Articles | Volume 18, issue 14
https://doi.org/10.5194/bg-18-4445-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4445-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations
Department of Earth Sciences, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Ype van der Velde
Department of Earth Sciences, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Florian Hofhansl
Biodiversity, Ecology, and Conservation Research Group, International Institute for Applied Systems Analysis (IIASA),
Laxenburg, Austria
Sebastiaan Luyssaert
Department of Ecological Science, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Kim Naudts
Department of Earth Sciences, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Bart Driessen
Department of Computer Science, Universidad de Alcalá de Henares,
Madrid, Spain
Katrin Fleischer
Department of Biogeochemical Signals, Max Planck Institute for
Biogeochemistry, Jena, Germany
Han Dolman
Department of Earth Sciences, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Related authors
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Hong Zhao, Han Dolman, Jan Elbers, Wilma Jans, Bart Kruijt, Eddy Moors, Henk Snellen, Jordi Vila-Guerau de Arellano, Wouter Peters, Maarten Krol, Ronald Hutjes, and Michiel van der Molen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-372, https://doi.org/10.5194/essd-2025-372, 2025
Preprint under review for ESSD
Short summary
Short summary
Under the Kyoto Protocol the carbon dioxide (CO2) balance for forest ecosystems was required to be measured. Consequently, CO2 flux measurements have been conducted in Loobos site in the Netherlands since 1996, becoming one of the 17 first FLUXNET sites globally. This paper provides a comprehensive overview of the instrumentation, data processing and the resulting data archive, enabling its further use in data analysis, model development and validation of satellite data retrievals.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
Biogeosciences, 22, 3867–3898, https://doi.org/10.5194/bg-22-3867-2025, https://doi.org/10.5194/bg-22-3867-2025, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTDs) by 4.6 tons of CO2 per hectare per year for each 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, Ricardo Dalagnol, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025, https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of the Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to use in refining global carbon cycle models.
Helena Vallicrosa, Katrin Fleischer, Manuel Delgado-Baquerizo, Marcos Fernández-Martínez, Jakub Černý, Di Tian, Angeliki Kourmouli, Carolina Mayoral, Diego Grados, Mingzhen Lu, and César Terrer
Earth Syst. Dynam., 16, 1183–1196, https://doi.org/10.5194/esd-16-1183-2025, https://doi.org/10.5194/esd-16-1183-2025, 2025
Short summary
Short summary
We used field empirical data worldwide to calculate plant nitrogen uptake (Nup) and nitrogen use efficiency (NUE) in woodlands and grasslands to determine their drivers which can be used as empirical validation for models. Even though some regions of the world have decreased their N deposition, N deposition is still the most important driver explaining plant nitrogen uptake, aside from climatic variables. NUE is mainly driven by soil factors.
Espoir Koudjo Gaglo, Emeline Chaste, Sebastiaan Luyssaert, Olivier Roupsard, Christophe Jourdan, Sidy Sow, Nadeige Vandewalle, Frédéric Do, Daouda Ngom, and Aude Valade
EGUsphere, https://doi.org/10.5194/egusphere-2025-1102, https://doi.org/10.5194/egusphere-2025-1102, 2025
Short summary
Short summary
Agroforestry in the Sahel help store carbon and support food production, but land surface models struggle to capture their dynamics. We adapted the ORCHIDEE model to simulate Faidherbia albida, a tree that taps deep groundwater. This work highlights the need to integrate deep water uptake in land surface models for groundwater-dependent ecosystems, as it could enhance predictions, helping to sustain agroforestry in a changing climate.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Alexa Marion Hinzman, Ylva Sjöberg, Steve W. Lyon, Wouter R. Berghuijs, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2023-2391, https://doi.org/10.5194/egusphere-2023-2391, 2023
Preprint archived
Short summary
Short summary
An Arctic catchment with permafrost responds in a linear fashion: water in=water out. As permafrost thaws, 9 of 10 nested catchments become more non-linear over time. We find upstream catchments have stronger streamflow seasonality and exhibit the most nonlinear storage-discharge relationships. Downstream catchments have the greatest increases in non-linearity over time. These long-term shifts in the storage-discharge relationship are not typically seen in current hydrological models.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022, https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Tanya Juliette Rebecca Lippmann, Monique Heijmans, Han Dolman, Ype van der Velde, Dimmie Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-143, https://doi.org/10.5194/gmd-2022-143, 2022
Preprint withdrawn
Short summary
Short summary
To assess the impact of vegetation on GHG fluxes in peatlands, we developed a new model, Peatland-VU-NUCOM (PVN). These results showed that plant communities impact GHG emissions, indicating that plant community re-establishment is a critical component of peatland restoration. This is the first time that a peatland emissions model investigated the role of re-introducing peat forming vegetation on GHG emissions.
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Tiexi Chen, Renjie Guo, Qingyun Yan, Xin Chen, Shengjie Zhou, Chuanzhuang Liang, Xueqiong Wei, and Han Dolman
Biogeosciences, 19, 1515–1525, https://doi.org/10.5194/bg-19-1515-2022, https://doi.org/10.5194/bg-19-1515-2022, 2022
Short summary
Short summary
Currently people are very concerned about vegetation changes and their driving factors, including natural and anthropogenic drivers. In this study, a general browning trend is found in Syria during 2001–2018, indicated by the vegetation index. We found that land management caused by social unrest is the main cause of this browning phenomenon. The mechanism initially reported here highlights the importance of land management impacts at the regional scale.
Yousef Albuhaisi, Ype van der Velde, and Sander Houweling
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-55, https://doi.org/10.5194/bg-2022-55, 2022
Manuscript not accepted for further review
Short summary
Short summary
An important uncertainty in the modelling of methane emissions from natural wetlands is the wetland area. It is important to get the spatiotemporal covariance between the variables that drive methane emissions right for accurate quantification. Using high-resolution wetland and soil carbon maps, in combination with a simplified methane emission model that is coarsened in six steps from 0.005° to 1°, we find a strong relation between wetland emissions and the model resolution.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Cited articles
Albert, L. P., Wu, J., Prohaska, N., de Camargo, P. B., Huxman, T. E.,
Tribuzy, E. S., Ivanov, V. Y., Oliveira, R. S., Garcia, S., Smith, M. N.,
Oliveira Junior, R. C., Restrepo-Coupe, N., da Silva, R., Stark, S. C.,
Martins, G. A., Penha, D. V., and Saleska, S. R.: Age-dependent leaf
physiology and consequences for crown-scale carbon uptake during the dry
season in an Amazon evergreen forest, New Phytol., 219, 870–884,
https://doi.org/10.1111/nph.15056, 2018.
Andela, N., Liu, Y. Y., M. Van Dijk, A. I. J., De Jeu, R. A. M., and McVicar,
T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by
satellite remote sensing: Comparing a new passive microwave vegetation
density record with reflective greenness data, Biogeosciences, 10,
6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Anderson, L. O., Malhi, Y., Aragão, L. E. O. C., Ladle, R., Arai, E.,
Barbier, N., and Phillips, O.: Remote sensing detection of droughts in
Amazonian forest canopies, New Phytol., 187, 733–750,
https://doi.org/10.1111/j.1469-8137.2010.03355.x, 2010.
Anderson, L. O., Neto, G. R., Cunha, A. P., Fonseca, M. G., De Moura, Y. M.,
Dalagnol, R., Wagner, F. H., and De Aragão, L. E. O. E. C.: Vulnerability of Amazonian forests to repeated droughts, Philos. T. R. Soc. B, 373, 20170411, https://doi.org/10.1098/rstb.2017.0411, 2018.
Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E.,
Jiménez, E., Navarrete, D., Almeida, S., Costa, A. C. L., Salinas, N.,
Phillips, O. L., Anderson, L. O., Baker, T. R., Goncalvez, P. H.,
Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A.,
Peñuela, M. C., Prieto, A., Quesada, C. A., Rozas-Dávila, A., Rudas,
A., Silva Junior, J. A., and Vásquez, R.: Above- and below-ground net
primary productivity across ten Amazonian forests on contrasting soils,
Biogeosciences, 6, 2441–2488, https://doi.org/10.5194/bgd-6-2441-2009, 2009.
Asner, G. P. and Alencar, A.: Drought impacts on the Amazon forest: The
remote sensing perspective, New Phytol., 187, 569–578,
https://doi.org/10.1111/j.1469-8137.2010.03310.x, 2010.
Asner, G. P., Townsend, A. R., and Braswell, B. H.: Satellite observation of
El Niiio effects on Amazon forest, Geophys. Res. Lett., 27, 981–984,
2000.
Baker, T. R., Affum-Baffoe, K., Burslem, D. F. R. P., and Swaine, M. D.:
Phenological differences in tree water use and the timing of tropical forest
inventories: Conclusions from patterns of dry season diameter change, Forest
Ecol. Manag., 171, 261–274, https://doi.org/10.1016/S0378-1127(01)00787-3, 2002.
Banin, L., Lewis, S. L., Lopez-Gonzalez, G., Baker, T. R., Quesada, C. A.,
Chao, K. J., Burslem, D. F. R. P., Nilus, R., Abu Salim, K., Keeling, H. C.,
Tan, S., Davies, S. J., Monteagudo Mendoza, A., Vásquez, R., Lloyd, J.,
Neill, D. A., Pitman, N., and Phillips, O. L.: Tropical forest wood
production: A cross-continental comparison, J. Ecol., 102, 1025–1037,
https://doi.org/10.1111/1365-2745.12263, 2014.
Batista, G. T., Shimabukuro, Y. E., and Lawrence, W. T.: The long-term
monitoring of vegetation cover in the Amazonian region of northern Brazil
using NOAA-AVHRR data, Int. J. Remote Sens., 18, 3195–3210,
https://doi.org/10.1080/014311697217044, 1997.
Bischl, B., Lang, M., Kotthoff, L., Schratz, P., Schiffner, J., Richter, J.,
Jones, Z., and Al., E.: Machine Learning in R, available at:
https://mlr.mlr-org.com (last access: 28 April 2021), 2020.
Boisier, J. P., Ciais, P., Ducharne, A., and Guimberteau, M.: Projected
strengthening of Amazonian dry season by constrained climate model
simulations, Nat. Clim. Change, 5, 656–660, https://doi.org/10.1038/nclimate2658,
2015.
Bonal, D., Sabatier, D., Montpied, P., Tremeaux, D., and Guehl, J.-M.:
Interspecific variability of δ13C among trees in rainforests of
French Guiana: functional groups and canopy integration, Oecologia, 124,
454–468, https://doi.org/10.1007/pl00008871, 2000a.
Bonal, D., Barigah, T. S., Granier, A., and Guehl, J. M.: Late-stage canopy
tree species with extremely low δ13C and high stomatal sensitivity
to seasonal soil drought in the tropical rainforest of French Guiana, Plant
Cell Environ., 23, 445–459, https://doi.org/10.1046/j.1365-3040.2000.00556.x, 2000b.
Bonal, D., Atger, C., Barigah, T. S., Ferhi, A. A. A., Guehl, J.-M. M.,
Ferry, B., Atger, C., Barigah, T. S., Bonal, D., Guehl, J.-M. M., Ferry, B.,
Atger, C., Barigah, T. S., Ferhi, A. A. A., Guehl, J.-M. M., and Ferry, B.:
Water acquisition patterns of two wet tropical canopy tree species of French
Guiana as inferred from (H2O)-O-18 extraction profiles, Ann. For. Sci.,
57, 717–724, https://doi.org/10.1051/forest:2000152, 2000c.
Bonal, D., Bosc, A., Ponton, S., Goret, J. Y., Burban, B. T., Gross, P.,
Bonnefond, J. M., Elbers, J., Longdoz, B., Epron, D., Guehl, J. M., and
Granier, A.: Impact of severe dry season on net ecosystem exchange in the
Neotropical rainforest of French Guiana, Glob. Change Biol., 14,
1917–1933, https://doi.org/10.1111/j.1365-2486.2008.01610.x, 2008.
Borchert, R.: Water status and development of tropical trees during seasonal
drought, Trees, 8, 115–125, https://doi.org/10.1007/BF00196635, 1994.
Borchert, R., Rivera, G., and Hagnauer, W.: Modification of vegetative
phenology in a tropical semi-deciduous forest by abnormal drought and rain,
Biotropica, 34, 27–39, https://doi.org/10.1111/j.1744-7429.2002.tb00239.x, 2002.
Borchert, R., Calle, Z., Strahler, A. H., Baertschi, A., Magill, R. E.,
Broadhead, J. S., Kamau, J., Njoroge, J., and Muthuri, C.: Insolation and
photoperiodic control of tree development near the equator, New Phytol.,
205, 7–13, https://doi.org/10.1111/nph.12981, 2015.
Brum, M., López, J. G., Asbjornsen, H., Licata, J., Pypker, T., Sanchez,
G., and Oiveira, R. S.: ENSO effects on the transpiration of eastern Amazon trees, Philos. T. R. Soc. B, 373, 20180085,
https://doi.org/10.1098/rstb.2018.0085, 2018.
Brum, M., Vadeboncoeur, M. A., Ivanov, V., Asbjornsen, H., Saleska, S.,
Alves, L. F., Penha, D., Dias, J. D., Aragão, L. E. O. C., Barros, F.,
Bittencourt, P., Pereira, L., and Oliveira, R. S.: Hydrological niche
segregation defines forest structure and drought tolerance strategies in a
seasonal Amazon forest, J. Ecol., 107, 318–333,
https://doi.org/10.1111/1365-2745.13022, 2019.
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R.,
Fazayeli, F., Banerjee, A., Atkin, O. K., Kattge, J., Amiaud, B., Blonder,
B., Boenisch, G., Bond-Lamberty, B., Brown, K. A., Byun, C., Campetella, G.,
Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., Craven, D., de
Vries, F. T., Díaz, S., Domingues, T. F., Forey, E., González-Melo,
A., Gross, N., Han, W., Hattingh, W. N., Hickler, T., Jansen, S., Kramer,
K., Kraft, N. J. B., Kurokawa, H., Laughlin, D. C., Meir, P., Minden, V.,
Niinemets, Ü., Onoda, Y., Peñuelas, J., Read, Q., Sack, L., Schamp,
B., Soudzilovskaia, N. A., Spasojevic, M. J., Sosinski, E., Thornton, P. E.,
Valladares, F., van Bodegom, P. M., Williams, M., Wirth, C., and Reich, P.
B.: Mapping local and global variability in plant trait distributions, P.
Natl. Acad. Sci. USA, 114, E10937–E10946, https://doi.org/10.1073/pnas.1708984114, 2017.
Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L. E. O.
C., Bonal, D., Châtelet, P., Silva-Espejo, J. E., Goret, J. Y., Von
Hildebrand, P., Jiménez, E., Patiño, S., Peñuela, M. C.,
Phillips, O. L., Stevenson, P., and Malhi, Y.: Regional and seasonal patterns
of litterfall in tropical South America, Biogeosciences, 7, 43–55,
https://doi.org/10.5194/bg-7-43-2010, 2010.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785–794, 2016.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K.,
Mitchel, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li,
Y.: Extreme Gradient Boosting, Packag. “xgboost”, available at: https://cran.r-project.org/web/packages/xgboost/index.html (last access: 19 July 2020),
https://doi.org/10.1145/2939672.2939785, 2020.
Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B.: Tropical rain
forest tree growth and atmospheric carbon dynamics linked to interannual
temperature variation during 1984–2000, P. Natl. Acad. Sci. USA, 100,
5852–5857, https://doi.org/10.1073/pnas.0935903100, 2003.
Cox, P. M., Harris, P. P., Huntingford, C., Betts, R. A., Collins, M.,
Jones, C. D., Jupp, T. E., Marengo, J. A., and Nobre, C. A.: Increasing risk
of Amazonian drought due to decreasing aerosol pollution, Nature, 453,
212–215, https://doi.org/10.1038/nature06960, 2008.
Dessay, N., Laurent, H., Machado, L. A. T., Shimabukuro, Y. E., Batista, G.
T., Diedhiou, A., and Ronchail, J.: Comparative study of the 1982–1983 and
1997–1998 El Nino events over different types of vegetation in South
America, Int. J. Remote Sens., 25, 4063–4077,
https://doi.org/10.1080/0143116031000101594, 2004.
Detto, M., Wright, S. J., Calderón, O., and Muller-Landau, H. C.:
Resource acquisition and reproductive strategies of tropical forest in
response to the El Niño-Southern Oscillation, Nat. Commun., 9, 1–8,
https://doi.org/10.1038/s41467-018-03306-9, 2018.
Dias, D. P. and Marenco, R. A.: Tree growth, wood and bark water content of
28 Amazonian tree species in response to variations in rainfall and wood
density, IForest, 9, 445–451, https://doi.org/10.3832/ifor1676-008, 2016.
Didan, K.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006 [Data set], NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13C2.006 (last access: 19 July 2021), 2015.
Doughty, C. E. and Goulden, M. L.: Seasonal patterns of tropical forest leaf
area index and CO2 exchange, J. Geophys. Res.-Biogeo., 114,
G1, https://doi.org/10.1029/2007JG000590, 2009.
Doughty, C. E., Malhi, Y., Araujo-murakami, A., Metcalfe, D. B.,
Silva-Espejo, J. E., Arroyo, L., Heredia, J. P., Pardo-Toledo, E.,
Mendizabal, L. M., Rojas-Landivar, V. D., Vega-Martinez, M.,
Flores-Valencia, M., Sibler-Rivero, R., Moreno-Vare, L., Jessica Viscarra,
L., Chuviru-Castro, T., Osinaga-Becerra, M., Ledezma, R., Javier, E.,
Arroyo, L., Heredia, J. P., Pardo-Toledo, E., Mendizabal, L. M., and Victor,
D.: Allocation trade-offs dominate the response of tropical forest growth to
seasonal and interannual drought, Ecology, 95, 1–6,
https://doi.org/10.1890/13-1507.1, 2014.
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amézquita, F. F.,
Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., da
Costa, M. C., Rocha, W., Feldpausch, T. R., Mendoza, A. L. M., da Costa, A.
C. L., Meir, P., Phillips, O. L., and Malhi, Y.: Drought impact on forest
carbon dynamics and fluxes in Amazonia, Nature, 519, 78–82,
https://doi.org/10.1038/nature14213, 2015a.
Doughty, C. E., Metcalfe, D. B., Girardin, C. a J., Amezquita, F. F.,
Durand, L., Huasco, W. H., Costa, M. C., Costa, a C. L., Rocha, W., Meir,
P., Galbraith, D., and Malhi, Y.: Source and sink carbon dynamics and carbon
allocation in the Amazon basin, Global Biogeochem. Cy., 29, 1–11,
https://doi.org/10.1002/2014GB005028, 2015b.
Elliott, S., Baker, P. J., and Borchert, R.: Leaf flushing during the dry
season: the paradox of Asian monsoon forests, Glob. Ecol. Biogeogr., 15,
248–257, https://doi.org/10.1111/j.1466-822x.2006.00213.x, 2006.
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X., and Xiang,
Y.: Evaluation of SVM, ELM and four tree-based ensemble models for
predicting daily reference evapotranspiration using limited meteorological
data in different climates of China, Agr. Forest Meteorol., 263,
225–241, https://doi.org/10.1016/j.agrformet.2018.08.019, 2018.
Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J.,
Malhi, Y., Alarcón, A., Dávila, E. Á., Andrade, A., Aragao, L.
E. O. C., Arroyo, L., Aymard, G. A. C., Baker, T. R., Baraloto, C., Barroso,
J., Bonal, D., Castro, W., Chama, V., Chave, J., Domingues, T. F., Fauset,
S., Groot, N., Coronado, E. H., Laurance, S., Laurance, W. F., Lewis, S. L.,
Licona, J. C., Marimon, B. S., Bautista, C. M., Neill, D. A., Oliveira, E.
A., Santos, C. O., Camacho, N. C. P., Prieto, A., Quesada, C. A.,
Ramírez, F., Rudas, A., Saiz, G., Salomão, R. P., Silveira, M.,
Steege, H., Stropp, J., Terborgh, J., Heijden, G. M. F., Martinez, R. V.,
Vilanova, E., and Vos, V. A.: Amazon forest response to repeated droughts,
Global Biogeochem. Cy., 30, 964–982,
https://doi.org/10.1002/2015GB005133.Received, 2016.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Frappart, F., Wigneron, J. P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Lafkih, Z. A., Vallé, C., Ygorra, B., and
Baghdadi, N.: Global monitoring of the vegetation dynamics from the
vegetation optical depth (VOD): A review, Remote Sens., 12, 7–10,
https://doi.org/10.3390/RS12182915, 2020.
Frolking, S., Milliman, T., Palace, M., Wisser, D., Lammers, R., and
Fahnestock, M.: Tropical forest backscatter anomaly evident in SeaWinds
scatterometer morning overpass data during 2005 drought in Amazonia, Remote
Sens. Environ., 115, 897–907, https://doi.org/10.1016/j.rse.2010.11.017, 2011.
Frolking, S., Hagen, S., Braswell, B., Milliman, T., Herrick, C., Peterson,
S., Roberts, D., Keller, M., and Palace, M.: Evaluating multiple causes of
persistent low microwave backscatter from Amazon forests after the 2005
drought, PLoS One, 12, 1–22, https://doi.org/10.1371/journal.pone.0183308, 2017.
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L.,
Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.:
Increased dry-season length over southern Amazonia in recent decades and its
implication for future climate projection, P. Natl. Acad. Sci. USA, 110,
18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013.
Gao, X., Huete, A. R., Ni, W., and Miura, T.: Optical-biophysical
relationships of vegetation spectra without background contamination, Remote
Sens. Environ., 74, 609–620, https://doi.org/10.1016/S0034-4257(00)00150-4, 2000.
Girardin, C. A., Malhi, Y., Doughty, C. E., Metcalfe, D. B., Meir, P., del Aguila‐Pasquel, J., Araujo‐Murakami, A., Da Costa, A. C., Silva‐Espejo, J. E., Farfan Amézquita, F., and Rowland, L.: Seasonal trends of Amazonian
rainforest phenology, net primary productivity, and carbon allocation,
Global Biogeochem. Cy., 30, 700–715,
https://doi.org/10.1002/2015GB005270.Received, 2016.
Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R.,
Schöngart, J., Guyot, J. L., Espinoza, J. C., Lloyd, J., and Phillips, O.
L.: Intensification of the Amazon hydrological cycle over the last two
decades, Geophys. Res. Lett., 40, 1729–1733, https://doi.org/10.1002/grl.50377,
2013.
Gonçalves, N. B., Lopes, A. P., Dalagnol, R., Wu, J., Pinho, D. M., and
Nelson, B. W.: Both near-surface and satellite remote sensing confirm
drought legacy effect on tropical forest leaf phenology after 2015/2016 ENSO
drought, Remote Sens. Environ., 237, 111489,
https://doi.org/10.1016/j.rse.2019.111489, 2020.
Guyon, I. and Elisseeff, A.: An Introduction to Variable and Feature
Selection Isabelle, J. Mach. Learn. Res., 3, 1157–1182, 2003.
Hansen, M. and Song, X.: Vegetation Continuous Fields (VCF) Yearly Global 0.05 Deg [Data set], NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001 (last access: 19 July 2021), 2018.
Heineman, K. D., Caballero, P., Morris, A., Velasquez, C., Serrano, K.,
Ramos, N., Gonzalez, J., Mayorga, L., Corre, M. D., and Dalling, J. W.:
Variation in canopy litterfall along a precipitation and soil fertility
gradient in a panamanian lower montane forest, Biotropica, 47, 300–309,
https://doi.org/10.1111/btp.12214, 2015.
Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M.
G., Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J.,
Tamene, L., and Tondoh, J. E.: Mapping Soil Properties of Africa at 250 m
Resolution: Random Forests Significantly Improve Current Predictions, PLoS
One, 10, e0125814, https://doi.org/10.1371/journal.pone.0125814, 2015.
Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS one, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hofhansl, F., Kobler, J., Ofner, J., Drage, S., Pölz, E. M., and Wanek,
W.: Sensitivity of tropical forest aboveground productivity to climate
anomalies in SW Costa Rica, Global Biogeochem. Cy., 28, 1437–1454,
https://doi.org/10.1002/2014GB004934, 2014.
Hofhansl, F., Org Schnecker, J., Singer, G., and Wanek, W.: New insights into
mechanisms driving carbon allocation in tropical forests, New Phytol., 205,
137–146, https://doi.org/10.1111/nph.13007, 2015.
Hofhansl, F., Andersen, K. M., Fleischer, K., Fuchslueger, L., Rammig, A.,
Schaap, K. J., Valverde-Barrantes, O. J., and Lapola, D. M.: Amazon Forest
Ecosystem Responses to Elevated Atmospheric CO2 and Alterations in Nutrient
Availability: Filling the Gaps with Model-Experiment Integration, Front.
Earth Sci., 4, 1–9, https://doi.org/10.3389/feart.2016.00019, 2016.
Hofhansl, F., Chacón-Madrigal, E., Fuchslueger, L., Jenking, D.,
Morera-Beita, A., Plutzar, C., Silla, F., Andersen, K. M., Buchs, D. M.,
Dullinger, S., Fiedler, K., Franklin, O., Hietz, P., Huber, W., Quesada, C.
A., Rammig, A., Schrodt, F., Vincent, A. G., Weissenhofer, A., and Wanek, W.:
Climatic and edaphic controls over tropical forest diversity and vegetation
carbon storage, Sci. Rep., 10, 1–11, https://doi.org/10.1038/s41598-020-61868-5,
2020.
Holm, J. A., Knox, R. G., Zhu, Q., Fisher, R. A., Koven, C. D., Nogueira
Lima, A. J., Riley, W. J., Longo, M., Negrón-Juárez, R. I., de
Araujo, A. C., Kueppers, L. M., Moorcroft, P. R., Higuchi, N., and Chambers,
J. Q.: The Central Amazon Biomass Sink Under Current and Future Atmospheric
CO2: Predictions From Big-Leaf and Demographic Vegetation Models, J.
Geophys. Res.-Biogeo., 125, 1–23, https://doi.org/10.1029/2019JG005500, 2020.
Huete, A., Didan, K., Shimabokuro, Y., Ferreira, L., and Rodriguez, E.:
Regional amazon basin and global analyses of MODIS vegetation indices: Early
results and comparisons with AVHRR, in: International Geoscience and Remote
Sensing Symposium (IGARSS), 2, 536–538, 2000.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-D, 1991.
Janssen, T.: Replication Data for: Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest; reconciling remote sensing data and field observations, DataverseNL [data set], https://doi.org/10.34894/LY77IN, 2021.
Janssen, T., Fleischer, K., Luyssaert, S., Naudts, K., and Dolman, H.:
Drought resistance increases from the individual to the ecosystem level in
highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and
ecosystem responses to drought, Biogeosciences, 17, 2621–2645,
https://doi.org/10.5194/bg-17-2621-2020, 2020a.
Janssen, T. A. J., Hölttä, T., Fleischer, K., Naudts, K., and Dolman,
A. H.: Wood allocation trade-offs between fiber wall, fiber lumen and axial
parenchyma drive drought resistance in neotropical trees, Plant. Cell
Environ., 43, 965–980, https://doi.org/10.1111/pce.13687, 2020b.
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J.,
Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and
Schrier, G. van der: Record-breaking warming and extreme drought in the
Amazon rainforest during the course of El Niño 2015–2016, Sci. Rep., 6,
33130, https://doi.org/10.1038/srep33130, 2016.
Jones, M. O., Jones, L. A., Kimball, J. S., and McDonald, K. C.: Satellite
passive microwave remote sensing for monitoring global land surface
phenology, Remote Sens. Environ., 115, 1102–1114,
https://doi.org/10.1016/j.rse.2010.12.015, 2011.
Jones, M. O., Kimball, J. S., and Nemani, R. R.: Asynchronous Amazon forest
canopy phenology indicates adaptation to both water and light availability,
Environ. Res. Lett., 9, 124021, https://doi.org/10.1088/1748-9326/9/12/124021, 2014.
Kitajima, K., Mulkey, S. S., Samaniego, M., and Wright, S. J.: Decline of
photosynthetic capacity with leaf age and position in two tropical pioneer
tree species, Am. J. Bot., 89, 1925–1932, https://doi.org/10.3732/ajb.89.12.1925,
2002.
Koren, G., Van Schaik, E., Araújo, A. C., Boersma, K. F., Gärtner,
A., Killaars, L., Kooreman, M. L., Kruijt, B., Van Der Laan-Luijkx, I. T.,
Von Randow, C., Smith, N. E., and Peters, W.: Widespread reduction in
sun-induced fluorescence from the Amazon during the 2015/2016 El Niño,
Philos. T. R. Soc. B, 373, 20170408, https://doi.org/10.1098/rstb.2017.0408,
2018.
Körner, C. and Basel, M. L.: Growth Controls Photosynthesis – Mostly,
Nov. Acta Leopoldina, 283, 273–283, 2013.
Lapola, D. M., Oyama, M. D., and Nobre, C. A.: Exploring the range of climate
biome projections for tropical South America: The role of CO2 fertilization
and seasonality, Global Biogeochem. Cy., 23, 1–16,
https://doi.org/10.1029/2008GB003357, 2009.
Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L.,
Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley,
G., and Saatchi, S.: Forest productivity and water stress in Amazonia:
observations from GOSAT chlorophyll fluorescence, Proc. R. Soc. B, 280, 20130171, https://doi.org/10.1098/rspb.2013.0171, 2013.
Liu, X., Zeng, X., Zou, X., González, G., Wang, C., and Yang, S.:
Litterfall production prior to and during Hurricanes Irma and Maria in four
puerto Rican forests, Forests, 9, 367, https://doi.org/10.3390/f9060367, 2018a.
Liu, Y., de Jeu, R. A. M., van Dijk, A. I. J. M., and Owe, M.: TRMM-TMI
satellite observed soil moisture and vegetation density (1998-2005) show
strong connection with El Niño in eastern Australia, Geophys. Res.
Lett., 34, 15, https://doi.org/10.1029/2007GL030311, 2007.
Liu, Y. Y., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P., and de Jeu,
R. A. M.: Global vegetation biomass change (1988–2008) and attribution to
environmental and human drivers, Glob. Ecol. Biogeogr., 22, 692–705,
https://doi.org/10.1111/geb.12024, 2013.
Liu, Y. Y., van Dijk, A. I. J. M. J. M., de Jeu, R. A. M. M., Canadell, J.
G., McCabe, M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of
global terrestrial biomass, Nat. Clim. Change, 5, 470–474,
https://doi.org/10.1038/nclimate2581, 2015.
Liu, Y. Y., van Dijk, A. I. J. M., Miralles, D. G., McCabe, M. F., Evans, J.
P., de Jeu, R. A. M., Gentine, P., Huete, A., Parinussa, R. M., Wang, L.,
Guan, K., Berry, J., and Restrepo-Coupe, N.: Enhanced canopy growth precedes
senescence in 2005 and 2010 Amazonian droughts, Remote Sens. Environ.,
211, 26–37, https://doi.org/10.1016/j.rse.2018.03.035, 2018b.
Malhi, Y., Aragão, L. E. O. C., Metcalfe, D. B., Paiva, R., Quesada, C.
A., Almeida, S., Anderson, L., Brando, P., Chambers, J. Q., da Costa, A. C.
L., Hutyra, L. R., Oliveira, P., Patiño, S., Pyle, E. H., Robertson, A.
L., and Teixeira, L. M.: Comprehensive assessment of carbon productivity,
allocation and storage in three Amazonian forests, Glob. Change Biol.,
15, 1255–1274, https://doi.org/10.1111/j.1365-2486.2008.01780.x, 2009a.
Malhi, Y., Aragao, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R.,
Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the
likelihood and mechanism of a climate-change-induced dieback of the Amazon
rainforest, P. Natl. Acad. Sci. USA, 106, 20610–20615,
https://doi.org/10.1073/pnas.0804619106, 2009b.
Maréchaux, I., Bonal, D., Bartlett, M. K., Burban, B., Coste, S.,
Courtois, E. A., Dulormne, M., Goret, J.-Y. Y., Mira, E., Mirabel, A., Sack,
L., Stahl, C., and Chave, J.: Dry-season decline in tree sapflux is
correlated with leaf turgor loss point in a tropical rainforest, Funct.
Ecol., 32, 2285–2297, https://doi.org/10.1111/1365-2435.13188, 2018.
Marengo, J. A., Ambrizzi, T., da Rocha, R. P., Alves, L. M., Cuadra, S. V.,
Valverde, M. C., Torres, R. R., Santos, D. C., and Ferraz, S. E. T.: Future
change of climate in South America in the late twenty-first century:
Intercomparison of scenarios from three regional climate models, Clim. Dynam.,
35, 1089–1113, https://doi.org/10.1007/s00382-009-0721-6, 2010.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D.
A.: The drought of 2010 in the context of historical droughts in the Amazon
region, Geophys. Res. Lett., 38, 12, https://doi.org/10.1029/2011GL047436, 2011.
Meesters, A. G. C. A., De Jeu, R. A. M., and Owe, M.: Analytical derivation
of the vegetation optical depth from the microwave polarization difference
index, IEEE Geosci. Remote Sens. Lett., 2, 121–123,
https://doi.org/10.1109/LGRS.2005.843983, 2005.
Meinzer, C. F., Andrade, L. J., Goldstein, G., Holbrook, M. N., Cavelier, J.,
and Wright, J. S.: Partitioning of soil water among canopy trees in a
seasonally dry tropical forest, Oecologia, 121, 293–301,
https://doi.org/10.1007/s004420050931, 1999.
Meinzer, F. C., James, S. A., Goldstein, G., and Woodruff, D.: Whole-tree
water transport scales with sapwood capacitance in tropical forest canopy
trees, Plant, Cell Environ., 26, 1147–1155,
https://doi.org/10.1046/j.1365-3040.2003.01039.x, 2003.
Menezes, J., Garcia, S., Grandis, A., Nascimento, H., Domingues, T. F.,
Guedes, A., Aleixo, I., Camargo, P., Campos, J., Damasceno, A., Dias-Silva,
R., Fleischer, K., Kruijt, B., Longhi, A., Martins, N., Meir, P., Norby, R.
J., Pereira, I., Portela, B., Rammig, A., Ribeiro, A. G., Lapola, D. M., and
Quesada, C. A.: Changes in leaf functional traits with leaf age: When do
leaves decrease their photosynthetic capacity in Amazonian trees?, Tree
Physiol., 2021, tpab042, https://doi.org/10.1093/treephys/tpab042, 2021.
Mitchard, E. T. A., Saatchi, S. S., Gerard, F. F., Lewis, S. L., and Meir,
P.: Measuring woody encroachment along a forest-savanna boundary in Central
Africa, Earth Interact., 13, 1–29, https://doi.org/10.1175/2009EI278.1, 2009a.
Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro,
N. S., Williams, M., Ryan, C. M., Lewis, S. L., Feldpausch, T. R., and Meir,
P.: Using satellite radar backscatter to predict above-ground woody biomass:
A consistent relationship across four different African landscapes, Geophys.
Res. Lett., 36, 1–6, https://doi.org/10.1029/2009GL040692, 2009b.
Moesinger, L., Dorigo, W., De Jeu, R., Van Der Schalie, R., Scanlon, T.,
Teubner, I., and Forkel, M.: The global long-term microwave Vegetation
Optical Depth Climate Archive (VODCA), Earth Syst. Sci. Data, 12,
177–196, https://doi.org/10.5194/essd-12-177-2020, 2020.
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell,
N. G., and Konings, A. G.: Interacting Effects of Leaf Water Potential and
Biomass on Vegetation Optical Depth, J. Geophys. Res.-Biogeo.,
122, 3031–3046, https://doi.org/10.1002/2017JG004145, 2017.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook,
B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests
maintain consistent canopy structure and greenness during the dry season,
Nature, 506, 221–224, https://doi.org/10.1038/nature13006, 2014.
Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M.,
and Gibon, Y.: Water deficits uncouple growth from photosynthesis, increase
C content, and modify the relationships between C and growth in sink organs,
J. Exp. Bot., 62, 1715–1729, https://doi.org/10.1093/jxb/erq438, 2011.
Nardi, F., Annis, A., Baldassarre, G. Di, Vivoni, E. R., and Grimaldi, S.:
GFPLAIN250m, a global high-resolution dataset of earth's floodplains, Sci.
Data, 6, 1–6, https://doi.org/10.1038/sdata.2018.309, 2019.
Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre,
P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., and
Vieira, S.: The role of deep roots in the hydrological and carbon cycles of
Amazonian forests and pastures, Nature, 372, 666–669,
https://doi.org/10.1038/372666a0, 1994.
Oliva Carrasco, L., Bucci, S. J., Di Francescantonio, D., Lezcano, O. A.,
Campanello, P. I., Scholz, F. G., Rodriguez, S., Madanes, N., Cristiano, P.
M., Hao, G. Y. G.-Y., Holbrook, N. M., Goldstein, G., Rodríguez, S.,
Madanes, N., Cristiano, P. M., Hao, G. Y. G.-Y., Holbrook, N. M., and
Goldstein, G.: Water storage dynamics in the main stem of subtropical tree
species differing in wood density, growth rate and life history traits, Tree
Physiol., 35, 354–365, https://doi.org/10.1093/treephys/tpu087, 2015.
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt,
P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V.,
Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza,
J., and Poorter, L.: Embolism resistance drives the distribution of Amazonian
rainforest tree species along hydro-topographic gradients, New Phytol.,
221, 1457–1465, https://doi.org/10.1111/nph.15463, 2019.
Owe, M., De Jeu, R., and Walker, J.: A methodology for surface soil moisture
and vegetation optical depth retrieval using the microwave polarization
difference index, IEEE Trans. Geosci. Remote Sens., 39, 1643–1654,
https://doi.org/10.1109/36.942542, 2001.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Phillips, O. L., Lewis, S. L., Baker, T. R., Chao, K.-J., and Higuchi, N.:
The changing Amazon forest, Philos. T. R. Soc. B, 363,
1819–1827, https://doi.org/10.1098/rstb.2007.0033, 2008.
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B.,
Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock,
J., Quesada, C. A., Van Der Heijden, G., Almeida, S., Amaral, I., Arroyo,
L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando,
P., Chave, J., De Oliveira, Á. C. A., Cardozo, N. D., Czimczik, C. I.,
Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E.,
Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D.,
Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz,
M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. Ter, Stropp, J.,
Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade,
A., Chao, K. J., Erwin, T., Di Fiore, A., Honorio, E. C., Keeling, H.,
Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P.
N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N.,
Terborgh, J., and Torres-Lezama, A.: Drought sensitivity of the amazon
rainforest, Science, 323, 1344–1347,
https://doi.org/10.1126/science.1164033, 2009.
Phillips, O. L., Brienen, R. J. W., and the RAINFOR collaboration: Carbon
uptake by mature Amazon forests has mitigated Amazon nations' carbon
emissions, Carbon Balance Manag., 12, 1–9,
https://doi.org/10.1186/s13021-016-0069-2, 2017.
Poorter, L.: The relationships of wood-, gas- and water fractions of tree
stems to performance and life history variation in tropical trees, Ann.
Bot., 102, 367–375, https://doi.org/10.1093/aob/mcn103, 2008.
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M., Killeen, T., Lezama, A. T., Lloyd, G., López-González, G., Luizão, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M. C., Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramírez, H., Rudas, A., Salomão, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.: Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate, Biogeosciences, 9, 2203–2246, https://doi.org/10.5194/bg-9-2203-2012, 2012.
Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S.,
Lucht, W., Cramer, W., and Cox, P.: Estimating the risk of Amazonian forest
dieback, New Phytol., 187, 694–706,
https://doi.org/10.1111/j.1469-8137.2010.03318.x, 2010.
Reich, P. B. and Borchert, R.: Phenology and ecophysiology of the tropical
tree Tabebuia neochrysantha (Bignoniaceae) (Guanacaste, Costa Rica),
Ecology, 63, 294–299, https://doi.org/10.2307/1938945, 1982.
Reich, P. B. and Borchert, R.: Changes with Leaf Age in Stomatal Function
and Water Status of Several Tropical Tree Species, Biotropica, 20, 60–69,
https://doi.org/10.2307/2388427, 1988.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma,
L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F.
L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B.,
Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von
Randow, C., Sá, L. D. A., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi,
F. B., and Saleska, S. R.: What drives the seasonality of photosynthesis
across the Amazon basin? A cross-site analysis of eddy flux tower
measurements from the Brasil flux network, Agr. Forest Meteorol., 182/183,
128–144, https://doi.org/10.1016/j.agrformet.2013.04.031, 2013.
Rice, A. H., Hammond, E. P., Saleska, S. R., Hutyra, L. R., Palace, M. W.,
Keller, M. M., de Camargo, P. B., Portilho, K., Marques, D., and Wofsy, S.
C.: LBA-ECO CD-10 Forest Litter Data for km 67 Tower Site, Tapajos National
Forest, ORNL Distrib. Act. Arch. Cent., https://doi.org/10.3334/ORNLDAAC/862, 2008.
Rifai, S. W., Girardin, C. A. J., Berenguer, E., Del Aguila-Pasquel, J.,
Dahlsjö, C. A. L., Doughty, C. E., Jeffery, K. J., Moore, S., Oliveras,
I., Riutta, T., Rowland, L. M., Murakami, A. A., Addo-Danso, S. D., Brando,
P., Burton, C., Ondo, F. E., Duah-Gyamfi, A., Amézquita, F. F., Freitag,
R., Pacha, F. H., Huasco, W. H., Ibrahim, F., Mbou, A. T., Mihindou, V. M.,
Peixoto, K. S., Rocha, W., Rossi, L. C., Seixas, M., Silva-Espejo, J. E.,
Abernethy, K. A., Adu-Bredu, S., Barlow, J., da Costa, A. C. L., Marimon, B.
S., Marimon-Junior, B. H., Meir, P., Metcalfe, D. B., Phillips, O. L.,
White, L. J. T., and Malhi, Y.: ENSO Drives interannual variation of forest
woody growth across the tropics, Philos. T. R. Soc. Lond. B, 373, 20170410, https://doi.org/10.1098/rstb.2017.0410, 2018.
Roberts, D. A., Nelson, B. W., Adams, J. B., and Palmer, F.: Spectral changes
with leaf aging in Amazon caatinga, Trees – Struct. Funct., 12, 315–325,
https://doi.org/10.1007/s004680050157, 1998.
Roberts, J., Cabral, O. M. R., and Aguiar, L. F. De: Stomatal and
Boundary-Layer Conductances in an Amazonian terra Firme Rain Forest, Br.
Ecol. Soc., 27, 336–353, https://doi.org/10.2307/2403590, 1990.
Rohatgi, A.: WebPlotDigitizer, available at:
https://automeris.io/WebPlotDigitizer (last access: 19 May 2021), 2018.
Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragao, L. E. O. C., Anderson,
L. O., Myneni, R. B., and Nemani, R.: Persistent effects of a severe drought
on Amazonian forest canopy, P. Natl. Acad. Sci., 110, 565–570,
https://doi.org/10.1073/pnas.1204651110, 2013.
Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R.: Amazon Forests
Green-Up During 2005 Drought, Science, 318, 612 pp.,
https://doi.org/10.1126/science.1146663, 2007.
Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E.,
Knyazikhin, Y., Nemani, R. R., and Myneni, R. B.: Amazon forests did not
green-up during the 2005 drought, Geophys. Res. Lett., 37, 5,
https://doi.org/10.1029/2009GL042154, 2010.
Sanches, L., Valentini, C. M. A., Pinto Júnior, O. B., Nogueira, J. de
S., Vourlitis, G. L., Biudes, M. S., da Silva, C. J., Bambi, P., and Lobo, F.
de A.: Seasonal and interannual litter dynamics of a tropical semideciduous
forest of the southern Amazon Basin, Brazil, J. Geophys. Res.-Biogeo., 113, G04007, https://doi.org/10.1029/2007JG000593, 2008.
Santoro, M. and Cartus, O.: Dataset Record: ESA Biomass Climate Change
Initiative (Biomass_cci): Global datasets of forest
above-ground biomass for the year 2017, v1., available at: https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (last access: 5 June 2020), 2019.
Santos, V. A. H. F. dos, Ferreira, M. J., Rodrigues, J. V. F. C., Garcia, M.
N., Ceron, J. V. B., Nelson, B. W., and Saleska, S. R.: Causes of reduced
leaf-level photosynthesis during strong El Niño drought in a Central
Amazon forest, Glob. Change Biol., 24, 4266–4279, https://doi.org/10.1111/gcb.14293,
2018.
Schessl, M., Da Silva, W. L., and Gottsberger, G.: Effects of fragmentation
on forest structure and litter dynamics in Atlantic rainforest in
Pernambuco, Brazil, Flora Morphol. Distrib. Funct. Ecol. Plants, 203,
215–228, https://doi.org/10.1016/j.flora.2007.03.004, 2008.
Selva, E. C., Couto, E. G., Johnson, M. S., and Lehmann, J.: Litterfall
production and fluvial export in headwater catchments of the southern
Amazon, J. Trop. Ecol., 23, 329–335, https://doi.org/10.1017/S0266467406003956,
2007.
Sizer, N. C., Tanner, E. V. J., and Kossmann Ferraz, I. D.: Edge effects on
litterfall mass and nutrient concentrations in forest fragments in central
Amazonia, J. Trop. Ecol., 16, 853–863, https://doi.org/10.1017/S0266467400001760,
2000.
Sombroek, W.: Spatial and Temporal Patterns of Amazon Rainfall, AMBIO A J.
Hum. Environ., 30, 388–396, https://doi.org/10.1579/0044-7447-30.7.388, 2001.
Soong, J. L., Janssens, I. A., Grau, O., Margalef, O., Stahl, C., Van
Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon, V.,
Herault, B., Sardans, J., Peñuelas, J., and Verbruggen, E.: Soil
properties explain tree growth and mortality, but not biomass, across
phosphorus-depleted tropical forests, Sci. Rep., 10, 1–13,
https://doi.org/10.1038/s41598-020-58913-8, 2020.
Stahl, C., Burban, B., Bompy, F., Jolin, Z. B., Sermage, J., and Bonal, D.:
Seasonal variation in atmospheric relative humidity contributes to
explaining seasonal variation in trunk circumference of tropical rain-forest
trees in French Guiana, J. Trop. Ecol., 26, 393–405,
https://doi.org/10.1017/S0266467410000155, 2010.
Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., and Bonal, D.:
Influence of Seasonal Variations in Soil Water Availability on Gas Exchange
of Tropical Canopy Trees, Biotropica, 45, 155–164,
https://doi.org/10.1111/j.1744-7429.2012.00902.x, 2013.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.:
Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci., 4, 71–76,
https://doi.org/10.5194/isprsannals-ii-4-71-2014, 2014.
Thomas, R. S.: Forest Productivity and Resource Availability in Lowland
Tropical Forests of Guyana by Thesis submitted for the degree of Doctor of
Philosophy of the University of London and for the Diploma of Imperial
College, 1999.
van Emmerik, T., Steele-Dunne, S. C., Paget, A., Oliveira, R. S. de,
Bittencourt, P. R. L. L., Barros, F. de V., and van de Giesen, N.: Water stress detection in the Amazon using
radar, Geophys. Res. Lett., 44, 6841–6849, https://doi.org/10.1002/2017GL073747,
2017.
van Marle, M. J. E., van der Werf, G. R., de Jeu, R. A. M., and Liu, Y. Y.: Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010), Biogeosciences, 13, 609–624, https://doi.org/10.5194/bg-13-609-2016, 2016.
van Schaik, E., Kooreman, M. L., Stammes, P., Tilstra, L. G., Tuinder, O. N. E., Sanders, A. F. J., Verstraeten, W. W., Lang, R., Cacciari, A., Joiner, J., Peters, W., and Boersma, K. F.: Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation, Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020, 2020.
Vasconcelos, S. S., Zarin, D. J., Araújo, M. M., and Miranda, I. de S.:
Aboveground net primary productivity in tropical forest regrowth increases
following wetter dry-seasons, Forest Ecol. Manag., 276, 82–87,
https://doi.org/10.1016/j.foreco.2012.03.034, 2012.
Veneklaas, E. J.: Litterfall and Nutrient Fluxes in Two Montane Tropical
Rain Forests, Colombia, J. Trop. Ecol., 7, 319–336, 1991.
Wagner, F., Rossi, V., Stahl, C., Bonal, D., and Hérault, B.:
Asynchronism in leaf and wood production in tropical forests: A study
combining satellite and ground-based measurements, Biogeosciences, 10,
7307–7321, https://doi.org/10.5194/bg-10-7307-2013, 2013.
Whigham, D. F., Olmsted, I., Cano, E. C., and Harmon, M. E.: The Impact of
Hurricane Gilbert on Trees, Litterfall, and Woody Debris in a Dry Tropical
Forest in the Northeastern Yucatan Peninsula, Biotropica, 23, 434–441,
1991.
Wieder, K. R. and Wright, S. J.: Tropical Forest Litter Dinamic and dry
Irrigation on Barro Colorado Island, Panama, Ecology, 76, 1971–1979,
2001.
Wolfe, B. T., Sperry, J. S., and Kursar, T. A.: Does leaf shedding protect
stems from cavitation during seasonal droughts? A test of the hydraulic fuse
hypothesis, New Phytol., 212, 1007–1018, https://doi.org/10.1111/nph.14087, 2016.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour
since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Worbes, M.: Annual growth rings, rainfall-dependent growth and long-term
growth patterns of tropical trees from the Caparo Forest Reserve in
Venezuela, J. Ecol., 87, 391–403, https://doi.org/10.1046/j.1365-2745.1999.00361.x,
1999.
Xu, L., Samanta, A., Costa, M. H., Ganguly, S., Nemani, R. R., and Myneni, R.
B.: Widespread decline in greenness of Amazonian vegetation due to the 2010
drought, Geophys. Res. Lett., 38, 2–5, https://doi.org/10.1029/2011GL046824, 2011.
Yang, J., Tian, H., Pan, S., Chen, G., Zhang, B., and Dangal, S.: Amazon
drought and forest response: Largely reduced forest photosynthesis but
slightly increased canopy greenness during the extreme drought of 2015/2016,
Glob. Change Biol., 24, 1919–1934, https://doi.org/10.1111/gcb.14056, 2018.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R., and Myneni, R. B.: Global data sets of vegetation leaf
area index (LAI)3g and fraction of photosynthetically active radiation
(FPAR)3g derived from global inventory modeling and mapping studies (GIMMS)
normalized difference vegetation index (NDVI3G) for the period 1981 to 2,
Remote Sens., 5, 927–948, https://doi.org/10.3390/rs5020927, 2013.
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Satellite images show that the Amazon forest has greened up during past droughts. Measurements...
Altmetrics
Final-revised paper
Preprint