Articles | Volume 18, issue 15
https://doi.org/10.5194/bg-18-4535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen,
Germany
Raul E. Martinez
Organic Paleobiogeochemistry, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
David Piatka
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen,
Germany
Achim J. Herrmann
Division of Microbiology, Technische Universität Kaiserslautern, 67663 Kaiserslautern,
Germany
Arianna Gallo
Division of Microbiology, Technische Universität Kaiserslautern, 67663 Kaiserslautern,
Germany
Michelle M. Gehringer
Division of Microbiology, Technische Universität Kaiserslautern, 67663 Kaiserslautern,
Germany
Johannes A. C. Barth
Department of Geography and Geosciences, GeoZentrum Nordbayern,
Schlossgarten 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen,
Germany
Related authors
No articles found.
Jan Maier, Anna-Neva Visser, Christina M. Schubert, Simon T. Wander, and Johannes A. C. Barth
Biogeosciences, 22, 5123–5137, https://doi.org/10.5194/bg-22-5123-2025, https://doi.org/10.5194/bg-22-5123-2025, 2025
Short summary
Short summary
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO across the Danube to distinguish DO sources and sinks, key for biogeochemical cycles. Two highly productive areas in the warm season showed large deviations (+12.1 ‰) from atmospheric equilibrium (+24.6 ‰ ± 0.4 ‰), unusual for large rivers. Critically low DO in the Sava (0.16 mmol/L) and lower Danube (0.2 mmol/L) in late summer resulted from intensified respiration.
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
Hydrol. Earth Syst. Sci., 29, 3853–3863, https://doi.org/10.5194/hess-29-3853-2025, https://doi.org/10.5194/hess-29-3853-2025, 2025
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between two components of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights into understanding different groundwater recharge patterns on a large scale and eventually for groundwater management.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Cited articles
Andrews, S. C., Robinson, A. K., and Rodríguez-Quiñones, F.:
Bacterial iron homeostasis, FEMS Microbiol. Rev., 27, 215–237,
https://doi.org/10.1016/S0168-6445(03)00055-X, 2003.
Appelo, T., Van der Weiden, M. J., Tournassat, C., and Charlet, L.: Surface
Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the
Mobilization of Arsenic, Environ. Sci. Technol., 36, 3096–3103,
https://doi.org/10.1021/es010130n, 2002.
Armstrong, W. and Armstrong, J.: Stem photosynthesis not pressurised
ventilation is responsible for light-enhanced oxygen supply to submerged
roots of alder (Alnus glutinosa), Ann. Bot., 96, 591–612,
https://doi.org/10.1093/aob/mci213, 2005.
Barkan, E. and Luz, B.: High precision measurements of and ratios in H2O, Rapid Commun. Mass Sp., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Barth, J. A. C., Tait, A., and Bolshaw, M.: Automated analyses of O-18 O-16
ratios in dissolved oxygen from 12-mL water samples, Limnol. Oceanogr.
Method., 2, 35–41, https://doi.org/10.4319/lom.2004.2.35,
2004.
Bell, T. G. and Kramvis, A.: Fragment Merger: An Online Tool to Merge
Overlapping Long Sequence Fragments, Viruses, 5, 824–833,
https://doi.org/10.3390/v5030824, 2013.
Benson, B. B. and Krause D.: The concentration and isotopic fractionation
of gases dissolved in freshwater in equilibrium with the atmosphere. 1.
Oxygen, Limnol. Oceanogr., 25, 662–671,
https://doi.org/10.4319/lo.1980.25.4.0662, 1980.
Büttner, G., Stichler, W., and Scholz M.: Hydrogeochemische
Untersuchungen in den Forschungsbohrungen Lindau 1 und Spitzeichen 1
(Fränkisches Bruchschollenland), Geol. Bavar., 109, 105–124, 2006.
Birzer, F.: Eine Tiefbohrung durch das mesozoische Deckgebirge in Fürth
in Bayern, Stuttgart, Zbl. Min. etc., Abt. B, 425–433, 1936.
Brock T. D.: Lower pH limit for the existence of blue-green algae:
evolutionary and ecological implications, Science, 179, 480–483,
https://doi.org/10.1126/science.179.4072.480 1973.
Caetano, M. and Vale, C.: Retention of arsenic and phosphorus in iron-rich
concretions of Tagus salt marshes, Mar. Chem., 79, 261–271,
https://doi.org/10.1016/S0304-4203(02)00068-3, 2002.
Clark, I. D. and Fritz, P. (Eds.): Environmental Isotopes in Hydrogeology,
CRC Press/Lewis, Boca Raton, USA, 1997.
Cornell, R. M. and Schwertmann, U. (Eds.): The Iron Oxides: Structure,
Properties, Reactions, Occurrences and Uses, Wiley-VCH Verlag, Weinheim,
Germany, 2003.
Eisenstadt, D., Barkan, E., Luz, B., and Kaplan, A.: Enrichment of oxygen
heavy isotopes during photosynthesis in phytoplankton, Photosynth. Res.,
103, 97–103, https://doi.org/10.1007/s11120-009-9518-z, 2010.
Gammons, C. H., Henne, W., Poulson, S. R., Parker, S. R., Johnston, T. B.,
Dore, J. E., and Boyd, E. S.: Stable isotopes track biogeochemical processes
under seasonal ice cover in a shallow, productive lake, Biogeochemistry,
120, 359–379, https://doi.org/10.1007/s10533-014-0005-z, 2014.
Gehringer, M. M., Pengelly, J. J. L., Cuddy, W. S., Fieker, C., Foster, P.
I., and Neilan, B. A.: Host selection of symbiotic cyanobacteria in 21
species of the Australian cycad genus: Macrozamia (Zamiaceae), Mol. Plant.
Microbe. Interact., 23, 811–822, https://doi.org/10.1094/MPMI-23-6-0811,
2010.
Guy, R. D., Fogel, M. L., and Berry J. A.: Photosynthetic fractionation of
the stable isotopes of oxygen and carbon, Plant Physiol., 101, 37–47,
https://doi.org/10.1104/pp.101.1.37, 1993.
Heidari, F., Zima, J., Riahi, H., and Hauer, T.: New simple trichal
cyanobacterial taxa isolated from radioactive thermal springs, Fottea.
Olomouc., 18, 137–149, https://doi.org/10.5507/fot.2017.024, 2018.
Jung, P., Briegel-Williams, L., Schermer, M., and Büdel, B.: Strong in
combination: Polyphasic approach enhances arguments for cold-assigned
cyanobacterial endemism, Microbiologyopen, 8, e00729,
https://doi.org/10.1002/mbo3.729, 2019.
Kampbell, D. H., Wilson, J. T., and Vandegrift, S. A.: Dissolved-oxygen and
methane in water by a Gc headspace equilibration technique, Int. J. Environ.
Anal. Chem., 36, 249–257,
https://doi.org/10.1080/03067318908026878, 1989.
Kappler, A., Bryce, C., Mansor, M., Lueder, U., Byrne, J. M., and Swanner,
E. D.: An evolving view on biogeochemical cycling of iron, Nat. Rev.
Microbiol., 19, 360–374, https://doi.org/10.1038/s41579-020-00502-7, 2021.
Kühnau, J.: Balneologisches Gutachten über die Heilwirkungen, welche
von den im Stadtgebiet von Fürth erbohrten Mineralquellen zu erwarten
sind, Unveröff. Gutachten, 14 S., 3 Tab., Wiesbaden, 1938.
Knox, M., Quay, P. D., and Wilbur, D.: Kinetic isotopic fractionation during
air-water gas transfer of O2, N2; CH4, and H2, J.
Geophys. Res.-Ocean., 97, 20335–20343,
https://doi.org/10.1029/92JC00949, 1992.
Köhler, I., Piatka, D., Barth, J. A. C., and Martinez, R. E.: Beware of
effect on isotopes of dissolved oxygen during storage of natural iron-rich
water samples: A technical note, Rapid Commun. Mass Sp., 35, e9024,
https://doi.org/10.1002/rcm.9024, 2020.
Komárek, J. and Anagnostidis, K.: Cyanoprokaryota, 2. Oscillatoriales,
in: Süsswasserflora von Mitteleuropa, edited by: Büdel, B.,
Krienitz, L., Gärtner, G., and Schagerl, M., Elsevier/Spektrum,
Heidelberg, Germany, 760 pp., 2005.
Kritzberg, E. S. and Ekström, S. M.: Increasing iron concentrations in surface waters – a factor behind brownification?, Biogeosciences, 9, 1465–1478, https://doi.org/10.5194/bg-9-1465-2012, 2012.
Kritzberg, E. S., Maher, Hasselquist, E., Skerlep, M., Löfgren, S.,
Olsson, O., Stadmark, J., Valinia, S., Hansson, L. A., and Laudon, H.:
Browning of freshwaters: Consequences to ecosystem services, underlying
drivers, and potential mitigation measures, Ambio, 49, 375–390,
https://doi.org/10.1007/s13280-019-01227-5, 2020.
Kroopnick, P. M.: Respiration, photosynthesis, and oxygen isotope
fractionation in oceanic surface waters, Limnol. Oceanogr., 20, 988–992,
https://doi.org/10.4319/lo.1975.20.6.0988, 1975.
Liger, E., Charlet, L., and Van Cappellen, P.: Surface Catalysis of
Uranium(VI) Reduction by Iron(II), Geochim. Cosmochim. Ac., 63, 2939–2955,
https://doi.org/10.1016/S0016-7037(99)00265-3, 1999.
Llyod, R. M.: Oxygen isotope behavior in the Sulfate-Water System, J.
Geophys. Res., 73, 6099–6110,
https://doi.org/10.1029/JB073i018p06099, 1968.
Lu, J. -B. Jian, J., Huang, W., Lin, H., Li, J., and Zhou, M.: Experimental
and theoretical identification of the Fe(VII) oxidation state in
FeO , Phys. Chem. Chem. Phys., 18, 31125–31131,
https://doi.org/10.1039/C6CP06753K, 2016.
Mader, M., Schmidt, C., van Geldern, R., and Barth, J. A. C.: Dissolved
oxygen in water and its stable isotope effects: A review, Chem. Geol., 473,
10–21, https://doi.org/10.1016/j.chemgeo.2017.10.003, 2017.
Mader, M., Roberts, A. M., Porst, D., Schmidt, C., Trauth, N., van Geldern,
R., and Barth, J. A. C.: River recharge versus O2 supply from the
unsaturated zone in shallow riparian groundwater: A case study from the
Selke River (Germany), Sci. Total Environ., 634, 374–381,
https://doi.org/10.1016/j.scitotenv.2018.03.230, 2018.
Marin, B., Nowack, E. C., and Melkonian, M.: A plastid in the
making: evidence for a second primary endosymbiosis, Protist,
156, 425–432, https://doi.org/10.1016/j.protis.2005.09.001, 2005.
Meurer, M., Banning, A.: Uranmobilisierung im Helgoländer Buntsandstein
– Auswirkungen auf die Brack- und Trinkwasserqualität, Grundwasser, 24,
43–50, https://doi.org/10.1007/s00767-018-0408-1, 2019.
Michaud, S. C. and Richardson, C. J.: Relative radial oxygen loss in five
wetland plants, in: Constructed Wetlands for Wastewater Treatment, edited
by: Hammer, D. A., Lewis Publishers, Chelsea, USA, 501–507, 1989.
Millero, F. J.: The effect of ionic interactions on the oxidation of metals
in natural waters, Geochim. Cosmochim. Ac., 49, 547–53,
https://doi.org/10.1016/0016-7037(85)90046-8, 1985.
Oba, Y. and Poulson, S. R.: Oxygen isotope fractionation of dissolved
oxygen during reduction by ferrous iron, Geochim. Cosmochim. Ac., 73, 13–24,
https://doi.org/10.1016/j.gca.2008.10.012, 2009a.
Oba, Y. and Poulson, S. R.: Oxygen isotope fractionation of dissolved oxygen
during abiological reduction by aqueous sulfide, Chem Geol., 268, 226–232,
https://doi.org/10.1016/j.chemgeo.2009.09.002, 2009b.
Park, B. and Dempsey, B. A.: Heterogeneous oxidation of Fe(II) on ferric
oxide at neutral pH and a low partial pressure of O2, Environ. Sci.
Technol., 39, 6494–6500, https://doi.org/10.1021/es0501058,
2005.
Parker, S. R., Poulson, S. R., Gammons, C. H., and DeGrandpre, M. D.:
Biogeochemical controls on diel cycling of stable isotopes of dissolved
oxygen and dissolved inorganic carbon in the Big Hole River, Montana,
Environ. Sci. Technol., 39, 7134–7140,
https://doi.org/10.1021/es0505595, 2005.
Parker, S. R., Gammons, C. H., Poulson, S. R., DeGrandpre, M. D., Weyer, C.
L., Smith, M. G., Babcock, J. N., and Oba, Y.: Diel behavior of stable
isotopes of dissolved oxygen and dissolved inorganic carbon in rivers over a
range of trophic conditions, and in a mesocosm experiment, Chem Geol., 269,
22–32, https://doi.org/10.1016/j.chemgeo.2009.06.016, 2010.
Parker, S. R., Gammons, C. H., Smith, M. G., and Poulson, S. R.: Behavior of
stable isotopes of dissolved oxygen, dissolved inorganic carbon and nitrate
in groundwater at a former wood treatment facility containing hydrocarbon
contamination, Appl. Geochem., 27, 1101–1110,
https://doi.org/10.1016/j.apgeochem.2012.02.035, 2012.
Parker, S. R., Darvis, M. N., Poulson, S. R., Gammons, C. H., and Stanford,
J. A.: Dissolved oxygen and dissolved inorganic carbon stable isotope
composition and concentration fluxes across several shallow floodplain
aquifers and in a diffusion experiment, Biogeochemistry, 117, 539–552,
https://doi.org/10.1007/s10533-013-9899-0, 2014.
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples
for PHREEQC version 3, A computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations, Volume book
6, series Techniques and Methods [code], 1–327, available at: https://www.usgs.gov/software/phreeqc-version-3 (last access: 26 July 2021), 2009.
Pati, S. G., Bolotin, J., Brennwald, M. S., Kohler, H. P. E., Werner, R. A.,
and Hofstetter, T. B.: Measurement of oxygen isotope ratios
(18O 16O) of aqueous O2 in small samples by gas
chromatography/isotope ratio mass spectrometry, Rapid Commun. Mass
Sp., 30, 684–690, https://doi.org/10.1002/rcm.7481,
2016.
Pusch, M.: The metabolism of organic matter in the hyporheic zone of a
mountain stream, and its spatial distribution, Hydrobiologia, 323, 107–118,
https://doi.org/10.1007/BF00017588, 1996.
Quay, P. D., Wilbur, D. O., Richey, J. E., Devol, A. H., Benner, R., and
Forsberg, B. R.: The 18O : 16O of dissolved oxygen in rivers and
lakes in the Amazon Basin: Determining the ratio of respiration to
photosynthesis rates in freshwater, Limnol. Oceanogr., 40, 718–729,
https://doi.org/10.4319/lo.1995.40.4.0718, 1995.
Schwab, R. G.: Die natürliche Radioaktivität der Erdkruste, in:
Natürliche und künstliche Strahlung in der Umwelt. Eine Bilanz vor
und nach Tschernobyl, edited by: Hosemann, G., and Wirth, E., Erlanger
Forschungen Reihe B, Erlangen, Germany, 25–43, 1987.
Schwertmann, U.: Solubility and dissolution of iron oxides, Plant Soil, 130,
1–25, https://doi.org/10.1007/BF00011851, 1991.
Sylvester, P., Westerhoff, P., Boyd, O., and Sengupta, A. K.: Arsen Xnp – A new hybrid sorbent for arsenic removal from drinking water, in: ACE
′05, Proceedings of the AWWA Annual Conference and Exposition, San
Francisco, USA, 2005.
Skinner, B. J.: A Second Iron Age Ahead?, Res. J. Environ. Sci., 3, 559–575,
https://doi.org/10.1016/S0166-1116(08)71071-9, 1979.
Smith, L., Watzin, M. C., and Druschel, G.: Relating sediment phosphorus
mobility to seasonal and diel redox fluctuations at the sediment-water
interface in a eutrophic freshwater lake, Limnol. Oceanogr., 56, 2251–2264,
https://doi.org/10.4319/lo.2011.56.6.2251, 2011.
Stal, L. J.: Cyanobacterial mats and stromatolites, in: The Ecology of Cyanobacteria II: their diversity in space and time, edited by: Whitton, B. A., Springer, Dordrecht, New York, London, 65–125, https://doi.org/10.1007/978-94-007-3855-3, 2012.
Stanier, R. Y., Kunisawa R., Mandel, M., and Cohen-Bazire, G.: Purification
and properties of unicellular blue-green algae (order Chroococcales),
Bacteriol. Rev., 35, 171–205,
https://doi.org/10.1128/mmbr.35.2.171-205.1971, 1971.
Swanner, E. D., Mloszewska, A. M., Cirpka, O. A., Schoenberg, R., Konhauser,
K. O., and Kappler, A.: Modulation of oxygen production in Archaean oceans
by episodes of Fe(II) toxicity, Nat. Geosci., 8, 126–130,
https://doi.org/10.1038/ngeo2327, 126–130, 2015.
Taylor, B. E. and Wheeler, M. C.: Sulfur- and Oxygen-Isotope Geochemistry
of Acid Mine Drainage in the Western United States, in: Environmental
Geochemistry of Sulfide Oxidation edited by: Alpers, C. N. and Blowes, D.
W., American Chemical Society Symposium Series, Washington DC, USA, 481–514,
1993.
Teal, J. M. and Kanwisher, J. W.: Gas Transport in the Marsh Grass, Spartina
alterniflora, J. Exp. Bot., 17, 355–361,
https://doi.org/10.1093/jxb/17.2.355, 1966.
van Geldern, R. and Barth, J. A. C.: Optimization of instrument setup and
post-run corrections for oxygen and hydrogen stable isotope measurements of
water by isotope ratio infrared spectroscopy (IRIS), Limnol.
Oceanogr. Method., 10, 1024–1036,
https://doi.org/10.4319/lom.2012.10.1024, 2012.
Wang, X. and Veizer, J.: Respiration-photosynthesis balance of terrestrial
aquatic ecosystems, Ottawa area, Canada, Geochim. Cosmochim. Acta., 64, 3775–3786,
https://doi.org/10.1016/S0016-7037(00)00477-4, 2000.
Wassenaar, L. I. and Koehler, G.: An on-line technique for the
determination of the δ18O and δ17O of gaseous and
dissolved oxygen, Anal. Chem., 71, 4965–4968,
https://doi.org/10.1021/ac9903961, 1999.
Wassenaar, L. I. and Hendry, M. J.: Dynamics and stable isotope composition
of gaseous and dissolved oxygen, Ground Water, 45, 447–460,
https://doi.org/10.1111/j.1745-6584.2007.00328.x, 2007.
Weyhenmeyer, G. A., Prairie, Y. T., and Tranvik, L. J.: Browning of Boreal
Freshwaters Coupled to Carbon-Iron Interactions along the Aquatic Continuum,
PLoS One, 9, e88104,
https://doi.org/10.1371/journal.pone.0088104, 2014.
Wilmotte, A., Van der Auwera, G., and De Wachter, R.: Structure of the 16S
ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF') strain PCC75
18, and phylogenetic analysis, FEBS Lett., 317, 96–100,
https://doi.org/10.1016/0014-5793(93)81499-p, 1993.
Zhang, Y., Charlet, L., and Schindler P. W.: Adsorption of protons, Fe(II)
and Al(III) on lepidocrocite (γ-FeOOH), Colloids Surf., 63, 259–268,
https://doi.org/10.1016/0166-6622(92)80247-Y, 1992.
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich...
Altmetrics
Final-revised paper
Preprint