Articles | Volume 18, issue 14
https://doi.org/10.5194/bg-18-4473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Capturing functional strategies and compositional dynamics in vegetation demographic models
Polly C. Buotte
CORRESPONDING AUTHOR
Energy and Resources Group, University of California Berkeley,
Berkeley, CA, USA
Charles D. Koven
Climate and Ecosystem Sciences Division, Lawrence-Berkeley National
Laboratory, Berkeley, CA, USA
Chonggang Xu
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM, USA
Jacquelyn K. Shuman
Climate and Global Dynamics, Terrestrial Sciences Section, National
Center for Atmospheric Research, Boulder, CO, USA
Michael L. Goulden
Department of Earth System Science, University of California Irvine,
Irvine, CA, USA
Samuel Levis
SLevis Consulting, LLC, Oceanside, CA, USA
Jessica Katz
Energy and Resources Group, University of California Berkeley,
Berkeley, CA, USA
Junyan Ding
Climate and Ecosystem Sciences Division, Lawrence-Berkeley National
Laboratory, Berkeley, CA, USA
Wu Ma
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM, USA
Zachary Robbins
Forestry and Environmental Resources, North Carolina State University,
Raleigh, NC, USA
Lara M. Kueppers
Energy and Resources Group, University of California Berkeley,
Berkeley, CA, USA
Climate and Ecosystem Sciences Division, Lawrence-Berkeley National
Laboratory, Berkeley, CA, USA
Related authors
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Benjamin M. Sanderson, Victor Brovkin, Rosie A. Fisher, David Hohn, Tatiana Ilyina, Chris D. Jones, Torben Koenigk, Charles Koven, Hongmei Li, David M. Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew H. MacDougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Séférian, Lori T. Sentman, Isla R. Simpson, Chris Smith, Norman J. Steinert, Abigail L. S. Swann, Jerry Tjiputra, and Tilo Ziehn
Geosci. Model Dev., 18, 5699–5724, https://doi.org/10.5194/gmd-18-5699-2025, https://doi.org/10.5194/gmd-18-5699-2025, 2025
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining the understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation of emissions or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated the Zero Emissions Commitment due to emissions rates exceeding historical levels.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3270, https://doi.org/10.5194/egusphere-2025-3270, 2025
Short summary
Short summary
Idealized experiments with Earth system models provide a basis for understanding the response of the carbon cycle to emissions. We show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean and hypothesize that this relationship does not depend on emission pathways. We reduce the coupled system to only one differential equation, which represents a powerful simplification of the Earth system dynamics as a function of fossil fuel emissions.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Maoyi Huang, Yi Xu, Marcos Longo, Michael Keller, Ryan G. Knox, Charles D. Koven, and Rosie A. Fisher
Biogeosciences, 17, 4999–5023, https://doi.org/10.5194/bg-17-4999-2020, https://doi.org/10.5194/bg-17-4999-2020, 2020
Short summary
Short summary
The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is enhanced to mimic the ecological, biophysical, and biogeochemical processes following a logging event. The model can specify the timing and aerial extent of logging events; determine the survivorship of cohorts in the disturbed forest; and modifying the biomass, coarse woody debris, and litter pools. This study lays the foundation to simulate land use change and forest degradation in FATES as part of an Earth system model.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol.,
33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Adams, H. D., Macalady, A. K., Breshears, D. D., Allen, C. D., Stephenson,
N. L., Saleska, S. R., Huxman, T. E., and McDowell, N. G.: Climate-induced
tree mortality: Earth system consequences, EOS, Transactions of the American
Geophysical Union, 91, 153–154, 2010.
Allen, C. D. and Breshears, D. D.: Drought-induced shift of a
forest-woodland ecotone: Rapid landscape response to climate variation,
P. Natl. Acad. Sci. USA, 95, 14839–14842, https://doi.org/10.1073/pnas.95.25.14839, 1998.
Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I.,
Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M.
A., and Brovkin, V.: Forests, savannas, and grasslands: bridging the
knowledge gap between ecology and Dynamic Global Vegetation Models,
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, 2015.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Buotte, P. C., Levis, S., Law, B. E., Hudiburg, T. W., Rupp, D. E., and
Kent, J. J.: Near-future forest vulnerability to drought and fire varies
across the western United States, Glob. Change Biol., 25, 290–303, https://doi.org/10.1111/gcb.14490,
2019.
Buotte, P. C.: Data in support of capturing functional strategies and compositional dynamics in vegetation demographic models, Dryad [data set], https://doi.org/10.6078/D15M5X (last access: 5 March 2021b), 2021a.
Buotte, P. C.: CLM code for BG-2021-54, Zenodo [data set], available at: https://zenodo.org/record/4586812#.YP7xF25MH-Y, last access: 5 March 2021b.
Buotte, P. C.: FATES code for BG-2021-54, Zenodo [data set], available at: https://zenodo.org/record/4586821#.YP72IW5MH-Y, last access: 5 March 2021c.
Chojnacky, D. C., Heath, L. S., and Jenkins, J. C.: Updated generalized
biomass equations for North American tree species, Forestry, 87, 129–151,
https://doi.org/10.1093/forestry/cpt053, 2014.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D.
R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J.,
Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G.,
and Meir, P.: Linking hydraulic traits to tropical forest function in a
size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model
Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Condit, R., Engelbrecht, B. M. J., Pino, D., Perez, R., and Turner, B. L.:
Species distributions in response to individual soil nutrients and seasonal
drought across a community of tropical trees, P. Natl.
Acad. Sci. USA, 110, 5064–5068, https://doi.org/10.1073/pnas.1218042110, 2013.
DeLucia, E. H., Maherali, H., and Carey, E. V.: Climate-driven changes in
biomass allocation in pines, Glob. Change Biol., 6, 587–593, https://doi.org/10.1046/j.1365-2486.2000.00338.x, 2000.
Dietze, M. C., Serbin, S. P., Davidson, C., Desai, A. R., Feng, X. H.,
Kelly, R., Kooper, R., LeBauer, D., Mantooth, J., McHenry, K., and Wang, D.:
A quantitative assessment of a terrestrial biosphere model's data needs
across North American biomes, J. Geophys.
Res.-Biogeo., 119, 286–300, https://doi.org/10.1002/2013jg002392, 2014.
Ding, J., Buotte, P. C., Kueppers, L. M., Shuman, J., Robbins, Z., Ma, W., and Koven, C. D.: Impact of plant hydraulics on forest dynamics and their response to atmospheric CO2 across environmental gradient in a Mediterranean ecosystem, Biogeosciences, in review, 2021.
Dolanc, C. R., Safford, H. D., Dobrowski, S. Z., and Thorne, J. H.:
Twentieth century shifts in abundance and composition of vegetation types of
the Sierra Nevada, CA, US, Appl. Veg. Sci., 17, 442–455, https://doi.org/10.1111/avsc.12079, 2014a.
Dolanc, C. R., Safford, H. D., Thorne, J. H., and Dobrowski, S. Z.: Changing
forest structure across the landscape of the Sierra Nevada, CA, USA, since
the 1930s, Ecosphere, 5, 101, https://doi.org/10.1890/es14-00103.1, 2014b.
Druel, A., Peylin, P., Krinner, G., Ciais, P., Viovy, N., Peregon, A.,
Bastrikov, V., Kosykh, N., and Mironycheva-Tokareva, N.: Towards a more
detailed representation of high-latitude vegetation in the global land
surface model ORCHIDEE (ORC-HL-VEGv1.0), Geosci. Model Dev.,
10, 4693–4722, https://doi.org/10.5194/gmd-10-4693-2017, 2017.
Eldenshenk, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., and Howard,
S.: A project for monitoring trends in burn severity, Fire Ecol., 3, 3–21, 2007.
Farrior, C. E., Bohlman, S. A., Hubbell, S., and Pacala, S. W.: Dominance of
the suppressed: Power-law size structure in tropical forests, Science, 351,
155–157, https://doi.org/10.1126/science.aad0592, 2016.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C.,
McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa,
A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the
properties of a dynamic vegetation model without climate envelopes,
CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O.,
Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G.,
Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D.,
Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K.,
Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu,
X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System
Models: A review of progress and priorities, Glob. Change Biol., 24,
35–54, https://doi.org/10.1111/gcb.13910, 2018.
Hudiburg, T., Law, B., Turner, D. P., Campbell, J., Donato, D. C., and
Duane, M.: Carbon dynamics of Oregon and Northern California forests and
potential land-based carbon storage, Ecol. Appl., 19, 163–180, https://doi.org/10.1890/07-2006.1, 2009.
Iman, R. L. and Conover, W. J.: A distribution-free approach to inducing
rank correlation among input variables, Commun. Stat. Pt.
B, 11, 311–334, https://doi.org/10.1080/03610918208812265, 1982.
Jackson, S. T., Betancourt, J. L., Booth, R. K., and Gray, S. T.: Ecology
and the ratchet of events: Climate variability, niche dimensions, and
species distributions, P. Natl. Acad. Sci.
USA, 106, 19685–19692, https://doi.org/10.1073/pnas.0901644106,
2009.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.:
Comprehensive database of biomass equations for North American tree species,
USDA Forest Service, Newtown Square, PAGeneral Technical Report NE-319, 45 pp.,
2004.
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B.
J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G.
L. W., Schoennagel, T., and Turner, M. G.: Changing disturbance regimes,
ecological memory, and forest resilience, Front. Ecol.
Environ., 14, 369–378, https://doi.org/10.1002/fee.1311, 2016.
Kelly, A. E. and Goulden, M. L.: Rapid shifts in plant distribution with
recent climate change, P. Natl. Acad. Sci.
USA, 105, 11823–11826, https://doi.org/10.1073/pnas.0802891105,
2008.
Klos, P. Z., Goulden, M. L., Riebe, C. S., Tague, C. L., O'Geen, A. T.,
Flinchum, B. A., Safeeq, M., Conklin, M. H., Hart, S. C., Berhe, A. A.,
Hartsough, P. C., Holbrook, W. S., and Bales, R. C.: Subsurface
plant-accessible water in mountain ecosystems with a Mediterranean climate,
Wiley Interdisciplinary Reviews-Water, 5, e1277, https://doi.org/10.1002/wat2.1277, 2018.
Koven, C. D., Knox, R. G., Fisher, R. A., Chambers, J. Q., Christoffersen,
B. O., Davies, S. J., Detto, M., Dietze, M. C., Faybishenko, B., Holm, J.,
Huang, M., Kovenock, M., Kueppers, L. M., Lemieux, G., Massoud, E., McDowel,
N. G., Muller-Landau, H. C., Needham, J. F., Norby, R. J., Powell, T.,
Rogers, A., Serbin, S. P., Shuman, J. K., Swann, A. L. S., Varadharajan, C.,
Walker, A. P., Wright, S. J., and Xu, C.: Benchmarking and parameter
sensitivity of physiological and vegetation dynamics using the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island,
Panama, Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, 2020.
Kozlowski, T. T. and Pallardy, S. G.: Growth control in woody plants,
Growth control in woody plants, Academic Press, San Diego, ISBN 978-0-12-424210-4, https://doi.org/10.1016/B978-0-12-424210-4.X5000-1, 1997.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H. Y., Lombardozzi, D., Riley, W.
J., Sacks, W. J., Shi, M. J., Vertenstein, M., Wieder, W. R., Xu, C. G.,
Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A.,
Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B.,
Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F.,
Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb,
W. H., Lu, Y. Q., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J.
T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J.
Y., Thomas, R. Q., Martin, M. V., and Zeng, X. B.: The Community Land Model
Version 5: Description of New Features, Benchmarking, and Impact of Forcing
Uncertainty, J. Adv. Model. Earth Syst., 11, 4245–4287, https://doi.org/10.1029/2018ms001583, 2019.
Lebauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., and Dietze, M.
C.: Facilitating feedbacks between field measurements and ecosystem models,
Ecol. Monogr., 83, 133–154, https://doi.org/10.1890/12-0137.1, 2013.
Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the
Earth system – Part 1: Improved global fire modeling in the Community Earth
System Model (CESM1), Biogeosciences, 10, 2293–2314, https://doi.org/10.5194/bg-10-2293-2013, 2013.
Massoud, E. C., Xu, C. G., Fisher, R. A., Knox, R. G., Walker, A. P.,
Serbin, S. P., Christoffersen, B. O., Holm, J. A., Kueppers, L. M.,
Ricciuto, D. M., Wei, L., Johnson, D. J., Chambers, J. Q., Koven, C. D.,
McDowell, N. G., and Vrugt, J. A.: Identification of key parameters
controlling demographically structured vegetation dynamics in a land surface
model: CLM4.5(FATES), Geosci. Model Dev., 12, 4133–4164, https://doi.org/10.5194/gmd-12-4133-2019, 2019.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y. Q., Parton, W., Prentice,
I. C., Thornton, P. E., Wang, S. S., Wang, Y. P., Weng, E. S., Iversen, C.
M., McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using
ecosystem experiments to improve vegetation models, Nat. Clim. Change,
5, 528–534, https://doi.org/10.1038/nclimate2621, 2015.
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft,
P. R.: Mechanistic scaling of ecosystem function and dynamics in space and
time: Ecosystem Demography model version 2, J. Geophys.
Res.-Biogeo., 114, G01002, https://doi.org/10.1029/2008jg000812, 2009.
Menning, K. M. and Stephens, S. L.: Fire climbing in the forest: A
semiqualitative, semiquantitative approach to assessing ladder fuel hazards,
West. J. Appl. For., 22, 88–93, https://doi.org/10.1093/wjaf/22.2.88, 2007.
Meunier, F., Verbeeck, H., Cowdery, B., Schnitzer, S. A., Smith-Martin, C.
M., Powers, J. S., Xu, X. T., Slot, M., De Deurwaerder, H. P. T., Detto, M.,
Bonal, D., Longo, M., Santiago, L. S., and Dietze, M.: Unraveling the
relative role of light and water competition between lianas and trees in
tropical forests: A vegetation model analysis, J. Ecol., 109,
519–540, https://doi.org/10.1111/1365-2745.13540, 2021.
Millar, C. I. and Stephenson, N. L.: Temperate forest health in an era of
emerging megadisturbance, Science, 349, 823–826, https://doi.org/10.1126/science.aaa9933,
2015.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: The ecosystem demography model (ED), Ecol.
Monogr., 71, 557–585, https://doi.org/10.1890/0012-9615(2001)071[0557:amfsvd]2.0.co;2,
2001.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases
in global terrestrial net primary production from 1982 to 1999, Science,
300, 1560–1563, 2003.
Niinemets, U.: A review of light interception in plant stands from leaf to
canopy in different plant functional types and in species with varying shade
tolerance, Ecol. Res., 25, 693–714, https://doi.org/10.1007/s11284-010-0712-4,
2010.
North, M. P., Collins, B., Safford, H., and Stephenson, N.: Montane Forests,
in: Ecosystems of California, edited by: Mooney, H. and Zavaleta, E.,
University of California Press, Oakland, CA, 553–577, 2016.
O'Geen, A., Safeeq, M., Wagenbrenner, J., Stacy, E., Hartsough, P., Devine,
S., Tian, Z. Y., Ferrell, R., Goulden, M., Hopmans, J. W., and Bales, R.:
Southern Sierra Critical Zone Observatory and Kings River Experimental
Watersheds: A Synthesis of Measurements, New Insights, and Future
Directions, Vadose Zone J., 17, 1–18, https://doi.org/10.2136/vzj2018.04.0081, 2018.
Ohmann, J. L., Gregory, M. J., Henderson, E. B., and Roberts, H. M.: Mapping
gradients of community composition with nearest-neighbour imputation:
extending plot data for landscape analysis, J. Veg. Sci., 22, 660–676, https://doi.org/10.1111/j.1654-1103.2010.01244.x, 2011.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J. F.,
Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun,
J., Tang, J., and Yang, Z.: Technical descriptioin of version 4.5 of the
Community Land Model (CLM), National Center for Atmospheric Research,
Boulder, CO, 422, https://doi.org/10.5065/D6RR1W7M, 2013.
Powell, T. L., Koven, C. D., Johnson, D. J., Faybishenko, B., Fisher, R. A.,
Knox, R. G., McDowell, N. G., Condit, R., Hubbell, S. P., Wright, S. J.,
Chambers, J. Q., and Kueppers, L. M.: Variation in hydroclimate sustains
tropical forest biomass and promotes functional diversity, New Phytol.,
219, 932–946, https://doi.org/10.1111/nph.15271, 2018.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/, last access: 2 March 2019.
Raczka, B., Dietze, M. C., Serbin, S. P., and Davis, K. J.: What Limits
Predictive Certainty of Long-Term Carbon Uptake?, J. Geophys.
Res.-Biogeos., 123, 3570–3588, https://doi.org/10.1029/2018jg004504, 2018.
Rupp, D. E. and Buotte, P. C.: NACP: Climate Data Inputs (3-hourly) for Community Land Model, Western USA, 1979–2015, ORNL DAAC, Oak Ridge, TN, https://doi.org/10.3334/ORNLDAAC/1682, 2020.
Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.:
Structure and parameter uncertainty in centennial projections of forest
community structure and carbon cycling, Glob. Change Biol., 26,
6080–6096, https://doi.org/10.1111/gcb.15164, 2020.
Stephenson, N. L.: Climatic control of vegetation distribution – The role of
the water-balance, Am. Nat., 135, 649–670, https://doi.org/10.1086/285067, 1990.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.
Thorne, J. H., Choe, H., Boynton, R. M., Bjorkman, J., Albright, W., Nydick,
K., Flint, A. L., Flint, L. E., and Schwartz, M. W.: The impact of climate
change uncertainty on California's vegetation and adaptation management,
Ecosphere, 8, e02021, https://doi.org/10.1002/ecs2.2021, 2017.
Van de Water, K. M. and Safford, H. D.: A summary of fire frequency
estimates for california vegetation before euro-american settlement, Fire
Ecol., 7, 26–58, https://doi.org/10.4996/fireecology.0703026, 2011.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C.
A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R.,
Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M.,
and McDowell, N. G.: Temperature as a potent driver of regional forest
drought stress and tree mortality, Nat. Clim. Change, 3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P.,
Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J.,
Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y. P.:
Improving land surface models with FLUXNET data, Biogeosciences, 6,
1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. Roy. Stat. Soc. B, 73, 3–36, 2011.
Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami,
S., Iversen, C. M., Kattge, J., Norby, R. J., van Bodegom, P. M., and Xu, X.
F.: Plant functional types in Earth system models: past experiences and
future directions for application of dynamic vegetation models in
high-latitude ecosystems, Ann. Bot.-London, 114, 1–16, https://doi.org/10.1093/aob/mcu077,
2014.
Xie, Y., Wang, X., and Silander, J. A., Jr.: Deciduous forest responses to
temperature, precipitation, and drought imply complex climate change
impacts, P. Natl. Acad. Sci. USA, 112, 13585–13590, https://doi.org/10.1073/pnas.1509991112, 2015.
Xu, C. and Gertner, G.: Extending a global sensitivity analysis technique
to models with correlated parameters, Comput. Stat. Data
An., 51, 5579–5590, https://doi.org/10.1016/j.csda.2007.04.003, 2007.
Xu, X. T., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K. Y.:
Diversity in plant hydraulic traits explains seasonal and inter-annual
variations of vegetation dynamics in seasonally dry tropical forests, New
Phytol., 212, 80–95, https://doi.org/10.1111/nph.14009, 2016.
Yeaton, R. I.: The successional replacement of ponderosa pine by sugar pine
in the sierra-nevada, B. Torrey Bot. Club, 110, 292–297, https://doi.org/10.2307/2996181, 1983.
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
We present an approach for ensuring the definitions of plant types in dynamic vegetation models...
Altmetrics
Final-revised paper
Preprint