Articles | Volume 18, issue 14
https://doi.org/10.5194/bg-18-4265-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4265-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Ocean and Earth Science, National Oceanography Centre, University of
Southampton, Southampton, United Kingdom
Angela Milne
School of Geography, Earth and Environmental Sciences, University of
Plymouth, Plymouth, United Kingdom
Eric P. Achterberg
Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean
Research, Kiel, Germany
Thomas J. Browning
Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean
Research, Kiel, Germany
Heather A. Bouman
Department of Earth Sciences, University of Oxford, Oxford, United
Kingdom
E. Malcolm S. Woodward
Plymouth Marine Laboratory, Plymouth, United Kingdom
Maeve C. Lohan
Ocean and Earth Science, National Oceanography Centre, University of
Southampton, Southampton, United Kingdom
Related authors
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3639, https://doi.org/10.5194/egusphere-2024-3639, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers, and isolate the possible effect on phytoplankton community composition under a high emissions scenario.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Ahlgren, N. A., Noble, A. E., Patton, A. P., Roache-Johnson, K., Jackson,
L., Robinson, D., McKay, C., Moore, L. R., Saito, M. A., and Rocap, G.: The
unique trace metal and mixed layer conditions of the Costa Rica upwelling
dome support a distinct and dense community of Synechococcus,
Limnol. Oceanogr., 59, 2166–2184, https://doi.org/10.4319/lo.2014.59.6.2166, 2014.
Ansorge, I. J., Speich, S., Lutjeharms, J. R. E., Goni, G. J., Rautenbach,
C. J. D., Froneman, P. W., Rouault, M., and Garzoli, S.: Monitoring the
oceanic flow between Africa and Antarctica: Report of the first Goodhope
cruise, S. Afr. J. Sci., 101, 29–35, 2005.
Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C.,
Noble, A. E., Lee, P. A., and Di Tullio, G. R.: Vitamin B12 and iron
colimitation of phytoplankton growth in the Ross Sea, Limnol. Oceanogr., 52,
1079–1093, https://doi.org/10.4319/lo.2007.52.3.1079, 2007.
BODC: Phytoplankton data, British Oceanographic Data Centre, https://www.bodc.ac.uk/geotraces/data/inventories/d357/ and https://www.bodc.ac.uk/geotraces/data/inventories/jc068/, 2021.
Bown, J., Boye, M., Baker, A., Duvieilbourg, E., Lacan, F., Le Moigne, F.,
Planchon, F., Speich, S., and Nelson, D. M.: The biogeochemical cycle of
dissolved cobalt in the Atlantic and the Southern Ocean south off the coast
of South Africa, Mar. Chem., 126, 193–206,
https://doi.org/10.1016/j.marchem.2011.03.008, 2011.
Bown, J., Boye, M., and Nelson, D. M.: New insights on the role of organic speciation in the biogeochemical cycle of dissolved cobalt in the southeastern Atlantic and the Southern Ocean, Biogeosciences, 9, 2719–2736, https://doi.org/10.5194/bg-9-2719-2012, 2012.
Boye, M., Wake, B. D., Lopez Garcia, P., Bown, J., Baker, A. R., and Achterberg, E. P.: Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean, Biogeosciences, 9, 3231–3246, https://doi.org/10.5194/bg-9-3231-2012, 2012.
Browning, T. J., Bouman, H. A., Moore, C. M., Schlosser, C., Tarran, G. A., Woodward, E. M. S., and Henderson, G. M.: Nutrient regimes control phytoplankton ecophysiology in the South Atlantic, Biogeosciences, 11, 463–479, https://doi.org/10.5194/bg-11-463-2014, 2014.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of
an oceanic gyre, Nature, 551, 242–246, https://doi.org/10.1038/nature24063, 2017.
Cannizzaro, V., Bowie, A. R., Sax, A., Achterberg, E. P., and Worsfold, P. J.: Determination of cobalt and iron in estuarine and coastal waters using flow injection with chemiluminescence detection, Analyst, 125, 51–57,
https://doi.org/10.1039/A907651d, 2000.
Carritt, D. E. and Carpenter, J. H.: Comparison and evaluation of currently
employed modifications of the Winkler method for determining dissolved
oxygen in seawater, a nasco report, J. Mar. Res., 24, 286–319, 1966.
Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal
concentrations, solubility and deposition fluxes in remote marine air over
the south-east Atlantic, Mar. Chem., 177, 45–56,
https://doi.org/10.1016/j.marchem.2015.06.028, 2015.
Chapman, P.: On the occurrence of oxygen-depleted water south of Africa and
its implications for Agulhas-Atlantic mixing, S. Afr. J. Marine Sci., 7,
267–294, https://doi.org/10.2989/025776188784379044, 1988.
Chapman, P. and Shannon, L. V.: Seasonality in the oxygen minimum layers at
the extremities of the Benguela system, S. Afr. J. Marine Sci., 5, 85–94,
https://doi.org/10.2989/025776187784522162, 1987.
Chappell, P. D., Vedmati, J., Selph, K. E., Cyr, H. A., Jenkins, B. D.,
Landry, M. R., and Moffett, J. W.: Preferential depletion of zinc within
Costa Rica upwelling dome creates conditions for zinc co-limitation of
primary production, J. Plankton Res., 38, 244–255,
https://doi.org/10.1093/plankt/fbw018, 2016.
Chever, F., Bucciarelli, E., Sarthou, G., Speich, S., Arhan, M., Penven, P.,
and Tagliabue, A.: Physical speciation of iron in the Atlantic sector of the
Southern Ocean along a transect from the subtropical domain to the Weddell
Sea Gyre, J. Geophys. Res.-Oceans, 115, C10059, https://doi.org/10.1029/2009jc005880,
2010.
Cutter, G., Anderssen, P., Codispoti, L., Croot, P. L., Francois, R., Lohan, M. C., Obata, H., and Rutgers van der Leoff, M.: Sampling and sample-handling protocols for GEOTRACES cruises, available at: https://www.geotraces.org (last access: 24 June 2021), 2010.
Cox, A. and Saito, M.: Proteomic responses of oceanic Synechococcus WH8102
to phosphate and zinc scarcity and cadmium additions, Front. Microbiol., 4, 387,
https://doi.org/10.3389/fmicb.2013.00387, 2013.
Davey, M., Tarran, G. A., Mills, M. M., Ridame, C., Geider, R. J., and
La Roche, J.: Nutrient limitation of picophytoplankton photosynthesis and
growth in the tropical North Atlantic, Limnol. Oceanogr., 53, 1722–1733,
https://doi.org/10.4319/lo.2008.53.5.1722, 2008.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res.-Oceans, 109,
C12003, https://doi.org/10.1029/2004jc002378, 2004.
Duncombe Rae, C. M.: Agulhas retroflection rings in the South Atlantic
Ocean: An overview, S. Afr. J. Marine Sci., 11, 327–344,
https://doi.org/10.2989/025776191784287574, 1991.
Ellwood, M. J. and Van den Berg, C. M. G.: Zinc speciation in the
Northeastern Atlantic Ocean, Mar. Chem., 68, 295–306,
https://doi.org/10.1016/S0304-4203(99)00085-7, 2000.
Franck, V. M., Bruland, K. W., Hutchins, D. A., and Brzezinski, M. A.: Iron
and zinc effects on silicic acid and nitrate uptake kinetics in three
high-nutrient, low-chlorophyll (HNLC) regions, Mar. Ecol. Prog. Ser., 252,
15–33, https://doi.org/10.3354/meps252015, 2003.
Gilpin, L. C., Davidson, K., and Roberts, E.: The influence of changes in
nitrogen: silicon ratios on diatom growth dynamics, J. Sea Res., 51, 21–35,
https://doi.org/10.1016/j.seares.2003.05.005, 2004.
Gosnell, K. J., Landing, W. M., and Milne, A.: Fluorometric detection of
total dissolved zinc in the southern Indian Ocean, Mar. Chem., 132, 68–76,
https://doi.org/10.1016/j.marchem.2012.01.004, 2012.
Hawco, N. J. and Saito, M. A.: Competitive inhibition of cobalt uptake by
zinc and manganese in a Pacific Prochlorococcus strain: Insights into metal
homeostasis in a streamlined oligotrophic cyanobacterium, Limnol. Oceanogr.,
63, 2229–2249, https://doi.org/10.1002/lno.10935, 2018.
Hawco, N. J., Lam, P. J., Lee, J. M., Ohnemus, D. C., Noble, A. E., Wyatt, N. J., Lohan, M. C., and Saito, M. A.: Cobalt scavenging in the mesopelagic ocean and
its influence on global mass balance: synthesizing water column and
sedimentary fluxes, Mar. Chem., 201, 151–166,
https://doi.org/10.1016/j.marchem.2017.09.001, 2018.
Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., and Wyman, K.: The
elemental composition of some marine phytoplankton, J. Phycol., 39, 1145–1159, https://doi.org/10.1111/j.0022-3646.2003.03-090.x, 2003.
Holm-Hansen, O., Lorenzen, C. J., and Holmes, J. D. H.: Fluorometric
determination of chlorophyll, ICES J. Mar. Sci., 30, 3–15,
https://doi.org/10.1093/icesjms/30.1.3, 1965.
Ito, T., Parekh, P., Dutkiewicz, S., and Follows, M. J.: The Antarctic
circumpolar productivity belt, Geophys. Res. Lett., 32, L13604,
https://doi.org/10.1029/2005gl023021, 2005.
Jakuba, R. W., Moffett, J. W., and Dyhrman, S. T.: Evidence for the linked
biogeochemical cycling of zinc, cobalt, and phosphorus in the western north
Atlantic Ocean, Global Biogeochem. Cy., 22, GB4012,
https://doi.org/10.1029/2007GB003119, 2008.
Jakuba, R. W., Saito, M. A., Moffett, J. W., and Xu, Y.: Dissolved zinc in
the subarctic North Pacific and Bering Sea: Its distribution, speciation,
and importance to primary producers, Global Biogeochem. Cy., 26, GB2015,
https://doi.org/10.1029/2010gb004004, 2012.
Kellogg, M. M., Mcllvin, M. R., Vedamati, J., Twining, B. S., Moffett, J. W.,
Marchetti, A., Moran, D. M., and Saito, M. A.: Efficient zinc/cobalt
inter-replacement in northeast Pacific diatoms and relationship to high
surface dissolved Co:Zn ratios, Limnol. Oceanogr., 9999, 1–26,
https://doi.org/10.1002/lno.11471, 2020.
Lane, T. W. and Morel, F. M. M.: Regulation of carbonic anhydrase
expression by zinc, cobalt, and carbon dioxide in the marine diatom
Thalassiosira weissflogii, Plant Physiol., 123, 345–352,
https://doi.org/10.1104/Pp.123.1.345, 2000.
Largier, J. L., Chapman, P., Peterson, W. T., and Swart, V. P.: The western
Agulhas Bank: circulation, stratification and ecology, S. Afr. J. Marine Sci., 12, 319–339, https://doi.org/10.2989/02577619209504709, 1992.
Leblanc, K., Hare, C. E., Boyd, P. W., Bruland, K. W., Sohst, B., Pickmere,
S., Lohan, M. C., Buck, K., Ellwood, M., and Hutchins, D. A.: Fe and Zn
effects on the Si cycle and diatom community structure in two contrasting
high and low-silicate HNLC areas, Deep-Sea Res. Pt. I, 52, 1842–1864,
https://doi.org/10.1016/j.dsr.2005.06.005, 2005.
Lee, J. G. and Morel, F. M. M.: Replacement of zinc by cadmium in marine
phytoplankton, Mar. Ecol. Prog. Ser., 127, 305–309, https://doi.org/10.3354/Meps127305,
1995.
Little, S. H., Vance, D., McManus, J., and Severmann, S.: Key role of
continental margin sediments in the oceanic mass balance of Zn and Zn
isotopes, Geology, 44, 207–210, https://doi.org/10.1130/G37493.1, 2016.
Lutjeharms, J. R. E.: Three decades of research on the greater Agulhas Current, Ocean Sci., 3, 129–147, https://doi.org/10.5194/os-3-129-2007, 2007.
Lutjeharms, J. R. E. and Cooper, J.: Interbasin leakage through Agulhas
current filaments, Deep-Sea Res. Pt. I, 43, 213–238,
https://doi.org/10.1016/0967-0637(96)00002-7, 1996.
Mackey, M. D., Mackey, D. J., Higgins, H. W., and Wright, S. W.: Chemtax – a
program for estimating class abundances from chemical markers: Application
to HPLC measurements of phytoplankton, Mar. Ecol. Prog. Ser., 144, 265–283,
https://doi.org/10.3354/meps144265, 1996.
Mahaffey, C., Reynolds, S., Davis, C. E., and Lohan, M. C.: Alkaline
phosphatase activity in the subtropical ocean: Insights from nutrient, dust
and trace metal addition experiments, Front. Mar. Sci., 1, 73,
https://doi.org/10.3389/fmars.2014.00073, 2014.
Martiny, A. C., Lomas, M. W., Fu, W., Boyd, P. W., Chen, Y. L., Cutter, G.
A., Ellwood, M. J., Furuya, K., Hashihama, F., Kanda, J., Karl, D. M.,
Kodama, T., Li, Q. P., Ma, J., Moutin, T., Woodward, E. M. S., and Moore, J.
K.: Biogeochemical controls of surface ocean phosphate, Sci. Adv., 5,
eaax0341, https://doi.org/10.1126/sciadv.aax0341, 2019.
McLennan, S. M.: Relationships between the trace element composition of
sedimentary rocks and upper continental crust, Geochem. Geophy. Geosy., 2, 2000GC000109,
https://doi.org/10.1029/2000gc000109, 2001.
Menzel Barraqueta, J.-L., Klar, J. K., Gledhill, M., Schlosser, C., Shelley, R., Planquette, H. F., Wenzel, B., Sarthou, G., and Achterberg, E. P.: Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study, Biogeosciences, 16, 1525–1542, https://doi.org/10.5194/bg-16-1525-2019, 2019.
Middag, R., de Barr, H. J. W., and Bruland, K. W.: The relationships between
dissolved zinc and major nutrients phosphate and silicate along the
GEOTRACES GA02 transect in the western Atlantic Ocean, Global Biogeochem.
Cy., 33, 63–84, doi.org/10.1029/2018GB006034, 2019.
Milne, A. C., Schlosser, C., Wake, B. D., Achterberg, E. P., Chance, R.,
Baker, A. R., Forryan, A., and Lohan, M. C.: Particulate phases are key in
controlling dissolved iron concentrations in the (sub)tropical North
Atlantic, Geophys. Res. Lett., 44, 2377–2387, https://doi.org/10.1002/2016GL072314,
2017.
Moore, C. M.: Diagnosing oceanic nutrient deficiency, Philos. T. R. Soc. A, 374, 20150290, https://doi.org/10.1098/rsta.2015.0290, 2016.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765,
2013.
Moore, J. K. and Abbott, M. R.: Phytoplankton chlorophyll distributions and
primary production in the Southern Ocean, J. Geophys. Res.-Oceans, 105,
28709–28722, https://doi.org/10.1029/1999jc000043, 2000.
Morel, F. M. M.: The co-evolution of phytoplankton and trace element cycles
in the oceans, Geobiology, 6, 318–324, https://doi.org/10.1111/j.1472-4669.2008.00144.x,
2008.
Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee,
J. G., and Yee, D.: Zinc and carbon co-limitation of marine-phytoplankton,
Nature, 369, 740–742, https://doi.org/10.1038/369740a0, 1994.
Noble, A. E., Lamborg, C. H., Ohnemus, D. C., Lam, P. J., Goepfert, T. J., Measures, C. I., Frame, C. H., Casciotti, K. L., DiTullio, G. R., Jennings, J., and Saito, M. A.: Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola Front to the South Atlantic Ocean, Limnol. Oceanogr., 57, 989–1010, https://doi.org/10.4319/lo.2012.57.4.0989, 2012.
Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J., and Saito, M. A.: Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03, Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, 2017.
Nowicki, J. L., Johnson, K. S., Coale, K. H., Elrod, V. A., and Lieberman, S. H.: Determination of zinc in seawater using flow injection analysis with fluorometric detection, Anal. Chem, 66, 2732–2738, https://doi.org/10.1021/ac00089a021, 1994.
Ohnemus, D. C. and Lam, P. J.: Cycling of lithogenic marine particles in
the US GEOTRACES North Atlantic transect, Deep-Sea Res. Pt. II, 116, 283–302, https://doi.org/10.1016/j.dsr2.2014.11.019, 2015.
Ohnemus, D. C., Auro, M. E., Sherrell, R. M., Lagerstrom, M., Morton, P. L.,
Twining, B. S., Rauschenberg, S., and Lam, P. J.: Laboratory intercomparison
of marine particle digestions including Piranha: A novel chemical method for
dissolution of polyethersulfone filters, Limnol. Oceanogr.-Meth., 12,
530–547, https://doi.org/10.4319/lom.2014.12.530, 2014.
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D.: Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation, Biogeosciences, 7, 3549–3568, https://doi.org/10.5194/bg-7-3549-2010, 2010.
Paul, M., van de Flierdt, T., Rehkämper, M., Khondoker, R., Weiss, D.,
Lohan, M. C., and Homoky, W. B.: Tracing the Agulhas leakage with lead
isotopes, Geophys. Res. Lett., 42, 8515–8521, https://doi.org/10.1002/2015gl065625,
2015.
Price, N. M. and Morel, F. M. M.: Cadmium and cobalt substitution for zinc
in a marine diatom, Nature, 344, 658–660, https://doi.org/10.1038/344658a0, 1990.
Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P.: Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry, Anal. Chim. Acta, 976, 1–13, https://doi.org/10.1016/j.aca.2017.05.008, 2017.
Raux, E., Schubert, H. L., and Warren∗, M. J.: Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum, Cell. Mol. Life Sci., 57, 1880–1893, https://doi.org/10.1007/PL00000670, 2000.
Rodionov, D. A., Vitreschak, A. G., Mironov, A. A., and Gelfand, M. S.:
Comparative genomics of the vitamin B12 metabolism and regulation in
prokaryotes, J. Biol. Chem., 278, 41148–41159, https://doi.org/10.1074/jbc.M305837200,
2003.
Roshan, S. and Wu, J.: Cadmium regeneration within the North Atlantic, Global Biogeochem. Cy., 29, 2082–2094, https://doi.org/10.1002/2015GB005215, 2015.
Roshan, S., Wu, J., and Jenkins, W. J.: Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific, Mar. Chem., 183, 25–32, https://doi.org/10.1016/j.marchem.2016.05.005, 2016.
Roshan, S., DeVries, T., Wu, J., and Chen, G.: The internal cycling of zinc in the ocean, Global Biogeochem. Cy., 32, 1833–1849, https://doi.org/10.1029/2018GB006045, 2018.
Saito, M. A. and Goepfert, T. J.: Zinc-cobalt colimitation of Phaeocystis
antarctica, Limnol. Oceanogr., 53, 266–275, https://doi.org/10.4319/lo.2008.53.1.0266,
2008.
Saito, M. A., Moffett, J. W., Chisholm, S. W., and Waterbury, J. B.: Cobalt
limitation and uptake in Prochlorococcus, Limnol. Oceanogr., 47, 1629–1636,
https://doi.org/10.4319/lo.2002.47.6.1629, 2002.
Saito, M. A., Rocap, G., and Moffett, J. W.: Production of cobalt binding
ligands in a Synechococcus feature at the Costa Rica upwelling dome, Limnol.
Oceanogr., 50, 279–290, https://doi.org/10.4319/lo.2005.50.1.0279, 2005.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and DiTullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P, Biogeosciences, 7, 4059–4082, https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., Noble, A. E., Hawco, N., Twining, B. S., Ohnemus, D. C., John, S. G., Lam, P., Conway, T. M., Johnson, R., Moran, D., and McIlvin, M.: The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean, Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, 2017.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/Nature02127, 2004.
Schlitzer, R., Anderson, R. F., Dodas, E. M., et al.: The GEOTRACES intermediate data product 2017, Chem. Geol., 493, 210–223, https://doi.org/10.1016/j.chemgeo.2018.05.040, 2018.
Shaked, Y., Xu, Y., Leblanc, K., and Morel, F. M. M.: Zinc availability and
alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P
co-limitation in the ocean, Limnol. Oceanogr., 51, 299–309,
https://doi.org/10.4319/lo.2006.51.1.0299, 2006.
Shelley, R. U., Zachhuber, B., Sedwick, P. N., Worsfold, P. J., and Lohan, M. C.: Determination of total dissolved cobalt in uv-irradiated seawater using flow injection with chemiluminescence detection, Limnol. Oceanogr-Meth., 8, 352–362, https://doi.org/10.4319/lom.2010.8.352, 2010.
Sunda, W. G. and Huntsman, S. A.: Feedback interactions between zinc and
phytoplankton in seawater, Limnol. Oceanogr., 37, 25–40,
https://doi.org/10.4319/lo.1992.37.1.0025 1992.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in
marine phytoplankton: biological and geochemical implications, Limnol.
Oceanogr., 40, 1404–1417, https://doi.org/10.4319/lo.1995.40.8.1404, 1995.
Tagliabue, A., Hawco, N. J., Bundy, R. M., Landing, W. M., Milne, A.,
Morton, P. L., and Saito, M. A.: The role of external inputs and internal
cycling in shaping the global ocean cobalt distribution: insights from the
first cobalt biogeochemical model, Global Biogeochem. Cy., 32, 594-616,
https://doi.org/10.1002/2017gb005830, 2018.
Twining, B. S. and Baines, S. B.: The trace metal composition of marine
phytoplankton, Annu. Rev. Mar. Sci., 5, 191–215,
https://doi.org/10.1146/annurev-marine-121211-172322, 2013.
Vance, D., Little, S. H., de Souza, G. F., Khatiwala, S., Lohan, M. C., and
Middag, R.: Silicon and zinc biogeochemical cycles coupled through the
Southern Ocean, Nat. Geosci., 10, 202–206, https://doi.org/10.1038/ngeo2890, 2017.
Weber, T., John, S., Tagliabue, A., and De Vries, T.: Biological uptake and
reversible scavenging of zinc in the global ocean, Science, 361, 72–76,
https://doi.org/10.1126/science.aap8532, 2018.
Woodward, E. M. S. and Rees, A. P.: Nutrient distributions in an
anticyclonic eddy in the northeast Atlantic Ocean, with reference to
nanomolar ammonium concentrations, Deep-Sea Res. Pt. II, 48, 775–793,
https://doi.org/10.1016/S0967-0645(00)00097-7, 2001.
Worsfold, P. J., Achterberg, E. P., Birchill, A. J., Clough, R., Leito, I., Lohan, M. C., Milne, A., and Ussher, S. J.: Estimating uncertainties in oceanographic trace element measurements, Front. Mar. Sci., 5, 515, https://doi.org/10.3389/fmars.2018.00515, 2019.
Wu, J. F., Sunda, W., Boyle, E. A., and Karl, D. M.: Phosphate depletion in
the western North Atlantic Ocean, Science, 289, 759–762,
https://doi.org/10.1126/science.289.5480.759, 2000.
Wyatt, N. J., Milne, A., Woodward, E. M. S., Rees, A. P., Browning, T. J.,
Bouman, H. A., Worsfold, P. J., and Lohan, M. C.: Biogeochemical cycling of
dissolved zinc along the GEOTRACES South Atlantic transect GA10 at
40∘ S, Global Biogeochem. Cy., 28, 44–56,
https://doi.org/10.1002/2013gb004637, 2014.
Xu, Y., Tang, D., Shaked, Y., and Morel, F. M. M.: Zinc, cadmium, and cobalt
interreplacement and relative use efficiencies in the coccolithophore
Emiliania huxleyi, Limnol. Oceanogr., 52, 2294–2305,
https://doi.org/10.4319/lo.2007.52.5.2294, 2007.
Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H., and Amann, R.:
High rate of uptake of organic nitrogen compounds by Prochlorococcus
cyanobacteria as a key to their dominance in oligotrophic oceanic waters,
Appl. Environ. Microb., 69, 1299–1304, https://doi.org/10.1128/aem.69.2.1299-1304.2003,
2003.
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the...
Altmetrics
Final-revised paper
Preprint