Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Jurek Müller
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Fortunat Joos
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 21, 571–592, https://doi.org/10.5194/cp-21-571-2025, https://doi.org/10.5194/cp-21-571-2025, 2025
Short summary
Short summary
We simulated how different processes affected the carbon cycle over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean, and alter various proxy signals. We provide an assessment of the directions of regional and global proxy changes that might be expected in response to different glacial–interglacial Earth system changes in the presence of interactive marine sediments.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
Biogeosciences, 22, 19–39, https://doi.org/10.5194/bg-22-19-2025, https://doi.org/10.5194/bg-22-19-2025, 2025
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency growing proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021, https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Short summary
Using ancient gas trapped in polar glaciers, we reconstructed the atmospheric concentrations of methane and nitrous oxide over the penultimate deglaciation to study their response to major climate changes. We show this deglaciation to be characterized by modes of methane and nitrous oxide variability that are also found during the last deglaciation and glacial cycle.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary
Short summary
We present an in-depth model analysis of transient peatland area and carbon dynamics over the last 22 000 years. Our novel results show that the consideration of both gross positive and negative area changes are necessary to understand the transient evolution of peatlands and their net effect on atmospheric carbon. The study includes the attributions to drivers through factorial simulations, assessments of uncertainty from climate forcing, and determination of the global net carbon balance.
Cited articles
Ahlström, A., Schurgers, G., and Smith, B.: The large influence of
climate model bias on terrestrial carbon cycle simulations, Environ. Res.
Lett., 12, 014004, https://doi.org/10.1088/1748-9326/12/1/014004, 2017. a
Alexandrov, G. A., Brovkin, V. A., and Kleinen, T.: The influence of climate
on peatland extent in Western Siberia since the Last Glacial Maximum, Sci.
Rep., 6, 6–11, https://doi.org/10.1038/srep24784, 2016. a, b
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A.,
Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon
emissions towards the trillionth tonne, Nature, 458, 1163–1166,
https://doi.org/10.1038/nature08019, 2009. a
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of
high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4,
444–448, https://doi.org/10.1038/ngeo1160, 2011. a
Bauer, I. E., Gignac, L. D., and Vitt, D. H.: Development of a peatland
complex in boreal western Canada: Lateral site expansion and local
variability in vegetation succession and long-term peat accumulation, Can.
J. Bot., 81, 833–847, https://doi.org/10.1139/b03-076, 2003. a
Beauregard, P., Lavoie, M., and Pellerin, S.: Recent Gray Birch (Betula
populifolia) Encroachment in Temperate Peatlands of Eastern North America,
Wetlands, 40, 351–364, https://doi.org/10.1007/s13157-019-01186-3, 2020. a, b, c
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979. a
Blodau, C.: Carbon cycling in peatlands — A review of processes and
controls, Environ. Rev., 10, 111–134, https://doi.org/10.1139/a02-004, 2002. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.5195, 2018. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton,
T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.1532, 2019. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes, J.,
Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S., Gastineau,
G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, Lionel, E., Guilyardi,
E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume,
S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G.,
Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif,
Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher,
J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw,
D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL‐CM6A‐LR Climate Model, J. Adv. Model. Earth Syst., 12, 1–52,
https://doi.org/10.1029/2019MS002010, 2020. a
Broothaerts, N., Notebaert, B., Verstraeten, G., Kasse, C., Bohncke, S., and
Vandenberghe, J.: Non-uniform and diachronous Holocene floodplain evolution:
a case study from the Dijle catchment, Belgium, J. Quaternary Sci., 29, 351–360,
https://doi.org/10.1002/jqs.2709, 2014. a, b
Byun, Y.-H., Lim, Y.-J., Shim, S., Sung, H. M., Sun, M., Kim, J., Kim, B.-H.,
Lee, J.-H., and Moon, H.: NIMS-KMA KACE1.0-G model output prepared for CMIP6
ScenarioMIP, Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.2242,
2019a. a
Byun, Y.-H., Lim, Y.-J., Sung, H. M., Kim, J., Sun, M., and Kim, B.-H.:
NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.8378, 2019b. a
Camill, P.: Permafrost thaw accelerates in boreal peatlands during late-20th
century climate warming, Clim. Change, 68, 135–152,
https://doi.org/10.1007/s10584-005-4785-y, 2005. a
Campos, J. R. d. R., Silva, A. C., Slater, L., Nanni, M. R., and Vidal-Torrado,
P.: Stratigraphic control and chronology of peat bog deposition in the Serra
do Espinhaço Meridional, Brazil, CATENA, 143, 167–173,
https://doi.org/10.1016/j.catena.2016.04.009, 2016. a
Charman, D.: Peatlands and environmental change, John Wiley & Sons Ltd., UK,
2002. a
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, 2013. a
Chaudhary, N., Miller, P. A., and Smith, B.: Modelling past, present and
future peatland carbon accumulation across the pan-Arctic region,
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, 2017. a
Chaudhary, N., Westermann, S., Lamba, S., Shurpali, N., Sannel, A. B. K.,
Schurgers, G., Miller, P. A., and Smith, B.: Modelling past and future
peatland carbon dynamics across the pan-Arctic, Glob. Change Biol., 26,
4119–4133, https://doi.org/10.1111/gcb.15099, 2020. a, b, c
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G. K.: Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change, Nat. Clim. Change, 6,
360–369, https://doi.org/10.1038/nclimate2923, 2016. a
Cole, L. E., Bhagwat, S. A., and Willis, K. J.: Long-term disturbance dynamics
and resilience of tropical peat swamp forests, J. Ecol., 103, 16–30,
https://doi.org/10.1111/1365-2745.12329, 2015. a
Cong, M., Xu, Y., Tang, L., Yang, W., and Jian, M.: Predicting the dynamic
distribution of Sphagnum bogs in China under climate change since the last
interglacial period, PLoS One, 15, e0230969,
https://doi.org/10.1371/journal.pone.0230969, 2020. a
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90,
https://doi.org/10.1038/nature21048, 2017. a, b
de Jong, R., Blaauw, M., Chambers, F. M., Christensen, T. R., de Vleeschouwer,
F., Finsinger, W., Fronzek, S., Johansson, M., Kokfelt, U., Lamentowicz, M.,
Le Roux, G., Mauquoy, D., Mitchell, E. A., Nichols, J. E., Samaritani, E.,
and van Geel, B.: Climate and Peatlands, in: Chang. Clim. Earth Syst. Soc.,
edited by Dodson, J., Springer Netherlands, Dordrecht, 85–121,
https://doi.org/10.1007/978-90-481-8716-4_5, 2010. a
Dohong, A., Aziz, A. A., and Dargusch, P.: A review of the drivers of tropical
peatland degradation in South-East Asia, Land Use Policy, 69, 349–360,
https://doi.org/10.1016/j.landusepol.2017.09.035, 2017. a
Dommain, R., Frolking, S., Jeltsch-Thömmes, A., Joos, F., Couwenberg, J.,
and Glaser, P. H.: A radiative forcing analysis of tropical peatlands before
and after their conversion to agricultural plantations, Glob. Change Biol.,
24, 5518–5533, https://doi.org/10.1111/gcb.14400, 2018. a, b, c, d
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O’Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-446, in review, 2021. a
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John,
J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E.,
Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C.,
Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H.,
Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R.,
Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A.,
Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T.,
Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B.,
Zeng, Y., and Zhao, M.: The GFDL Earth System Model Version 4.1 (GFDL‐ESM
4.1): Overall Coupled Model Description and Simulation Characteristics, J.
Adv. Model. Earth Syst., 12, 1–56, https://doi.org/10.1029/2019MS002015, 2020. a
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3 model output
prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.4700, 2019a. a
EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3 model output
prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.251, 2019b. a
Eppinga, M. B., Rietkerk, M., Wassen, M. J., and De Ruiter, P. C.: Linking
habitat modification to catastrophic shifts and vegetation patterns in bogs,
Plant Ecol., 200, 53–68, https://doi.org/10.1007/s11258-007-9309-6, 2009. a
Estop-Aragonés, C., Cooper, M. D., Fisher, J. P., Thierry, A., Garnett,
M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R.,
Sanderson, N. K., Burn, C. R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G.,
Williams, M., and Hartley, I. P.: Limited release of previously-frozen C and
increased new peat formation after thaw in permafrost peatlands, Soil Biol.
Biochem., 118, 115–129, https://doi.org/10.1016/j.soilbio.2017.12.010, 2018. a, b
Estop‐Aragonés, C., Olefeldt, D., Abbott, B. W., Chanton, J. P.,
Czimczik, C. I., Dean, J. F., Egan, J. E., Gandois, L., Garnett, M. H.,
Hartley, I. P., Hoyt, A., Lupascu, M., Natali, S. M., O'Donnell, J. A.,
Raymond, P. A., Tanentzap, A. J., Tank, S. E., Schuur, E. A. G., Turetsky,
M., and Anthony, K. W.: Assessing the Potential for Mobilization of Old Soil
Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the
Northern Permafrost Region, Global Biogeochem. Cy., 34, 1–26,
https://doi.org/10.1029/2020GB006672, 2020. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ferretto, A., Brooker, R., Aitkenhead, M., Matthews, R., and Smith, P.:
Potential carbon loss from Scottish peatlands under climate change, Reg.
Environ. Change, 19, 2101–2111, https://doi.org/10.1007/s10113-019-01550-3, 2019. a
Frölicher, T. L. and Joos, F.: Reversible and irreversible impacts of
greenhouse gas emissions in multi-century projections with the NCAR global
coupled carbon cycle-climate model, Clim. Dynam., 35, 1439–1459,
https://doi.org/10.1007/s00382-009-0727-0, 2010. a
Frölicher, T. L., Winton, M., and Sarmiento, J. L.: Continued global
warming after CO2 emissions stoppage, Nat. Clim. Change, 4, 40–44,
https://doi.org/10.1038/nclimate2060, 2014. a
Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern
peatland carbon accumulation and methane emissions, Glob. Change Biol., 13,
1079–1088, https://doi.org/10.1111/j.1365-2486.2007.01339.x, 2007. a, b
Gajewski, K., Viau, A., Sawada, M., Atkinson, L. J., and Wilson, S.: Sphagnum
peatland distribution in North America and Eurasia during the past 21,000
years, Carbon N. Y., 15, 297–310, 2001. a
Gallego-Sala, A. V., Charman, D. J., Harrison, S. P., Li, G., and Prentice, I. C.: Climate-driven expansion of blanket bogs in Britain during the Holocene, Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, 2016. a
Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Colin Prentice,
I., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Bjamp,
S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P.,
Carless, D., Chimner, R. A., Clifford, M., Cressey, E., Courtney-Mustaphi,
C., Vleeschouwer, O., Jong, R., Fialkiewicz-Koziel, B., Finkelstein, S. A.,
Garneau, M., Githumbi, E., Hribjlan, J., Holmquist, J., M Hughes, P. D.,
Jones, C., Jones, M. C., Karofeld, E., Klein, E. S., Kokfelt, U., Korhola,
A., Lacourse, T., Roux, G., Lamentowicz, M., Large, D., Lavoie, M., Loisel,
J., Mackay, H., MacDonald, G. M., Makila, M., Magnan, G., Marchant, R.,
Marcisz, K., Martamp, A., Cortizas, N., Massa, C., Mathijssen, P., Mauquoy,
D., Mighall, T., G Mitchell, F. J., Moss, P., Nichols, J., Oksanen, P. O.,
Orme, L., Packalen, M. S., Robinson, S., Roland, T. P., Sanderson, N. K.,
Britta Sannel, A. K., Steinberg, N., Swindles, G. T., Edward Turner, T.,
Uglow, J., Vamp, M., Bellen, S., Linden, M., Geel, B., Wang, G., Yu, Z.,
Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted
increase of the peatland carbon sink with warming, Nat. Clim. Change, 8,
907–914, https://doi.org/10.1038/s41558-018-0271-1, 2018. a, b, c
Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J.,
Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H.,
Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J.,
Sanderman, J., and Hole, D. G.: Protecting irrecoverable carbon in Earth's
ecosystems, Nat. Clim. Change, 10, 287–295,
https://doi.org/10.1038/s41558-020-0738-8, 2020. a
Gorham, E.: The Development of Peat Lands, Q. Rev. Biol., 32, 145–166,
https://doi.org/10.1086/401755, 1957. a
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991. a
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and
spatial aspects of peatland initiation following deglaciation in North
America, Quaternary Sci. Rev., 26, 300–311,
https://doi.org/10.1016/j.quascirev.2006.08.008, 2007. a
Gorham, E., Lehman, C., Dyke, A., Clymo, D., and Janssens, J.: Long-term
carbon sequestration in North American peatlands, Quaternary Sci. Rev., 58,
77–82, https://doi.org/10.1016/j.quascirev.2012.09.018, 2012. a
Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F.,
Householder, E., Herold, N., and Murdiyarso, D.: An expert system model for
mapping tropical wetlands and peatlands reveals South America as the largest
contributor, Glob. Change Biol., 23, 3581–3599, https://doi.org/10.1111/gcb.13689,
2017. a, b
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun., 11, 1–5,
https://doi.org/10.1038/s41467-020-15499-z, 2020. a
Guo, D. and Wang, H.: CMIP5 permafrost degradation projection:A comparison
among different regions, J. Geophys. Res.-Atmos., 121, 4499–4517,
https://doi.org/10.1002/2015JD024108, 2016. a
Haapalehto, T. O., Vasander, H., Jauhiainen, S., Tahvanainen, T., and Kotiaho,
J. S.: The effects of peatland restoration on water-table depth, elemental
concentrations, and vegetation: 10 years of changes, Restor. Ecol., 19,
587–598, https://doi.org/10.1111/j.1526-100X.2010.00704.x, 2011. a
Halsey, L. A., Vitt, D. H., Gignac, L. D., Bryologist, T., and Summer, N.:
Sphagnum-Dominated Peatlands in North America since the Last Glacial Maximum: Their Occurrence and Extent Sphagnum-dominated Peatlands in North America
Since the Last Glacial Maximum : Their Occurrence and Extent, Bryologist,
103, 334–352, https://doi.org/10.1639/0007-2745(2000)103[0334:SDPINA]2.0.CO;2, 2000. a
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M.,
Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43,
671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014. a
Heijmans, M. M. P. D., van der Knaap, Y. A. M., Holmgren, M., and Limpens, J.:
Persistent versus transient tree encroachment of temperate peat bogs:
effects of climate warming and drought events, Glob. Change Biol., 19,
2240–2250, https://doi.org/10.1111/gcb.12202, 2013. a
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B., Aurela, M., Barr,
A. G., Black, T. A., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A.,
Euskirchen, E. S., Flanagan, L. B., Friborg, T., Garneau, M., Grelle, A.,
Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H., Isabelle, P.-E., Iwata,
H., Jassal, R., Korkiakoski, M., Kurbatova, J., Kutzbach, L., Lapshina, E.,
Lindroth, A., Löfvenius, M. O., Lohila, A., Mammarella, I., Marsh, P.,
Moore, P. A., Maximov, T., Nadeau, D. F., Nicholls, E. M., Nilsson, M. B.,
Ohta, T., Peichl, M., Petrone, R. M., Prokushkin, A., Quinton, W. L., Roulet,
N., Runkle, B. R. K., Sonnentag, O., Strachan, I. B., Taillardat, P.,
Tuittila, E.-S., Tuovinen, J.-P., Turner, J., Ueyama, M., Varlagin, A.,
Vesala, T., Wilmking, M., Zyrianov, V., and Schulze, C.: The biophysical
climate mitigation potential of boreal peatlands during the growing season,
Environ. Res. Lett., 15, 104004, https://doi.org/10.1088/1748-9326/abab34,
2020a. a
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M., Barr,
A. G., Black, T. A., Blanken, P. D., Carey, S. K., Chen, J., Chi, J., Desai,
A. R., Dunn, A., Euskirchen, E. S., Flanagan, L. B., Forbrich, I., Friborg,
T., Grelle, A., Harder, S., Heliasz, M., Humphreys, E. R., Ikawa, H.,
Isabelle, P. E., Iwata, H., Jassal, R., Korkiakoski, M., Kurbatova, J.,
Kutzbach, L., Lindroth, A., Löfvenius, M. O., Lohila, A., Mammarella,
I., Marsh, P., Maximov, T., Melton, J. R., Moore, P. A., Nadeau, D. F.,
Nicholls, E. M., Nilsson, M. B., Ohta, T., Peichl, M., Petrone, R. M.,
Petrov, R., Prokushkin, A., Quinton, W. L., Reed, D. E., Roulet, N. T.,
Runkle, B. R., Sonnentag, O., Strachan, I. B., Taillardat, P., Tuittila,
E. S., Tuovinen, J. P., Turner, J., Ueyama, M., Varlagin, A., Wilmking, M.,
Wofsy, S. C., and Zyrianov, V.: Increasing contribution of peatlands to
boreal evapotranspiration in a warming climate, Nat. Clim. Change, 10,
555–560, https://doi.org/10.1038/s41558-020-0763-7, 2020b. a, b
Hergoualc'h, K. and Verchot, L. V.: Stocks and fluxes of carbon associated
with land use change in Southeast Asian tropical peatlands: A review, Global
Biogeochem. Cy., 25, GB2001, https://doi.org/10.1029/2009GB003718, 2011. a
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P.,
Kostka, J., Hanson, P. J., Keller, J. K., and Bridgham, S. D.: Massive
peatland carbon banks vulnerable to rising temperatures, Nat. Commun., 11,
2373, https://doi.org/10.1038/s41467-020-16311-8, 2020. a
Hoyt, A. M., Chaussard, E., Seppalainen, S. S., and Harvey, C. F.: Widespread
subsidence and carbon emissions across Southeast Asian peatlands, Nat.
Geosci., 13, 435–440, https://doi.org/10.1038/s41561-020-0575-4, 2020. a, b, c, d
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald,
G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C.,
Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland carbon and
nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA,
117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020. a, b
Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti,
L., Barthelmes, A., and Popp, A.: Peatland protection and restoration are
key for climate change mitigation, Environ. Res. Lett., 15, 104093,
https://doi.org/10.1088/1748-9326/abae2a, 2020. a
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin,
K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa,
T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan,
J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz,
O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E.,
Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang,
X.: Harmonization of global land use change and management for the period
850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464,
https://doi.org/10.5194/gmd-13-5425-2020, 2020. a, b
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections, Com- mitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b
Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R.: High sensitivity of
peat decomposition to climate change through water-table feedback, Nat.
Geosci., 1, 763–766, https://doi.org/10.1038/ngeo331, 2008. a
Jiang, L., Song, Y., Sun, L., Song, C., Wang, X., Ma, X., Liu, C., and Gao, J.:
Effects of warming on carbon emission and microbial abundances across
different soil depths of a peatland in the permafrost region under anaerobic
condition, Appl. Soil Ecol., 156, 103712,
https://doi.org/10.1016/j.apsoil.2020.103712, 2020. a
John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp,
H., Wilson, C., Zadeh, N. T., Dunne, J. P., Dussin, R., Horowitz, L. W.,
Krasting, J. P., Lin, P., Malyshev, S., Naik, V., Ploshay, J., Shevliakova,
E., Silvers, L., Stock, C., Winton, M., and Zeng, Y.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.1414, 2018. a
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C.,
and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw
in boreal peatlands, Glob. Change Biol., 23, 1109–1127,
https://doi.org/10.1111/gcb.13403, 2017. a, b
Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic
radiative forcing over the past 20,000 years, P. Natl. Acad. Sci. USA, 105, 1425–1430, https://doi.org/10.1073/pnas.0707386105, 2008. a
Kimmel, K. and Mander, Ü.: Ecosystem services of peatlands: Implications
for restoration, Prog. Phys. Geogr., 34, 491–514,
https://doi.org/10.1177/0309133310365595, 2010. a
Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland
extent and peat accumulation: Results for the Holocene, Biogeosciences, 9,
235–248, https://doi.org/10.5194/bg-9-235-2012, 2012. a
Kluber, L. A., Johnston, E. R., Allen, S. A., Nicholas Hendershot, J.,
Hanson, P. J., and Schadt, C. W.: Constraints on microbial communities,
decomposition and methane production in deep peat deposits, PLoS One, 15,
1–20, https://doi.org/10.1371/journal.pone.0223744, 2020. a
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T.,
and Weckström, J.: The importance of northern peatland expansion to
the late-Holocene rise of atmospheric methane, Quaternary Sci. Rev., 29,
611–617, https://doi.org/10.1016/j.quascirev.2009.12.010, 2010. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held,
I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.8597, 2018. a
Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres,
D. D. C., Oinonen, M., and Page, S.: The large Amazonian peatland carbon
sink in the subsiding Pastaza-Marañón foreland basin, Peru,
Glob. Change Biol., 18, 164–178, https://doi.org/10.1111/j.1365-2486.2011.02504.x,
2012. a, b
LAI, D.: Methane Dynamics in Northern Peatlands: A Review, Pedosphere, 19,
409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009. a
Lara, M. J., Genet, H., McGuire, A. D., Euskirchen, E. S., Zhang, Y., Brown, D.
R. N., Jorgenson, M. T., Romanovsky, V., Breen, A., and Bolton, W. R.:
Thermokarst rates intensify due to climate change and forest fragmentation
in an Alaskan boreal forest lowland, Glob. Change Biol., 22, 816–829,
https://doi.org/10.1111/gcb.13124, 2016. a
Largeron, C., Krinner, G., Ciais, P., and Brutel-Vuilmet, C.: Implementing
northern peatlands in a global land surface model: Description and evaluation
in the ORCHIDEE high-latitude version model (ORC-HL-PEAT), Geosci. Model
Dev., 11, 3279–3297, https://doi.org/10.5194/gmd-11-3279-2018, 2018. a
Lawrence, D. M., Slater, A. G., and Swenson, S. C.: Simulation of present-day
and future permafrost and seasonally frozen ground conditions in CCSM4, J.
Clim., 25, 2207–2225, https://doi.org/10.1175/JCLI-D-11-00334.1, 2012. a
Le Stum-Boivin, É., Magnan, G., Garneau, M., Fenton, N. J., Grondin,
P., and Bergeron, Y.: Spatiotemporal evolution of paludification associated
with autogenic and allogenic factors in the black spruce–moss boreal forest
of Québec, Canada, Quaternary Res., 91, 650–664,
https://doi.org/10.1017/qua.2018.101, 2019. a
Lee, J., Kim, J., Sun, M.-A., Kim, B.-H., Moon, H., Sung, H. M., Kim, J., and
Byun, Y.-H.: Evaluation of the Korea Meteorological Administration Advanced
Community Earth-System model (K-ACE), Asia-Pacific J. Atmos. Sci., 56,
381–395, https://doi.org/10.1007/s13143-019-00144-7, 2020. a
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in
global climate change mitigation strategies, Nat. Commun., 9, 1071,
https://doi.org/10.1038/s41467-018-03406-6, 2018. a
Leifeld, J., Wüst-Galley, C., and Page, S.: Intact and managed peatland
soils as a source and sink of GHGs from 1850 to 2100, Nat. Clim. Change, 9,
945–947, https://doi.org/10.1038/s41558-019-0615-5, 2019. a, b, c
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Li, C., Grayson, R., Holden, J., and Li, P.: Erosion in peatlands: Recent
research progress and future directions, Earth-Sci. Rev., 185, 870–886,
https://doi.org/10.1016/j.earscirev.2018.08.005, 2018. a
Lienert, S. and Joos, F.: A Bayesian ensemble data assimilation to constrain
model parameters and land-use carbon emissions, Biogeosciences, 15,
2909–2930, https://doi.org/10.5194/bg-15-2909-2018, 2018. a, b
Lindsay, R.: Peatland Classification, in: Wetl. B., Springer
Netherlands, Dordrecht, 1515–1528, https://doi.org/10.1007/978-90-481-9659-3_341, 2018. a
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for bolling-allerod warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009. a
Loisel, J. and Bunsen, M.: Abrupt Fen-Bog Transition Across Southern
Patagonia: Timing, Causes, and Impacts on Carbon Sequestration, Front. Ecol.
Evol., 8, 1–19, https://doi.org/10.3389/fevo.2020.00273, 2020. a
Loisel, J., Yu, Z., Parsekian, A., Nolan, J., and Slater, L.: Quantifying
landscape morphology influence on peatland lateral expansion using
ground-penetrating radar (GPR) and peat core analysis, J. Geophys. Res.-Biogeo., 118, 373–384, https://doi.org/10.1002/jgrg.20029, 2013. a
Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran,
D., Yu, Z., Nichols, J., and Holmquist, J.: Insights and issues with
estimating northern peatland carbon stocks and fluxes since the Last Glacial
Maximum, Earth-Sci. Rev., 165, 59–80,
https://doi.org/10.1016/j.earscirev.2016.12.001, 2017. a, b
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G.,
Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J.,
Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla,
C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., Bubier, J. L.,
Garneau, M., Moore, T., Sannel, A. B., Page, S., Väliranta, M.,
Bechtold, M., Brovkin, V., Cole, L. E., Chanton, J. P., Christensen, T. R.,
Davies, M. A., De Vleeschouwer, F., Finkelstein, S. A., Frolking, S.,
Gałka, M., Gandois, L., Girkin, N., Harris, L. I., Heinemeyer, A., Hoyt,
A. M., Jones, M. C., Joos, F., Juutinen, S., Kaiser, K., Lacourse, T.,
Lamentowicz, M., Larmola, T., Leifeld, J., Lohila, A., Milner, A. M.,
Minkkinen, K., Moss, P., Naafs, B. D., Nichols, J., O'Donnell, J., Payne, R.,
Philben, M., Piilo, S., Quillet, A., Ratnayake, A. S., Roland, T. P.,
Sjögersten, S., Sonnentag, O., Swindles, G. T., Swinnen, W., Talbot,
J., Treat, C., Valach, A. C., and Wu, J.: Expert assessment of future
vulnerability of the global peatland carbon sink, Nat. Clim. Change, 11,
70–77, https://doi.org/10.1038/s41558-020-00944-0, 2021. a
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C.,
and Velichko, A. A.: Rapid Early Development of Circumarctic Peatlands and
Atmospheric CH4 and CO2 Variations, Science, 314, 285–288,
https://doi.org/10.1126/science.1131722, 2006. a
Magnússon, R. Í., Limpens, J., Huissteden, J., Kleijn, D., Maximov,
T. C., Rotbarth, R., Sass‐Klaassen, U., and Heijmans, M. M. P. D.: Rapid
Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in
the Siberian Lowland Tundra, J. Geophys. Res.-Biogeo., 125, 1–20,
https://doi.org/10.1029/2019JG005618, 2020. a, b, c
Mamet, S. D., Chun, K. P., Kershaw, G. G., Loranty, M. M., and Peter Kershaw,
G.: Recent Increases in Permafrost Thaw Rates and Areal Loss of Palsas in
the Western Northwest Territories, Canada, Permafrost Periglac., 28,
619–633, https://doi.org/10.1002/ppp.1951, 2017. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H.,
Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T.,
Jimenéz‐de‐la‐Cuesta, D., Jungclaus, J., Kleinen, T., Kloster,
S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,
Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W.,
Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H.,
Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H.,
Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U.,
Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J., Tian, F.,
Voigt, A., Vrese, P., Wieners, K., Wilkenskjeld, S., Winkler, A., and
Roeckner, E.: Developments in the MPI‐M Earth System Model version 1.2
(MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth
Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1, 24–29,
https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E.,
Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G.,
Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N.,
Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M.,
Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared
socio-economic pathway (SSP) greenhouse gas concentrations and their
extensions to 2500, Geosci. Model Dev., 13, 3571–3605,
https://doi.org/10.5194/gmd-13-3571-2020, 2020. a
Minayeva, T. Y. and Sirin, A. A.: Peatland biodiversity and climate change,
Biol. Bull. Rev., 2, 164–175, https://doi.org/10.1134/s207908641202003x, 2012. a
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005. a
Moore, P. D.: The ecology of peat-forming processes: a review, Int. J. Coal
Geol., 12, 89–103, https://doi.org/10.1016/0166-5162(89)90048-7, 1989. a
Morris, P. J., Belyea, L. R., and Baird, A. J.: Ecohydrological feedbacks in
peatland development: A theoretical modelling study, J. Ecol., 99,
1190–1201, https://doi.org/10.1111/j.1365-2745.2011.01842.x, 2011. a
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire,
L. J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global
peatland initiation driven by regionally asynchronous warming, P. Natl.
Acad. Sci. USA, 115, 4851–4856, https://doi.org/10.1073/pnas.1717838115, 2018. a
Müller, J. and Joos, F.: Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4627681, 2021.
Nugent, K. A., Strachan, I. B., Roulet, N. T., Strack, M., Frolking, S., and
Helbig, M.: Prompt active restoration of peatlands substantially reduces
climate impact, Environ. Res. Lett., 14, 124030,
https://doi.org/10.1088/1748-9326/ab56e6, 2019. a
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A., Schuur, E., and Turetsky,
M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016. a
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein,
P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl,
G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model
Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9,
3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Packalen, M. S., Finkelstein, S. A., and McLaughlin, J. W.: Carbon storage and
potential methane production in the Hudson Bay Lowlands since mid-Holocene
peat initiation, Nat. Commun., 5, 1–8, https://doi.org/10.1038/ncomms5078, 2014. a
Page, S. and Baird, A.: Peatlands and Global Change: Response and Resilience,
Annu. Rev. Environ. Resour., 41, 35–57,
https://doi.org/10.1146/annurev-environ-110615-085520, 2016. a, b, c, d
Page, S. E. and Hooijer, A.: In the line of fire: The peatlands of Southeast
Asia, Philos. Trans. R. Soc. B, 371,
https://doi.org/10.1098/rstb.2015.0176, 2016. a
Page, S. E., Rieley, J. O., and Banks, C. J.: Global and regional importance
of the tropical peatland carbon pool, Glob. Change Biol., 17, 798–818,
https://doi.org/10.1111/j.1365-2486.2010.02279.x, 2011. a, b, c, d
Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M.: Accelerated
thawing of subarctic peatland permafrost over the last 50 years, Geophys.
Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020358, 2004. a
Pellerin, S. and Lavoie, C.: Recent expansion of jack pine in peatlands of
southeastern Québec: A paleoecological study, Écoscience, 10,
247–257, https://doi.org/10.1080/11956860.2003.11682772, 2003. a, b, c
Pinceloup, N., Poulin, M., Brice, M.-H., and Pellerin, S.: Vegetation changes
in temperate ombrotrophic peatlands over a 35 year period, PLoS One, 15,
e0229146, https://doi.org/10.1371/journal.pone.0229146, 2020. a, b
Posa, M. R. C., Wijedasa, L. S., and Corlett, R. T.: Biodiversity and
conservation of tropical peat swamp forests, Bioscience, 61, 49–57,
https://doi.org/10.1525/bio.2011.61.1.10, 2011. a
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., Aurela, M.,
Bernhofer, C., Brümmer, C., Bret-Harte, S., Chu, H., Chen, J., Desai,
A. R., Dušek, J., Euskirchen, E. S., Fortuniak, K., Flanagan, L. B.,
Friborg, T., Grygoruk, M., Gogo, S., Grünwald, T., Hansen, B. U., Holl,
D., Humphreys, E., Hurkuck, M., Kiely, G., Klatt, J., Kutzbach, L., Largeron,
C., Laggoun-Défarge, F., Lund, M., Lafleur, P. M., Li, X., Mammarella,
I., Merbold, L., Nilsson, M. B., Olejnik, J., Ottosson-Löfvenius, M.,
Oechel, W., Parmentier, F. J. W., Peichl, M., Pirk, N., Peltola, O., Pawlak,
W., Rasse, D., Rinne, J., Shaver, G., Peter Schmid, H., Sottocornola, M.,
Steinbrecher, R., Sachs, T., Urbaniak, M., Zona, D., and Ziemblinska, K.:
ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and
energy fluxes on daily to annual scales, Geosci. Model Dev., 11, 497–519,
https://doi.org/10.5194/gmd-11-497-2018, 2018. a
Ribeiro, K., Pacheco, F. S., Ferreira, J. W., de Sousa-Neto, E. R., Hastie, A.,
Krieger Filho, G. C., Alvalá, P. C., Forti, M. C., and Ometto, J. P.:
Tropical peatlands and their contribution to the global carbon cycle and
climate change, Glob. Change Biol., 27, 489–505, https://doi.org/10.1111/gcb.15408,
2021. a
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical,
Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.9754, 2019a. a
Rong, X.: CAMS CAMS-CSM1.0 model output prepared for CMIP6 ScenarioMIP,
Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.11004, 2019b. a
Rong, X., Li, J., Chen, H., Xin, Y., Su, J., Hua, L., Zhou, T., Qi, Y., Zhang,
Z., Zhang, G., and Li, J.: The CAMS Climate System Model and a Basic
Evaluation of Its Climatology and Climate Variability Simulation, J.
Meteorol. Res., 32, 839–861, https://doi.org/10.1007/s13351-018-8058-x, 2018. a
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial
spatiotemporal peatland initiation and lateral expansion dynamics in North
America and northern Europe, Holocene, 23, 1596–1606,
https://doi.org/10.1177/0959683613499053, 2013. a, b
Rydin, H. and Jeglum, J. K.: The Biology of Peatlands, Oxford University
Press, https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001, 2013. a
Sawada, M., Viau, A. E., and Gajewski, K.: The biogeography of aquatic
macrophytes in North America since the Last Glacial Maximum, J. Biogeogr.,
30, 999–1017, https://doi.org/10.1046/j.1365-2699.2003.00866.x, 2003. a
Schuldt, R. J., Brovkin, V., Kleinen, T., and Winderlich, J.: Modelling
Holocene carbon accumulation and methane emissions of boreal wetlands-an
Earth system model approach, Biogeosciences, 10, 1659–1674,
https://doi.org/10.5194/bg-10-1659-2013, 2013. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-c., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka,
J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z.,
Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth
System Model (NorESM2) and key climate response of CMIP6 DECK, historical,
and scenario simulations, Geosci. Model Dev., 13, 6165–6200,
https://doi.org/10.5194/gmd-13-6165-2020, 2020. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y.,
Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H.,
Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model
output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.8036, 2019a. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y.,
Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H.,
Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model
output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.604, 2019b. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob.
Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. a
Stocker, B. D., Roth, R., Joos, F., Spahni, R., Steinacher, M., Zaehle, S.,
Bouwman, L., Xu-Ri, and Prentice, I. C.: Multiple greenhouse-gas feedbacks
from the land biosphere under future climate change scenarios, Nat. Clim.
Chang., 3, 666–672, https://doi.org/10.1038/nclimate1864, 2013. a
Stocker, B. D., Feissli, F., Strassmann, K. M., Spahni, R., and Joos, F.: Past
and future carbon fluxes from land use change, shifting cultivation and wood
harvest, Tellus B, 66,
https://doi.org/10.3402/tellusb.v66.23188, 2014a. a
Stocker, B. D., Yu, Z., Massa, C., and Joos, F.: Holocene peatland and
ice-core data constraints on the timing and magnitude of CO2 emissions from
past land use, P. Natl. Acad. Sci. USA, 114, 1492–1497,
https://doi.org/10.1073/pnas.1613889114, 2017. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y.,
Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A.,
Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The
Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12,
4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019a. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.3610, 2019b. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.1317, 2019c. a
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E.,
Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S.,
Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick,
J. L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term
fate of permafrost peatlands under rapid climate warming, Sci. Rep., 5,
1–6, https://doi.org/10.1038/srep17951, 2015. a, b, c
Swindles, G. T., Morris, P. J., Wheeler, J., Smith, M. W., Bacon, K. L.,
Edward Turner, T., Headley, A., and Galloway, J. M.: Resilience of
peatland ecosystem services over millennial timescales: Evidence from a
degraded British bog, J. Ecol., 104, 621–636,
https://doi.org/10.1111/1365-2745.12565, 2016. a
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P.,
Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T.,
Barr, I. D., Blaauw, M., Blundell, A., Chambers, F. M., Charman, D. J.,
Feurdean, A., Galloway, J. M., Gałka, M., Green, S. M., Kajukało, K.,
Karofeld, E., Korhola, A., Lamentowicz, Ł., Langdon, P., Marcisz, K.,
Mauquoy, D., Mazei, Y. A., McKeown, M. M., Mitchell, E. A. D., Novenko, E.,
Plunkett, G., Roe, H. M., Schoning, K., Sillasoo, Ü., Tsyganov, A. N.,
van der Linden, M., Väliranta, M., and Warner, B.: Widespread drying
of European peatlands in recent centuries, Nat. Geosci., 12, 922–928,
https://doi.org/10.1038/s41561-019-0462-z, 2019. a, b
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term blanket
peatland development in eastern Scotland, Biogeosciences, 16, 3977–3996,
https://doi.org/10.5194/bg-16-3977-2019, 2019. a
Talbot, J., Richard, P., Roulet, N., and Booth, R.: Assessing long-term
hydrological and ecological responses to drainage in a raised bog using
paleoecology and a hydrosequence, J. Veg. Sci., 21, 143–156,
https://doi.org/10.1111/j.1654-1103.2009.01128.x, 2010. a
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R.,
Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G.,
Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lähteenoja, O.,
Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K.,
Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C.,
Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Väliranta, M.,
Hättestrand, M., Alexanderson, H., and Brovkin, V.: Widespread global
peatland establishment and persistence over the last 130,000 y, P. Natl.
Acad. Sci. USA, 116, 201813305, https://doi.org/10.1073/pnas.1813305116, 2019. a, b, c, d
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook,
E. R., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H.,
Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E. S.,
Waddington, J. M., White, J. R., Wickland, K. P., and Wilmking, M.: A
synthesis of methane emissions from 71 northern, temperate, and subtropical
wetlands, Glob. Change Biol., 20, 2183–2197, https://doi.org/10.1111/gcb.12580, 2014. a, b
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., and
Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat.
Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015. a, b
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020. a, b
Voigt, C., Marushchak, M. E., Mastepanov, M., Lamprecht, R. E., Christensen,
T. R., Dorodnikov, M., Jackowicz‐Korczyński, M., Lindgren, A.,
Lohila, A., Nykänen, H., Oinonen, M., Oksanen, T., Palonen, V., Treat,
C. C., Martikainen, P. J., and Biasi, C.: Ecosystem carbon response of an
Arctic peatland to simulated permafrost thaw, Glob. Change Biol., 25,
1746–1764, https://doi.org/10.1111/gcb.14574, 2019. a, b
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 CMIP historical, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.5070, 2019a. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.12322, 2019b. a
Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov,
V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., and Iakovlev, N. G.:
Simulation of the present-day climate with the climate model INMCM5, Clim.
Dynam., 49, 3715–3734, https://doi.org/10.1007/s00382-017-3539-7, 2017. a
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K.,
and Moore, P. A.: Hydrological feedbacks in northern peatlands,
Ecohydrology, 8, 113–127, https://doi.org/10.1002/eco.1493, 2015. a
Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C., and Cadillo-Quiroz,
H.: Potential shift from a carbon sink to a source in Amazonian peatlands
under a changing climate, P. Natl. Acad. Sci. USA, 115, 12407–12412,
https://doi.org/10.1073/pnas.1801317115, 2018. a
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 2. Evaluation and sensitivity of
vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, GB3015,
https://doi.org/10.1029/2008GB003413, 2009a. a, b, c
Wania, R., Ross, L., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of
physical land surface processes, Global Biogeochem. Cy., 23, 1–19,
https://doi.org/10.1029/2008GB003412, 2009b. a
Warren, M., Frolking, S., Dai, Z., and Kurnianto, S.: Impacts of land use,
restoration, and climate change on tropical peat carbon stocks in the
twenty-first century: implications for climate mitigation, Mitig. Adapt.
Strateg. Glob. Change, 22, 1041–1061, https://doi.org/10.1007/s11027-016-9712-1, 2017. a, b
Wibisana, A. G. and Setyorini, S. N.: Peatland Protection in Indonesia: Toward
the Right Direction?, in: Springer Clim., Springer
International Publishing, 301–328, https://doi.org/10.1007/978-3-030-55536-8_15, 2021. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch,
J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I.,
Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters,
K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur,
R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.:
MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP, Version
20200601, https://doi.org/10.22033/ESGF/CMIP6.793, 2019a. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese,
P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,
Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger,
C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W.,
Nabel, J., Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J.,
Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B.,
Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 CMIP historical, Version 20200601, https://doi.org/10.22033/ESGF/CMIP6.6595,
2019b. a
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W.,
Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton,
M., Kolka, R., Kluber, L. A., Keller, J. K., Guilderson, T. P., Griffiths,
N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.: Stability of
peatland carbon to rising temperatures, Nat. Commun., 7, 13723,
https://doi.org/10.1038/ncomms13723, 2016. a
Xu, H., Lan, J., Sheng, E., Liu, Y., Liu, B., Yu, K., Ye, Y., Cheng, P., Qiang,
X., Lu, F., and Wang, X.: Tropical/Subtropical Peatland Development and
Global CH4 during the Last Glaciation, Sci. Rep., 6, 30431,
https://doi.org/10.1038/srep30431, 2016. a
Xu, J., Morris, P. J., Liu, J., and Holden, J.: Hotspots of peatland-derived
potable water use identified by global analysis, Nat. Sustain., 1, 246–253,
https://doi.org/10.1038/s41893-018-0064-6, 2018a. a
Xu-Ri, Prentice, I. C., Spahni, R., and Niu, H. S.: Modelling terrestrial
nitrous oxide emissions and implications for climate feedback, New Phytol.,
196, 472–488, https://doi.org/10.1111/j.1469-8137.2012.04269.x, 2012. a
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the
long-term impacts of drainage and restoration on the ecohydrology of
peatlands, Water Resour. Res., 53, 6510–6522, https://doi.org/10.1002/2016WR019898,
2017. a
Yu, Z.: Holocene carbon flux histories of the world's peatlands: Global
carbon-cycle implications, The Holocene, 21, 761–774,
https://doi.org/10.1177/0959683610386982, 2011. a
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37,
1–5, https://doi.org/10.1029/2010GL043584, 2010. a, b, c, d
Yu, Z., Loisel, J., Turetsky, M. R., Cai, S., Zhao, Y., Frolking, S.,
MacDonald, G. M., and Bubier, J. L.: Evidence for elevated emissions from
high-latitude wetlands contributing to high atmospheric CH4 concentration in
the early Holocene, Global Biogeochem. Cy., 27, 131–140,
https://doi.org/10.1002/gbc.20025, 2013. a
Yu, Z., Loisel, J., Charman, D. J., Beilman, D. W., and Camill, P.: Holocene
peatland carbon dynamics in the circum-Arctic region: An introduction,
The Holocene, 24, 1021–1027, https://doi.org/10.1177/0959683614540730, 2014. a
Yu, Z. C.: Northern peatland carbon stocks and dynamics: A review,
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012. a, b
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0:
Description and Basic Evaluation of the Physical Component, J. Meteorol.
Soc. Jpn. Ser. II, 97, 931–965, https://doi.org/10.2151/jmsj.2019-051,
2019a. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model
output prepared for CMIP6 CMIP historical, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.6842, 2019b. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model
output prepared for CMIP6 ScenarioMIP, Version 20200601,
https://doi.org/10.22033/ESGF/CMIP6.638, 2019c. a
Zhang, H., Väliranta, M., Piilo, S., Amesbury, M. J.,
Aquino‐López, M. A., Roland, T. P., Salminen‐Paatero, S., Paatero,
J., Lohila, A., and Tuittila, E.: Decreased carbon accumulation feedback
driven by climate‐induced drying of two southern boreal bogs over recent
centuries, Glob. Change Biol., 26, 2435–2448, https://doi.org/10.1111/gcb.15005, 2020. a, b
Zhong, Y., Jiang, M., and Middleton, B. A.: Effects of water level alteration
on carbon cycling in peatlands, Ecosyst. Heal. Sustain., 6, 1806113,
https://doi.org/10.1080/20964129.2020.1806113, 2020. a, b
Zickfeld, K., Eby, M., Weaver, A. J., Alexander, K., Crespin, E., Edwards,
N. R., Eliseev, A. V., Feulner, G., Fichefet, T., Forest, C. E.,
Friedlingstein, P., Goosse, H., Holden, P. B., Joos, F., Kawamiya, M.,
Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I. I., Monier, E.,
Olsen, S. M., Pedersen, J. O., Perrette, M., Philippon-Berthier, G.,
Ridgwell, A., Schlosser, A., Von Deimling, T. S., Shaffer, G., Sokolov, A.,
Spahni, R., Steinacher, M., Tachiiri, K., Tokos, K. S., Yoshimori, M., Zeng,
N., and Zhao, F.: Long-Term climate change commitment and reversibility: An
EMIC intercomparison, J. Clim., 26, 5782–5809,
https://doi.org/10.1175/JCLI-D-12-00584.1, 2013. a
Short summary
We present long-term projections of global peatland area and carbon with a continuous transient history since the Last Glacial Maximum. Our novel results show that large parts of today’s northern peatlands are at risk from past and future climate change, with larger emissions clearly connected to larger risks. The study includes comparisons between different emission and land-use scenarios, driver attribution through factorial simulations, and assessments of uncertainty from climate forcing.
We present long-term projections of global peatland area and carbon with a continuous transient...
Altmetrics
Final-revised paper
Preprint