peatlands,
Ecohydrology, 8, 113–127, https://doi.org/10.1002/eco.1493, 2015. a
Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C., and Cadillo-Quiroz,
H.: Potential shift from a carbon sink to a source in Amazonian peatlands
under a changing climate, P. Natl. Acad. Sci. USA, 115, 12407–12412,
https://doi.org/10.1073/pnas.1801317115, 2018. a
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 2. Evaluation and sensitivity of
vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, GB3015,
https://doi.org/10.1029/2008GB003413, 2009a. a, b, c
Wania, R., Ross, L., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of
physical land surface processes, Global Biogeochem. Cy., 23, 1–19,
https://doi.org/10.1029/2008GB003412, 2009b. a
Warren, M., Frolking, S., Dai, Z., and Kurnianto, S.: Impacts of land use,
restoration, and climate change on tropical peat carbon stocks in the
twenty-first century: implications for climate mitigation, Mitig. Adapt.
Strateg. Glob. Change, 22, 1041–1061, https://doi.org/10.1007/s11027-016-9712-1, 2017. a, b
Wibisana, A. G. and Setyorini, S. N.: Peatland Protection in Indonesia: Toward
the Right Direction?, in: Springer Clim., Springer
International Publishing, 301–328, https://doi.org/10.1007/978-3-030-55536-8_15, 2021. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch,
J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I.,
Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters,
K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur,
R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.:
MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.793, 2019a. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese,
P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,
Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger,
C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W.,
Nabel, J., Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J.,
Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B.,
Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 CMIP historical, Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.6595,
2019b. a
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W.,
Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton,
M., Kolka, R., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths,
N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.: Stability of
peatland carbon to rising temperatures, Nat. Commun., 7, 13723,
https://doi.org/10.1038/ncomms13723, 2016. a
Xu, H., Lan, J., Sheng, E., Liu, Y., Liu, B., Yu, K., Ye, Y., Cheng, P., Qiang,
X., Lu, F., and Wang, X.: Tropical/Subtropical Peatland Development and
Global CH4 during the Last Glaciation, Sci. Rep., 6, 30431,
https://doi.org/10.1038/srep30431, 2016. a
Xu, J., Morris, P. J., Liu, J., and Holden, J.: Hotspots of peatland-derived
potable water use identified by global analysis, Nat. Sustain., 1, 246–253,
https://doi.org/10.1038/s41893-018-0064-6, 2018a. a
Xu-Ri, Prentice, I. C., Spahni, R., and Niu, H. S.: Modelling terrestrial
nitrous oxide emissions and implications for climate feedback, New Phytol.,
196, 472–488, https://doi.org/10.1111/j.1469-8137.2012.04269.x, 2012. a
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the
long-term impacts of drainage and restoration on the ecohydrology of
peatlands, Water Resour. Res., 53, 6510–6522, https://doi.org/10.1002/2016WR019898,
2017. a
Yu, Z.: Holocene carbon flux histories of the world's peatlands: Global
carbon-cycle implications, The Holocene, 21, 761–774,
https://doi.org/10.1177/0959683610386982, 2011. a
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37,
1–5, https://doi.org/10.1029/2010GL043584, 2010. a, b, c, d
Yu, Z., Loisel, J., Turetsky, M. R., Cai, S., Zhao, Y., Frolking, S.,
MacDonald, G. M., and Bubier, J. L.: Evidence for elevated emissions from
high-latitude wetlands contributing to high atmospheric CH4 concentration in
the early Holocene, Global Biogeochem. Cy., 27, 131–140,
https://doi.org/10.1002/gbc.20025, 2013. a
Yu, Z., Loisel, J., Charman, D. J., Beilman, D. W., and Camill, P.: Holocene
peatland carbon dynamics in the circum-Arctic region: An introduction,
The Holocene, 24, 1021–1027, https://doi.org/10.1177/0959683614540730, 2014. a
Yu, Z. C.: Northern peatland carbon stocks and dynamics: A review,
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012. a, b
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0:
Description and Basic Evaluation of the Physical Component, J. Meteorol.
Soc. Jpn. Ser. II, 97, 931–965, https://doi.org/10.2151/jmsj.2019-051,
2019a. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model
output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.6842, 2019b. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model
output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.638, 2019c. a
Zhang, H., Väliranta, M., Piilo, S., Amesbury, M. J.,
Aquino‐López, M. A., Roland, T. P., Salminen‐Paatero, S., Paatero,
J., Lohila, A., and Tuittila, E.: Decreased carbon accumulation feedback
driven by climate‐induced drying of two southern boreal bogs over recent
centuries, Glob. Change Biol., 26, 2435–2448, https://doi.org/10.1111/gcb.15005, 2020. a, b
Zhong, Y., Jiang, M., and Middleton, B. A.: Effects of water level alteration
on carbon cycling in peatlands, Ecosyst. Heal. Sustain., 6, 1806113,
https://doi.org/10.1080/20964129.2020.1806113, 2020. a, b
Zickfeld, K., Eby, M., Weaver, A. J., Alexander, K., Crespin, E., Edwards,
N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E.,
Friedlingstein, P., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M.,
Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I. I., Monier, E.,
Olsen, S. M., Pedersen, J. O., Perrette, M., Philippon-Berthier, G.,
Ridgwell, A., Schlosser, A., Von Deimling, T. S., Shaffer, G., Sokolov, A.,
Spahni, R., Steinacher, M., Tachiiri, K., Tokos, K. S., Yoshimori, M., Zeng,
N., and Zhao, F.: Long-Term climate change commitment and reversibility: An
EMIC intercomparison, J. Clim., 26, 5782–5809,
https://doi.org/10.1175/JCLI-D-12-00584.1, 2013. a
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
We present long-term projections of global peatland area and carbon with a continuous transient...
Altmetrics
Final-revised paper
Preprint