Articles | Volume 18, issue 15
https://doi.org/10.5194/bg-18-4651-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4651-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Felipe S. Freitas
CORRESPONDING AUTHOR
Organic Geochemistry Unit, School of Earth Sciences & School of
Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
Cabot Institute for the Environment, University of Bristol, Bristol,
BS8 1UH, United Kingdom
current address: School of Earth Sciences, University of Bristol,
Bristol, BS8 1RJ, United Kingdom
Philip A. Pika
BRIDGE, School of Geographical Sciences, University of Bristol,
Bristol, BS8 1RL, United Kingdom
Biogeochemistry and Earth System Modeling, Geosciences, Environment
and Society Department, Université Libre de Bruxelles, Brussels,
CP160/03 1050, Belgium
current address: Department of Earth Sciences, VU University of
Amsterdam, 1081 HV Amsterdam, the Netherlands
Sabine Kasten
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, 27570 Bremerhaven, Germany
Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of
Bremen, 28359 Bremen, Germany
Bo B. Jørgensen
Section for Microbiology, Department of Biology, Aarhus University,
8000 Aarhus C, Denmark
Jens Rassmann
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif-sur-Yvette, France
Christophe Rabouille
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif-sur-Yvette, France
Shaun Thomas
School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10
3AT, United Kingdom
current address: RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU,
United Kingdom
Henrik Sass
School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10
3AT, United Kingdom
Richard D. Pancost
Organic Geochemistry Unit, School of Earth Sciences & School of
Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
Cabot Institute for the Environment, University of Bristol, Bristol,
BS8 1UH, United Kingdom
Sandra Arndt
Biogeochemistry and Earth System Modeling, Geosciences, Environment
and Society Department, Université Libre de Bruxelles, Brussels,
CP160/03 1050, Belgium
Related authors
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Susann Henkel, Bo Liu, Michael Staubwasser, Simone A. Kasemann, Anette Meixner, David A. Aromokeye, Michael W. Friedrich, and Sabine Kasten
Biogeosciences, 22, 1673–1696, https://doi.org/10.5194/bg-22-1673-2025, https://doi.org/10.5194/bg-22-1673-2025, 2025
Short summary
Short summary
We intend to unravel iron (Fe) reduction pathways in high-deposition methanic sediments because pools of Fe minerals could stimulate methane oxidation and also generation. Our data from the North Sea show that Fe release takes place mechanistically differently to Fe reduction in shallow sediments, which typically fractionates Fe isotopes. We conclude that fermentation of organic matter involving interspecies electron transfer, partly through conductive Fe oxides, could play an important role.
Manon Maisonnier, Maoyuan Feng, David Bastviken, Sandra Arndt, Ronny Lauerwald, Aidin Jabbari, Goulven Gildas Laruelle, Murray D. MacKay, Zeli Tan, Wim Thiery, and Pierre Regnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1306, https://doi.org/10.5194/egusphere-2025-1306, 2025
Short summary
Short summary
A new process-based modelling framework, FLaMe v1.0 (Fluxes of Lake Methane version 1.0), is developed to simulate methane (CH4) emissions from lakes at large scales. FLaMe couples the dynamics of organic carbon, oxygen and methane in lakes and rests on an innovative, computationally efficient lake clustering approach for the simulation of CH4 emissions across a large number of lakes. The model evaluation suggests that FLaMe captures the sub-annual and spatial variability of CH4 emissions well.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Mohd Al Farid Abraham, Bernhard David A. Naafs, Vittoria Lauretano, Fotis Sgouridis, and Richard D. Pancost
Clim. Past, 19, 2569–2580, https://doi.org/10.5194/cp-19-2569-2023, https://doi.org/10.5194/cp-19-2569-2023, 2023
Short summary
Short summary
Oceanic Anoxic Event 2 (OAE 2), about 93.5 million years ago, is characterized by widespread deoxygenated ocean and massive burial of organic-rich sediments. Our results show that the marine deoxygenation at the equatorial Atlantic that predates the OAE 2 interval was driven by global warming and associated with the nutrient status of the site, with factors like temperature-modulated upwelling and hydrology-induced weathering contributing to enhanced nutrient delivery over various timescales.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Philip Pika, Dominik Hülse, and Sandra Arndt
Geosci. Model Dev., 14, 7155–7174, https://doi.org/10.5194/gmd-14-7155-2021, https://doi.org/10.5194/gmd-14-7155-2021, 2021
Short summary
Short summary
OMEN-SED is a model for early diagenesis in marine sediments simulating organic matter (OM) degradation and nutrient dynamics. We replaced the original description with a more realistic one accounting for the widely observed decrease in OM reactivity. The new model reproduces pore water profiles and sediment–water interface fluxes across different environments. This functionality extends the model’s applicability to a broad range of environments and timescales while requiring fewer parameters.
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021, https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary
Short summary
Oxygen penetrates sediments not only from the ocean bottom waters but also from the basement. The impact of the latter is poorly understood. We show that this basement oxygen has a clear impact on the nitrogen cycle, the redox state, and the distribution of manganese, nickel cobalt and organic matter in the sediments. This is important for (1) global biogeochemical cycles, (2) understanding sedimentary life and (3) the interpretation of the sediment record to reconstruct the past.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Aguilera, D. R., Jourabchi, P., Spiteri, C., and Regnier, P.: A
knowledge-based reactive transport approach for the simulation of
biogeochemical dynamics in Earth systems, Geochem. Geophy. Geosy., 6,
1–18, https://doi.org/10.1029/2004GC000899, 2005.
Aller, R. C.: Diagenetic Processes Near the Sediment-Water Interface of Long
Island Sound, I., in: Advances in Geophysics, Vol. 22, Elsevier, 237–350,
https://doi.org/10.1016/S0065-2687(08)60067-9, 1980.
Aller, R. C.: Bioturbation and remineralization of sedimentary organic
matter: effects of redox oscillation, Chem. Geol., 114, 331–345,
https://doi.org/10.1016/0009-2541(94)90062-0, 1994.
Aller, R. C. and Aller, J. Y.: The effect of biogenic irrigation intensity
and solute exchange on diagenetic reaction rates in marine sediments, J.
Mar. Res., 56, 905–936, https://doi.org/10.1357/002224098321667413, 1998.
Aller, R. C. and Cochran, J. K.: The Critical Role of Bioturbation for
Particle Dynamics, Priming Potential, and Organic C Remineralization in
Marine Sediments: Local and Basin Scales, Front. Earth Sci., 7, 157,
https://doi.org/10.3389/feart.2019.00157, 2019.
Antonelli, C., Eyrolle, F., Rolland, B., Provansal, M., and Sabatier, F.:
Suspended sediment and 137Cs fluxes during the exceptional December
2003 flood in the Rhone River, southeast France, Geomorphology, 95,
350–360, https://doi.org/10.1016/j.geomorph.2007.06.007, 2008.
Aquilina, A., Knab, N. J., Knittel, K., Kaur, G., Geissler, A., Kelly, S.
P., Fossing, H., Boot, C. S., Parkes, R. J., Mills, R. A., Boetius, A.,
Lloyd, J. R., and Pancost, R. D.: Biomarker indicators for anaerobic
oxidizers of methane in brackish-marine sediments with diffusive methane
fluxes, Org. Geochem., 41, 414–426,
https://doi.org/10.1016/j.orggeochem.2009.09.009, 2010.
Aris, R.: Prolegomena to the rational analysis of systems of chemical
reactions II. Some addenda, Arch. Ration. Mech. Anal., 27, 356–364,
https://doi.org/10.1007/BF00251438, 1968.
Arndt, S., Hetzel, A., and Brumsack, H.-J.: Evolution of organic matter
degradation in Cretaceous black shales inferred from authigenic barite: A
reaction-transport model, Geochim. Cosmochim. Ac., 73, 2000–2022,
https://doi.org/10.1016/j.gca.2009.01.018, 2009.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost,
R. D., and Regnier, P.: Quantifying the degradation of organic matter in
marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86,
https://doi.org/laro, 2013.
Aromokeye, D. A., Oni, O. E., Tebben, J., Yin, X., Richter-Heitmann, T.,
Wendt, J., Nimzyk, R., Littmann, S., Tienken, D., Kulkarni, A. C., Henkel,
S., Hinrichs, K.-U., Elvert, M., Harder, T., Kasten, S., and Friedrich, M.
W.: Crystalline iron oxides stimulate methanogenic benzoate degradation in
marine sediment-derived enrichment cultures, ISME J., 15, 965–980,
https://doi.org/10.1038/s41396-020-00824-7, 2020.
Ausín, B., Bruni, E., Haghipour, N., Welte, C., Bernasconi, S. M., and
Eglinton, T. I.: Controls on the abundance, provenance and age of organic
carbon buried in continental margin sediments, Earth Planet. Sc. Lett.,
558, 116759, https://doi.org/10.1016/j.epsl.2021.116759, 2021.
Bach, L. T., Stange, P., Taucher, J., Achterberg, E. P.,
Algueró-Muñiz, M., Horn, H., Esposito, M., and Riebesell, U.: The
Influence of Plankton Community Structure on Sinking Velocity and
Remineralization Rate of Marine Aggregates, Global Biogeochem. Cy., 33,
971–994, https://doi.org/10.1029/2019GB006256, 2019.
Barlow, R. G., Mantoura, R. F. C., and Cummings, D. G.: Monsoonal influence
on the distribution of phytoplankton pigments in the Arabian Sea, Deep-Sea
Res. Pt. II, 46, 677–699,
https://doi.org/10.1016/S0967-0645(98)00123-4, 1999.
Beckler, J. S., Kiriazis, N., Rabouille, C., Stewart, F. J., and Taillefert,
M.: Importance of microbial iron reduction in deep sediments of
river-dominated continental-margins, Mar. Chem., 178, 22–34,
https://doi.org/10.1016/j.marchem.2015.12.003, 2016.
Berner, R. A.: Early diagenesis: a theoretical approach, Princeton
University Press, Princeton, NJ, 241 pp., 1980.
Berner, R. A.: The long-term carbon cycle, fossil fuels and atmospheric
composition, Nature, 426, 323–326, https://doi.org/10.1038/nature02131,
2003.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad.
Sci. USA, 108, 19473, https://doi.org/10.1073/pnas.1017982108, 2011.
Bianchi, T. S., Thornton, D. C. O., Yvon-Lewis, S. A., King, G. M.,
Eglinton, T. I., Shields, M. R., Ward, N. D., and Curtis, J.: Positive
priming of terrestrially derived dissolved organic matter in a freshwater
microcosm system, Geophys. Res. Lett., 42, 5460–5467,
https://doi.org/10.1002/2015GL064765, 2015.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and
Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean
interface, Org. Geochem., 115, 138–155,
https://doi.org/10.1016/j.orggeochem.2017.09.008, 2018.
Bogus, K. A., Zonneveld, K. A. F., Fischer, D., Kasten, S., Bohrmann, G.,
and Versteegh, G. J. M.: The effect of meter-scale lateral oxygen gradients
at the sediment-water interface on selected organic matter based alteration,
productivity and temperature proxies, Biogeosciences, 9, 1553–1570,
https://doi.org/10.5194/bg-9-1553-2012, 2012.
Bohrmann, G. and cruise participants: Documentation of sediment core
GeoB12308-5, PANGAEA, https://doi.org/10.1594/PANGAEA.737529, 2010a.
Bohrmann, G. and cruise participants: Documentation of sediment core
GeoB12309-3, PANGAEA, https://doi.org/10.1594/PANGAEA.737530, 2010b.
Bohrmann, G. and cruise participants: Documentation of sediment core
GeoB12312-3, PANGAEA, https://doi.org/10.1594/PANGAEA.737532, 2010c.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?,
Geochim. Cosmochim. Ac., 58, 1243–1249,
https://doi.org/10.1016/0016-7037(94)90378-6, 1994.
Boudreau, B. P.: Diagenetic Models and Their Implementation: Modelling
Transport and Reactions in Aquatic Sediments, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997.
Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum representation
of organic matter diagenesis, Am. J. Sci., 291, 507–538,
https://doi.org/10.2475/ajs.291.5.507, 1991.
Boudreau, B. P., Mucci, A., Sundby, B., Luther, G. W., and Silverberg, N.:
Comparative diagenesis at three sites on the Canadian continental margin, J.
Mar. Res., 56, 1259–1284, https://doi.org/10.1357/002224098765093634, 1998.
Bourgeois, S., Archambault, P., and Witte, U.: Organic matter
remineralization in marine sediments: A Pan-Arctic synthesis: Pan-Arctic
Benthic Remineralization, Global Biogeochem. Cy., 31, 190–213,
https://doi.org/10.1002/2016GB005378, 2017.
Bowles, M. W., Mogollon, J. M., Kasten, S., Zabel, M., and Hinrichs, K.-U.:
Global rates of marine sulfate reduction and implications for sub-sea-floor
metabolic activities, Science, 344, 889–891,
https://doi.org/10.1126/science.1249213, 2014.
Bradley, J. A., Arndt, S., Amend, J. P., Burwicz, E., Dale, A. W., Egger,
M., and LaRowe, D. E.: Widespread energy limitation to life in global
subseafloor sediments, Sci. Adv., 6, eaba0697,
https://doi.org/10.1126/sciadv.aba0697, 2020.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University
Press, Princeton, NJ, 609 pp., 2006.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments:
Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Canfield, D. E.: Factors influencing organic carbon preservation in marine
sediments, Chem. Geol., 114, 315–329,
https://doi.org/10.1016/0009-2541(94)90061-2, 1994.
Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J.,
Ramsing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P., and Hall, P. O.
J.: Pathways of organic carbon oxidation in three continental margin
sediments, Mar. Geol., 113, 27–40,
https://doi.org/10.1016/0025-3227(93)90147-N, 1993.
Cathalot, C., Rabouille, C., Pastor, L., Deflandre, B., Viollier, E.,
Buscail, R., Grémare, A., Treignier, C., and Pruski, A.: Temporal
variability of carbon recycling in coastal sediments influenced by rivers:
assessing the impact of flood inputs in the Rhône River prodelta,
Biogeosciences, 7, 1187–1205, https://doi.org/10.5194/bg-7-1187-2010, 2010.
Chen, D. and Chen, H. W.: Using the Köppen classification to quantify
climate variation and change: An example for 1901–2010, Environ. Dev., 6,
69–79, https://doi.org/10.1016/j.envdev.2013.03.007, 2013.
Contreras, S., Meister, P., Liu, B., Prieto-Mollar, X., Hinrichs, K.-U.,
Khalili, A., Ferdelman, T. G., Kuypers, M. M. M., and Jorgensen, B. B.:
Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation
on the Peruvian shelf, P. Natl. Acad. Sci. USA, 110, 18098–18103,
https://doi.org/10.1073/pnas.1305981110, 2013.
Cowie, G.: The biogeochemistry of Arabian Sea surficial sediments: A review
of recent studies, Prog. Oceanogr., 65, 260–289,
https://doi.org/10.1016/j.pocean.2005.03.003, 2005.
Coyle, K. O., Pinchuk, A. I., Eisner, L. B., and Napp, J. M.: Zooplankton
species composition, abundance and biomass on the eastern Bering Sea shelf
during summer: The potential role of water-column stability and nutrients in
structuring the zooplankton community, Deep-Sea Res. Pt. II, 55, 1775–1791, https://doi.org/10.1016/j.dsr2.2008.04.029, 2008.
Cram, J. A., Weber, T., Leung, S. W., McDonnell, A. M. P., Liang, J.-H., and
Deutsch, C.: The Role of Particle Size, Ballast, Temperature, and Oxygen in
the Sinking Flux to the Deep Sea, Global Biogeochem. Cy., 32, 858–876,
https://doi.org/10.1029/2017GB005710, 2018.
Dai, J., Sun, M.-Y., Culp, R. A., and Noakes, J. E.: A laboratory study on
biochemical degradation and microbial utilization of organic matter
comprising a marine diatom, land grass, and salt marsh plant in estuarine
ecosystems, Aquat. Ecol., 43, 825–841,
https://doi.org/10.1007/s10452-008-9211-x, 2009.
Dale, A. W., Regnier, P., Knab, N. J., Jørgensen, B. B., and Van
Cappellen, P.: Anaerobic oxidation of methane (AOM) in marine sediments from
the Skagerrak (Denmark): II. Reaction-transport modeling, Geochim.
Cosmochim. Ac., 72, 2880–2894, https://doi.org/10.1016/j.gca.2007.11.039,
2008a.
Dale, A. W., Aguilera, D. R., Regnier, P., Fossing, H., Knab, N. J., and
Jørgensen, B. B.: Seasonal dynamics of the depth and rate of anaerobic
oxidation of methane in Aarhus Bay (Denmark) sediments, J. Mar. Res., 66,
127–155, https://doi.org/10.1357/002224008784815775, 2008b.
Dale, A. W., Brüchert, V., Alperin, M., and Regnier, P.: An integrated
sulfur isotope model for Namibian shelf sediments, Geochim. Cosmochim. Ac.,
73, 1924–1944, https://doi.org/10.1016/j.gca.2008.12.015, 2009.
Dale, A. W., Flury, S., Fossing, H., Regnier, P., Røy, H., Scholze, C.,
and Jørgensen, B. B.: Kinetics of organic carbon mineralization and
methane formation in marine sediments (Aarhus Bay, Denmark), Geochim.
Cosmochim. Ac., 252, 159–178, https://doi.org/10.1016/j.gca.2019.02.033,
2019.
Dauwe, B., Middelburg, J. J., Van Rijswijk, P., Sinke, J., Herman, P. M. J.,
and Heip, C. H. R.: Enzymatically hydrolyzable amino acids in North Sea
sediments and their possible implication for sediment nutritional values, J.
Mar. Res., 57, 109–134, https://doi.org/10.1357/002224099765038580, 1999a.
Dauwe, B., Middelburg, J. J., Herman, P. M. J., and Heip, C. H. R.: Linking
diagenetic alteration of amino acids and bulk organic matter reactivity,
Limnol. Oceanogr., 44, 1809–1814,
https://doi.org/10.4319/lo.1999.44.7.1809, 1999b.
de Haas, H. and van Weering, T. C. E.: Recent sediment accumulation, organic
carbon burial and transport in the northeastern North Sea, Mar. Geol., 136,
173–187, https://doi.org/10.1016/S0025-3227(96)00072-2, 1997.
Dyer, K. R.: Sedimentation processes in the Bristol Channel/Severn Estuary,
Mar. Pollut. Bull., 15, 53–57,
https://doi.org/10.1016/0025-326X(84)90462-4, 1984.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.:
Global diffusive fluxes of methane in marine sediments, Nat. Geosci., 11,
421–425, https://doi.org/10.1038/s41561-018-0122-8, 2018.
Emerson, S. and Hedges, J. I.: Processes controlling the organic carbon
content of open ocean sediments, Paleoceanography, 3, 621–634,
https://doi.org/10.1029/PA003i005p00621, 1988.
Faust, J. C., Tessin, A., Fisher, B. J., Zindorf, M., Papadaki, S., Hendry,
K. R., Doyle, K. A., and März, C.: Millennial scale persistence of
organic carbon bound to iron in Arctic marine sediments, Nat. Commun., 12,
275, https://doi.org/10.1038/s41467-020-20550-0, 2021.
Fleming-Lehtinen, V. and Laamanen, M.: Long-term changes in Secchi depth and
the role of phytoplankton in explaining light attenuation in the Baltic Sea,
Estuar. Coast. Shelf Sci., 102/103, 1–10,
https://doi.org/10.1016/j.ecss.2012.02.015, 2012.
Flury, S., Røy, H., Dale, A. W., Fossing, H., Tóth, Z., Spiess, V.,
Jensen, J. B., and Jørgensen, B. B.: Controls on subsurface methane
fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay,
Denmark), Geochim. Cosmochim. Ac., 188, 297–309,
https://doi.org/10.1016/j.gca.2016.05.037, 2016.
Forney, D. C. and Rothman, D. H.: Inverse method for estimating respiration
rates from decay time series, Biogeosciences, 9, 3601–3612,
https://doi.org/10.5194/bg-9-3601-2012, 2012.
Freitas, F. S., Hendry, K. R., Henley, S. F., Faust, J. C., Tessin, A. C.,
Stevenson, M. A., Abbott, G. D., März, C., and Arndt, S.:
Benthic-pelagic coupling in the Barents Sea: an integrated data-model
framework, Phil. Trans. R. Soc. A., 378, 1–15,
https://doi.org/10.1098/rsta.2019.0359, 2020.
Freitas, F. S.: Model code for New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation, Zenodo [data set], https://doi.org/10.5281/zenodo.5172047 (last access: 9 August 2021), 2021.
Gersonde, R.: The expedition of the research vessel “Sonne” to the
subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX) (Reports on
polar and marine research No. 643), Alfred Wegener Institute for Polar and
Marine Research, Bremerhaven, 2009.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4,
243–289, https://doi.org/10.1080/17451000801888726, 2008.
Griffith, D. R., Martin, W. R., and Eglinton, T. I.: The radiocarbon age of
organic carbon in marine surface sediments, Geochim. Cosmochim. Ac., 74,
6788–6800, https://doi.org/10.1016/j.gca.2010.09.001, 2010.
Grossi, V., Caradec, S., and Gilbert, F.: Burial and reactivity of
sedimentary microalgal lipids in bioturbated Mediterranean coastal
sediments, Mar. Chem., 81, 57–69,
https://doi.org/10.1016/S0304-4203(02)00139-1, 2003.
Grotheer, H., Meyer, V., Riedel, T., Pfalz, G., Mathieu, L., Hefter, J.,
Gentz, T., Lantuit, H., Mollenhauer, G., and Fritz, M.: Burial and Origin of
Permafrost-Derived Carbon in the Nearshore Zone of the Southern Canadian
Beaufort Sea, Geophys. Res. Lett., 47, e2019GL085897,
https://doi.org/10.1029/2019GL085897, 2020.
Guenet, B., Danger, M., Abbadie, L., and Lacroix, G.: Priming effect:
bridging the gap between terrestrial and aquatic ecology, Ecology, 91,
2850–2861, https://doi.org/10.1890/09-1968.1, 2010.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments, Nature, 391, 572–575, https://doi.org/10.1038/35351, 1998.
Hedges, J. I.: Global biogeochemical cycles: progress and problems, Mar.
Chem., 39, 67–93, https://doi.org/10.1016/0304-4203(92)90096-S, 1992.
Hedges, J. I. and Oades, J. M.: Comparative organic geochemistries of soils
and marine sediments, Org. Geochem., 27, 319–361,
https://doi.org/10.1016/S0146-6380(97)00056-9, 1997.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, Org. Geochem., 27, 195–212,
https://doi.org/10.1016/S0146-6380(97)00066-1, 1997.
Heggie, D., Maris, C., Hudson, A., Dymond, J., Beach, R., and Cullen, J.:
Organic carbon oxidation and preservation in NW Atlantic continental margin
sediments, Geol. Soc. Lond. Spec. Publ., 31, 215,
https://doi.org/10.1144/GSL.SP.1987.031.01.15, 1987.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231,
https://doi.org/10.1038/s41586-019-1280-6, 2019.
Henkel, S. and Kulkarni, A.: Documentation of sediment core HE443/10-3,
https://doi.org/10.1594/PANGAEA.855884, 2015.
Henkel, S., Strasser, M., Schwenk, T., Hanebuth, T. J. J., Hüsener, J.,
Arnold, G. L., Winkelmann, D., Formolo, M., Tomasini, J., Krastel, S., and
Kasten, S.: An interdisciplinary investigation of a recent submarine mass
transport deposit at the continental margin off Uruguay, Geochem. Geophy.
Geosy., 12, 1–19, https://doi.org/10.1029/2011GC003669, 2011.
Henkel, S., Mogollón, J. M., Nöthen, K., Franke, C., Bogus, K.,
Robin, E., Bahr, A., Blumenberg, M., Pape, T., Seifert, R., März, C., de
Lange, G. J., and Kasten, S.: Diagenetic barium cycling in Black Sea
sediments – A case study for anoxic marine environments, Geochim.
Cosmochim. Ac., 88, 88–105, https://doi.org/10.1016/j.gca.2012.04.021,
2012.
Henrichs, S. M.: Early diagenesis of organic matter in marine sediments:
progress and perplexity, Mar. Chem., 39, 119–149,
https://doi.org/10.1016/0304-4203(92)90098-U, 1992.
Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N.,
Schulz, H. D., and Boetius, A.: Control of sulfate pore-water profiles by
sedimentary events and the significance of anaerobic oxidation of methane
for the burial of sulfur in marine sediments, Geochim. Cosmochim. Ac., 67,
2631–2647, https://doi.org/10.1016/S0016-7037(03)00199-6, 2003.
Hensen, C., Zabel, M., and Schulz, H. N.: Benthic Cycling of Oxygen,
Nitrogen and Phosphorus, in: Marine Geochemistry, edited by: Schulz, H. D.
and Zabel, M., Springer-Verlag, Berlin/Heidelberg, 207–240,
https://doi.org/10.1007/3-540-32144-6_ 6, 2006.
Hilligsøe, K. M., Jensen, J. B., Ferdelman, T. G., Fossing, H., Lapham,
L., Røy, H., and Jørgensen, B. B.: Methane fluxes in marine sediments
quantified through core analyses and seismo-acoustic mapping (Bornholm
Basin, Baltic Sea), Geochim. Cosmochim. Ac., 239, 255–274,
https://doi.org/10.1016/j.gca.2018.07.040, 2018.
Ho, T. C. and Aris, R.: On apparent second-order kinetics, AIChE J., 33,
1050–1051, https://doi.org/10.1002/aic.690330621, 1987.
Hoefs, M. J. L., Rijpstra, W. I. C., and Sinninghe Damsté, J. S.: The
influence of oxic degradation on the sedimentary biomarker record I:
evidence from Madeira Abyssal Plain turbidites, Geochim. Cosmochim. Ac.,
66, 2719–2735, https://doi.org/10.1016/S0016-7037(02)00864-5, 2002.
Huguet, C., de Lange, G. J., Gustafsson, Ö., Middelburg, J. J.,
Sinninghe Damsté, J. S., and Schouten, S.: Selective preservation of
soil organic matter in oxidized marine sediments (Madeira Abyssal Plain),
Geochim. Cosmochim. Ac., 72, 6061–6068,
https://doi.org/10.1016/j.gca.2008.09.021, 2008.
Hülse, D., Arndt, S., Daines, S., Regnier, P., and Ridgwell, A.: OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models, Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, 2018.
Hülse, D., Arndt, S., and Ridgwell, A.: Mitigation of Extreme Ocean
Anoxic Event Conditions by Organic Matter Sulfurization, Paleoceanogr.
Paleocl., 34, 476–489, https://doi.org/10.1029/2018PA003470, 2019.
Jensen, M., Lomstein, E., and Sørensen, J.: Benthic NH and NO flux
following sedimentation of a spring phytoplankton bloom in Aarhus Bight,
Denmark, Mar. Ecol. Prog. Ser., 61, 87–96,
https://doi.org/10.3354/meps061087, 1990.
Jonas, P. J. C. and Millward, G. E.: Metals and nutrients in the Severn
Estuary and Bristol Channel: Contemporary inputs and distributions, Mar.
Pollut. Bull., 61, 52–67, https://doi.org/10.1016/j.marpolbul.2009.12.013,
2010.
Jørgensen, B. B. and Kasten, S.: Sulfur Cycling and Methane Oxidation,
in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M.,
Springer-Verlag, Berlin/Heidelberg, 271–309,
https://doi.org/10.1007/3-540-32144-6_8, 2006.
Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., and
Røy, H.: Organoclastic sulfate reduction in the sulfate-methane
transition of marine sediments, Geochim. Cosmochim. Ac., 254, 231–245,
https://doi.org/10.1016/j.gca.2019.03.016, 2019a.
Jørgensen, B. B., Findlay, A. J., and Pellerin, A.: The Biogeochemical
Sulfur Cycle of Marine Sediments, Front. Microbiol., 10, 849,
https://doi.org/10.3389/fmicb.2019.00849, 2019b.
Jourabchi, P.: Quantitative interpretation of pH distributions in aquatic
sediments: A reaction-transport modeling approach, Am. J. Sci., 305,
919–956, https://doi.org/10.2475/ajs.305.9.919, 2005.
Karlson, B., Edler, L., Granéli, W., Sahlsten, E., and Kuylenstierna,
M.: Subsurface chlorophyll maxima in the Skagerrak-processes and plankton
community structure, J. Sea Res., 35, 139–158,
https://doi.org/10.1016/S1385-1101(96)90742-X, 1996.
Kayler, Z. E., Premke, K., Gessler, A., Gessner, M. O., Griebler, C., Hilt,
S., Klemedtsson, L., Kuzyakov, Y., Reichstein, M., Siemens, J., Totsche,
K.-U., Tranvik, L., Wagner, A., Weitere, M., and Grossart, H.-P.:
Integrating Aquatic and Terrestrial Perspectives to Improve Insights Into
Organic Matter Cycling at the Landscape Scale, Front. Earth Sci., 7, 127,
https://doi.org/10.3389/feart.2019.00127, 2019.
Keil, R. G. and Cowie, G. L.: Organic matter preservation through the
oxygen-deficient zone of the NE Arabian Sea as discerned by organic
carbon:mineral surface area ratios, Mar. Geol., 161, 13–22,
https://doi.org/10.1016/S0025-3227(99)00052-3, 1999.
Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg,
R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Böttcher, B.,
Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., and Mohr, W.:
Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition
of Particulate Organic Carbon in the Ocean, Front. Mar. Sci., 7, 518,
https://doi.org/10.3389/fmars.2020.00518, 2020.
Knab, N. J., Cragg, B. A., Borowski, C., Parkes, R. J., Pancost, R., and
Jørgensen, B. B.: Anaerobic oxidation of methane (AOM) in marine
sediments from the Skagerrak (Denmark): I. Geochemical and microbiological
analyses, Geochim. Cosmochim. Ac., 72, 2868–2879,
https://doi.org/10.1016/j.gca.2008.03.016, 2008.
Koho, K. A., Nierop, K. G. J., Moodley, L., Middelburg, J. J., Pozzato, L.,
Soetaert, K., van der Plicht, J., and Reichart, G.-J.: Microbial
bioavailability regulates organic matter preservation in marine sediments,
Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013,
2013.
Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., and Regnier, P.:
Dissolved inorganic carbon and alkalinity fluxes from coastal marine
sediments: model estimates for different shelf environments and sensitivity
to global change, Biogeosciences, 10, 371–398,
https://doi.org/10.5194/bg-10-371-2013, 2013.
Kusch, S., Rethemeyer, J., Ransby, D., and Mollenhauer, G.: Permafrost
Organic Carbon Turnover and Export Into a High-Arctic Fjord: A Case Study
From Svalbard Using Compound-specific 14C Analysis, J. Geophys. Res.-Biogeo., 126, e2020JG006008, https://doi.org/10.1029/2020JG006008,
2021.
LaRowe, D. E., Arndt, S., Bradley, J. A., Burwicz, E., Dale, A. W., and
Amend, J. P.: Organic carbon and microbial activity in marine sediments on a
global scale throughout the Quaternary, Geochim. Cosmochim. Ac., 286,
227–247, https://doi.org/10.1016/j.gca.2020.07.017, 2020a.
LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang,
S. Q., Lloyd, K. G., Mahmoudi, N., Orsi, W. D., Shah Walter, S. R., Steen,
A. D., and Zhao, R.: The fate of organic carbon in marine sediments – New
insights from recent data and analysis, Earth-Sci. Rev., 204, 103146,
https://doi.org/10.1016/j.earscirev.2020.103146, 2020b.
Latasa, M. and Bidigare, R. R.: A comparison of phytoplankton populations of
the Arabian Sea during the Spring Intermonsoon and Southwest Monsoon of 1995
as described by HPLC-analyzed pigments, Deep-Sea Res. Pt. II, 45, 2133–2170, https://doi.org/10.1016/S0967-0645(98)00066-6,
1998.
Lengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R.,
Talbot, H. M., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., and Pancost, R. D.: Dark carbon fixation in the Arabian
Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM),
Global Biogeochem. Cy., 2019GB006282,
https://doi.org/10.1029/2019GB006282, 2019.
Lessin, G., Artioli, Y., Almroth-Rosell, E., Blackford, J. C., Dale, A. W.,
Glud, R. N., Middelburg, J. J., Pastres, R., Queirós, A. M., Rabouille,
C., Regnier, P., Soetaert, K., Solidoro, C., Stephens, N., and Yakushev, E.:
Modelling Marine Sediment Biogeochemistry: Current Knowledge Gaps,
Challenges, and Some Methodological Advice for Advancement, Front. Mar.
Sci., 5, 1–8, https://doi.org/10.3389/fmars.2018.00019, 2018.
Lohse, L., Malschaert, J. F. P., Slomp, C. P., Helder, W., and van
Raaphorst, W.: Sediment-water fluxes of inorganic nitrogen compounds along
the transport route of organic matter in the North Sea, Ophelia, 41,
173–197, https://doi.org/10.1080/00785236.1995.10422043, 1995.
Lomstein, E., Jensen, M. H., and Sørensen, J.: Intracellular NH and
NO pools associated with deposited phytoplankton in a marine sediment
(Aarhus Bight, Denmark), Mar. Ecol. Prog. Ser., 61, 97–105, 1990.
Luff, R., Wallmann, K., Grandel, S., and Schlüter, M.: Numerical
modeling of benthic processes in the deep Arabian Sea, Deep-Sea Res. Pt. II, 47, 3039–3072,
https://doi.org/10.1016/S0967-0645(00)00058-8, 2000.
Mackin, J. E. and Swider, K. T.: Organic matter decomposition pathways and
oxygen consumption in coastal marine sediments, J. Mar. Res., 47, 681–716,
https://doi.org/10.1357/002224089785076154, 1989.
Maerz, J., Six, K. D., Stemmler, I., Ahmerkamp, S., and Ilyina, T.: Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean, Biogeosciences, 17, 1765–1803, https://doi.org/10.5194/bg-17-1765-2020, 2020.
Manning, A. J., Langston, W. J., and Jonas, P. J. C.: A review of sediment
dynamics in the Severn Estuary: Influence of flocculation, Mar. Pollut.
Bull., 61, 37–51, https://doi.org/10.1016/j.marpolbul.2009.12.012, 2010.
Marquardt, M., Hensen, C., Piñero, E., Wallmann, K., and Haeckel, M.: A
transfer function for the prediction of gas hydrate inventories in marine
sediments, Biogeosciences, 7, 2925–2941,
https://doi.org/10.5194/bg-7-2925-2010, 2010.
Mayer, L. M.: Relationships between mineral surfaces and organic carbon
concentrations in soils and sediments, Chem. Geol., 114, 347–363,
https://doi.org/10.1016/0009-2541(94)90063-9, 1994a.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994b.
Mayer, L. M.: Sedimentary organic matter preservation: an assessment and
speculative synthesis – a comment, Mar. Chem., 49, 123–126,
https://doi.org/10.1016/0304-4203(95)00011-F, 1995.
Meile, C. and Van Cappellen, P.: Particle age distributions and O 2
exposure times: Timescales in bioturbated sediments, Global Biogeochem.
Cy., 19, 1–12, https://doi.org/10.1029/2004GB002371, 2005.
Meister, P., Liu, B., Ferdelman, T. G., Jørgensen, B. B., and Khalili,
A.: Control of sulphate and methane distributions in marine sediments by
organic matter reactivity, Geochim. Cosmochim. Ac., 104, 183–193,
https://doi.org/10.1016/j.gca.2012.11.011, 2013.
Mewes, K., Mogollón, J. M., Picard, A., Rühlemann, C., Eisenhauer,
A., Kuhn, T., Ziebis, W., and Kasten, S.: Diffusive transfer of oxygen from
seamount basaltic crust into overlying sediments: An example from the
Clarion–Clipperton Fracture Zone, Earth Planet. Sc. Lett., 433, 215–225,
https://doi.org/10.1016/j.epsl.2015.10.028, 2016.
Meyers, P. A.: Organic geochemical proxies of paleoceanographic,
paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213–250,
https://doi.org/10.1016/S0146-6380(97)00049-1, 1997.
Middelburg, J. J.: A simple rate model for organic matter decomposition in
marine sediments, Geochim. Cosmochim. Ac., 53, 1577–1581,
https://doi.org/10.1016/0016-7037(89)90239-1, 1989.
Middelburg, J. J.: Reviews and syntheses: to the bottom of carbon processing
at the seafloor, Biogeosciences, 15, 413–427,
https://doi.org/10.5194/bg-15-413-2018, 2018.
Middelburg, J. J.: Marine Carbon Biogeochemistry: A Primer for Earth System
Scientists, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-030-10822-9, 2019.
Middelburg, J. J., Vlug, T., Jaco, F., and van der Nat, W. A.: Organic
matter mineralization in marine systems, Glob. Planet. Change, 8, 47–58,
https://doi.org/10.1016/0921-8181(93)90062-S, 1993.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical
relationships for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344,
https://doi.org/10.1016/S0967-0637(96)00101-X, 1997.
Mogollón, J. M., Dale, A. W., Fossing, H., and Regnier, P.: Timescales
for the development of methanogenesis and free gas layers in
recently-deposited sediments of Arkona Basin (Baltic Sea), Biogeosciences,
9, 1915–1933, https://doi.org/10.5194/bg-9-1915-2012, 2012.
Mogollón, J. M., Mewes, K., and Kasten, S.: Quantifying manganese and
nitrogen cycle coupling in manganese-rich, organic carbon-starved marine
sediments: Examples from the Clarion-Clipperton fracture zone, Geophys. Res.
Lett., 43, 7114–7123, https://doi.org/10.1002/2016GL069117, 2016.
Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R.,
Müller, P. J., Grootes, P. M., and Rullkötter, J.: Asynchronous
alkenone and foraminifera records from the Benguela Upwelling System,
Geochim. Cosmochim. Ac., 67, 2157–2171,
https://doi.org/10.1016/S0016-7037(03)00168-6, 2003.
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.
S., and Eglinton, T. I.: Aging of marine organic matter during cross-shelf
lateral transport in the Benguela upwelling system revealed by
compound-specific radiocarbon dating, Geochem. Geophy. Geosy., 8,
1–16, https://doi.org/10.1029/2007GC001603, 2007.
Müller, P. J. and Suess, E.: Productivity, sedimentation rate, and
sedimentary organic matter in the oceans – I. Organic carbon preservation,
Deep-Sea Res. Pt. A, 26, 1347–1362,
https://doi.org/10.1016/0198-0149(79)90003-7, 1979.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H. D.:
Deep Sulfate Reduction Completely Mediated by Anaerobic Methane Oxidation in
Sediments of the Upwelling Area off Namibia, Geochim. Cosmochim. Ac., 62,
455–464, https://doi.org/10.1016/S0016-7037(98)00055-6, 1998.
Ohkouchi, N., Eglinton, T. I., Keigwin, L. D., and Hayes, J. M.: Spatial and
Temporal Offsets Between Proxy Records in a Sediment Drift, Science, 298,
1224, https://doi.org/10.1126/science.1075287, 2002.
Oni, O., Miyatake, T., Kasten, S., Richter-Heitmann, T., Fischer, D.,
Wagenknecht, L., Kulkarni, A., Blumers, M., Shylin, S. I., Ksenofontov, V.,
Costa, B. F. O., Klingelhöfer, G., and Friedrich, M. W.: Distinct
microbial populations are tightly linked to the profile of dissolved iron in
the methanic sediments of the Helgoland mud area, North Sea, Front.
Microbiol., 6, 365, https://doi.org/10.3389/fmicb.2015.00365, 2015a.
Oni, O. E., Schmidt, F., Miyatake, T., Kasten, S., Witt, M., Hinrichs,
K.-U., and Friedrich, M. W.: Microbial Communities and Organic Matter
Composition in Surface and Subsurface Sediments of the Helgoland Mud Area,
North Sea, Front. Microbiol., 6, 1290, https://doi.org/10.3389/fmicb.2015.01290,
2015b.
Owings, S. M., Bréthous, L., Eitel, E. M., Fields, B. P., Boever, A.,
Beckler, J. S., Bombled, B., Lansard, B., Metzger, E., Rabouille, C., and
Taillefert, M.: Differential manganese and iron recycling and transport in
continental margin sediments of the Northern Gulf of Mexico, Mar. Chem.,
229, 103908, https://doi.org/10.1016/j.marchem.2020.103908, 2021.
Pastor, L., Deflandre, B., Viollier, E., Cathalot, C., Metzger, E.,
Rabouille, C., Escoubeyrou, K., Lloret, E., Pruski, A. M., Vétion, G.,
Desmalades, M., Buscail, R., and Grémare, A.: Influence of the organic
matter composition on benthic oxygen demand in the Rhône River prodelta
(NW Mediterranean Sea), Cont. Shelf Res., 31, 1008–1019,
https://doi.org/10.1016/j.csr.2011.03.007, 2011.
Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., and Walsh, J. J.: The
nature and distribution of organic matter in the surface sediments of world
oceans and seas, Org. Geochem., 4, 63–77,
https://doi.org/10.1016/0146-6380(82)90009-2, 1982.
Pruski, A. M., Buscail, R., Bourgeois, S., Vétion, G., Coston-Guarini,
J., and Rabouille, C.: Biogeochemistry of fatty acids in a river-dominated
Mediterranean ecosystem (Rhône River prodelta, Gulf of Lions, France):
Origins and diagenesis, Org. Geochem., 83/84, 227–240,
https://doi.org/10.1016/j.orggeochem.2015.04.002, 2015.
Puglini, M., Brovkin, V., Regnier, P., and Arndt, S.: Assessing the
potential for non-turbulent methane escape from the East Siberian Arctic
Shelf, Biogeosciences, 17, 3247–3275,
https://doi.org/10.5194/bg-17-3247-2020, 2020.
Ragavan, P. and Kumar, S.: Potential role of priming effect in the open
ocean oxygen minimum zones: an outlook, Hydrobiologia,
848, 2437–2448,
https://doi.org/10.1007/s10750-021-04574-1, 2021.
Rassmann, J., Lansard, B., Pozzato, L., and Rabouille, C.: Carbonate
chemistry in sediment porewaters of the Rhône River deltadriven by early
diagenesis (northwestern Mediterranean), Biogeosciences, 13, 5379–5394,
https://doi.org/10.5194/bg-13-5379-2016, 2016.
Rassmann, J., Eitel, E. M., Lansard, B., Cathalot, C., Brandily, C.,
Taillefert, M., and Rabouille, C.: Benthic alkalinity and dissolved
inorganic carbon fluxes in the Rhône River prodelta generated by
decoupled aerobic and anaerobic processes, Biogeosciences, 17, 13–33,
https://doi.org/10.5194/bg-17-13-2020, 2020.
Regnier, P., Mouchet, A., Wollast, R., and Ronday, F.: A discussion of
methods for estimating residual fluxes in strong tidal estuaries, Cont.
Shelf Res., 18, 1543–1571, https://doi.org/10.1016/S0278-4343(98)00071-5,
1998.
Regnier, P., O'Kane, J. P., Steefel, C. I., and Vanderborght, J. P.:
Modeling complex multi-component reactive-transport systems: towards a
simulation environment based on the concept of a Knowledge Base, Appl. Math.
Model., 26, 913–927, https://doi.org/10.1016/S0307-904X(02)00047-1, 2002.
Regnier, P., Dale, A. W., Arndt, S., LaRowe, D. E., Mogollón, J., and
Van Cappellen, P.: Quantitative analysis of anaerobic oxidation of methane
(AOM) in marine sediments: A modeling perspective, Earth-Sci. Rev., 106,
105–130, https://doi.org/10.1016/j.earscirev.2011.01.002, 2011.
Riedinger, N., Pfeifer, K., Kasten, S., Garming, J. F. L., Vogt, C., and
Hensen, C.: Diagenetic Alteration of Magnetic Signals by Anaerobic Oxidation
of Methane Related to a Change in Sedimentation Rate, Geochim. Cosmochim. Ac., 69, 4117–4126, https://doi.org/10.1016/j.gca.2005.02.004, 2005.
Riedinger, N., Formolo, M. J., Lyons, T. W., Henkel, S., Beck, A., and
Kasten, S.: An inorganic geochemical argument for coupled anaerobic
oxidation of methane and iron reduction in marine sediments, Geobiology, 12,
172–181, https://doi.org/10.1111/gbi.12077, 2014.
Riedinger, N., Brunner, B., Krastel, S., Arnold, G. L., Wehrmann, L. M.,
Formolo, M. J., Beck, A., Bates, S. M., Henkel, S., Kasten, S., and Lyons,
T. W.: Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine
Depositional System: The Argentine Continental Margin, Front. Earth Sci., 5,
33, 1–19, https://doi.org/10.3389/feart.2017.00033, 2017.
Rixen, T., Gaye, B., and Emeis, K.-C.: The monsoon, carbon fluxes, and the
organic carbon pump in the northern Indian Ocean, Prog. Oceanogr., 175,
24–39, https://doi.org/10.1016/j.pocean.2019.03.001, 2019.
Rysgaard, S., Fossing, H., and Jensen, M. M.: Organic matter degradation
through oxygen respiration, denitrification, and manganese, iron, and
sulfate reduction in marine sediments (the Kattegat and the Skagerrak),
Ophelia, 55, 77–91, https://doi.org/10.1080/00785236.2001.10409475, 2001.
Salvadó, J. A., Tesi, T., Andersson, A., Ingri, J., Dudarev, O. V.,
Semiletov, I. P., and Gustafsson, Ö.: Organic carbon remobilized from
thawing permafrost is resequestered by reactive iron on the Eurasian Arctic
Shelf, Geophys. Res. Lett., 42, 8122–8130,
https://doi.org/10.1002/2015GL066058, 2015.
Schlitzer, R.: Ocean data view, available at: https://odv.awi.de (last access: 20 November 2020), 2019.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Schulz, H. D., Dahmke, A., Schinzel, U., Wallmann, K., and Zabel, M.: Early
diagenetic processes, fluxes, and reaction rates in sediments of the South
Atlantic, Geochim. Cosmochim. Ac., 58, 2041–2060,
https://doi.org/10.1016/0016-7037(94)90284-4, 1994.
Seiter, K., Hensen, C., Schröter, J., and Zabel, M.: Organic carbon
content in surface sediments – defining regional provinces, Deep Sea Res.
Part Oceanogr. Res. Pap., 51, 2001–2026,
https://doi.org/10.1016/j.dsr.2004.06.014, 2004.
Seiter, K., Hensen, C., and Zabel, M.: Benthic carbon mineralization on a
global scale, Global Biogeochem. Cy., 19, 1–26,
https://doi.org/10.1029/2004GB002225, 2005.
Shalapyonok, A., Olson, R. J., and Shalapyonok, L. S.: Arabian Sea
phytoplankton during Southwest and Northeast Monsoons 1995: composition,
size structure and biomass from individual cell properties measured by flow
cytometry, Deep-Sea Res. Pt. II, 48, 1231–1261,
https://doi.org/10.1016/S0967-0645(00)00137-5, 2001.
Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., and
Twilley, R. R.: Enhanced terrestrial carbon preservation promoted by
reactive iron in deltaic sediments, Geophys. Res. Lett., 43, 1149–1157,
https://doi.org/10.1002/2015GL067388, 2016.
Sinninghe Damsté, J. S., Irene, W., Rijpstra, C., de Leeuw, J. W., and
Schenck, P. A.: Origin of organic sulphur compounds and sulphur-containing
high molecular weight substances in sediments and immature crude oils, Org.
Geochem., 13, 593–606, https://doi.org/10.1016/0146-6380(88)90079-4, 1988.
Sinninghe Damsté, J. S., Kok, M. D., Köster, J., and Schouten, S.:
Sulfurized carbohydrates: an important sedimentary sink for organic carbon?,
Earth Planet. Sc. Lett., 164, 7–13,
https://doi.org/10.1016/S0012-821X(98)00234-9, 1998.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., and Reichart, G.: The
influence of oxic degradation on the sedimentary biomarker record II.
Evidence from Arabian Sea sediments, Geochim. Cosmochim. Ac., 66,
2737–2754, https://doi.org/10.1016/S0016-7037(02)00865-7, 2002.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early
diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim. Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996.
Soetaert, K., Herman, P. M. J., Middelburg, J. J., and Heip, C.: Assessing
organic matter mineralization, degradability and mixing rate in an ocean
margin sediment (Northeast Atlantic) by diagenetic modeling, J. Mar. Res.,
56, 519–534, https://doi.org/10.1357/002224098321822401, 1998.
Stabeno, P. J. and Hunt, G. L.: Overview of the Inner Front and Southeast
Bering Sea Carrying Capacity Programs, Deep-Sea Res. Pt. II, 49, 6157–6168, https://doi.org/10.1016/S0967-0645(02)00339-9,
2002.
Stevenson, M. A., Faust, J. C., Andrade, L. L., Freitas, F. S., Gray, N. D.,
Tait, K., Hendry, K. R., Hilton, R. G., Henley, S. F., Tessin, A., Leary,
P., Papadaki, S., Ford, A., März, C., and Abbott, G. D.: Transformation
of organic matter in a Barents Sea sediment profile: coupled geochemical and
microbiological processes, Philos. T. R. Soc. Math. Phys. Eng. Sci.,
378, 20200223, https://doi.org/10.1098/rsta.2020.0223, 2020.
Stockwell, D. A., Whitledge, T. E., Zeeman, S. I., Coyle, K. O., Napp, J.
M., Brodeur, R. D., Pinchuk, A. I., and Hunt, G. L.: Anomalous conditions in
the south-eastern Bering Sea, 1997: nutrients, phytoplankton and
zooplankton, Fish. Oceanogr., 10, 99–116,
https://doi.org/10.1046/j.1365-2419.2001.00158.x, 2001.
Sun, M.-Y. and Wakeham, S. G.: Molecular evidence for degradation and
preservation of organic matter in the anoxic Black Sea Basin, Geochim.
Cosmochim. Ac., 58, 3395–3406,
https://doi.org/10.1016/0016-7037(94)90094-9, 1994.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Thomas, S.: The response of anaerobic prokaryotic processes and communities
in the Severn Estuary sediments to environmental changes, Cardiff
University, Cardiff, 2014.
Thullner, M., Dale, A. W., and Regnier, P.: Global-scale quantification of
mineralization pathways in marine sediments: A reaction-transport modeling
approach, Geochem. Geophy. Geosy., 10, 1–24,
https://doi.org/10.1029/2009GC002484, 2009.
Tromp, T. K., Van Cappellen, P., and Key, R. M.: A global model for the
early diagenesis of organic carbon and organic phosphorus in marine
sediments, Geochim. Cosmochim. Ac., 59, 1259–1284,
https://doi.org/10.1016/0016-7037(95)00042-X, 1995.
Uncles, R. J.: Physical properties and processes in the Bristol Channel and
Severn Estuary, Mar. Pollut. Bull., 61, 5–20,
https://doi.org/10.1016/j.marpolbul.2009.12.010, 2010.
Van Cappellen, P. and Wang, Y.: Cycling of iron and manganese in surface
sediments; a general theory for the coupled transport and reaction of
carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296,
197–243, https://doi.org/10.2475/ajs.296.3.197, 1996.
van Nugteren, P., Moodley, L., Brummer, G.-J., Heip, C. H. R., Herman, P. M.
J., and Middelburg, J. J.: Seafloor ecosystem functioning: the importance of
organic matter priming, Mar. Biol., 156, 2277–2287,
https://doi.org/10.1007/s00227-009-1255-5, 2009.
Van Weering, T. C. E., Berger, G. W., and Kalf, J.: Recent sediment
accumulation in the Skagerrak, Northeastern North Sea, Neth. J. Sea Res.,
21, 177–189, https://doi.org/10.1016/0077-7579(87)90011-1, 1987.
Vandewiele, S., Cowie, G., Soetaert, K., and Middelburg, J. J.: Amino acid
biogeochemistry and organic matter degradation state across the Pakistan
margin oxygen minimum zone, Deep-Sea Res. Pt. II, 56,
376–392, https://doi.org/10.1016/j.dsr2.2008.05.035, 2009.
Vasquez-Cardenas, D., Meysman, F. J. R., and Boschker, H. T. S.: A
Cross-System Comparison of Dark Carbon Fixation in Coastal Sediments, Global
Biogeochem. Cy., 34, e2019GB006298, https://doi.org/10.1029/2019GB006298,
2020.
Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J., and Peterson, M. J.:
Molecular indicators of diagenetic status in marine organic matter, Geochim.
Cosmochim. Ac., 61, 5363–5369,
https://doi.org/10.1016/S0016-7037(97)00312-8, 1997.
Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G., and
Tishchenko, P.: Kinetics of organic matter degradation, microbial methane
generation, and gas hydrate formation in anoxic marine sediments, Geochim.
Cosmochim. Ac., 70, 3905–3927, https://doi.org/10.1016/j.gca.2006.06.003,
2006.
Wang, D., Zhu, M.-X., Yang, G.-P., and Ma, W.-W.: Reactive Iron and
Iron-Bound Organic Carbon in Surface Sediments of the River-Dominated Bohai
Sea (China) Versus the Southern Yellow Sea, J. Geophys. Res.-Biogeo.,
124, 79–98, https://doi.org/10.1029/2018JG004722, 2019.
Wang, Y. and Van Cappellen, P.: A multicomponent reactive transport model of
early diagenesis: Application to redox cycling in coastal marine sediments,
Geochim. Cosmochim. Ac., 60, 2993–3014,
https://doi.org/10.1016/0016-7037(96)00140-8, 1996.
Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.: Deep
ocean nutrients imply large latitudinal variation in particle transfer
efficiency, P. Natl. Acad. Sci. USA, 113, 8606–8611,
https://doi.org/10.1073/pnas.1604414113, 2016.
Wehrmann, L. M., Arndt, S., März, C., Ferdelman, T. G., and Brunner, B.:
The evolution of early diagenetic signals in Bering Sea subseafloor
sediments in response to varying organic carbon deposition over the last
4.3 Ma, Geochim. Cosmochim. Ac., 109, 175–196,
https://doi.org/10.1016/j.gca.2013.01.025, 2013.
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in
bacterial sulfate reduction: The G model tested, Limnol. Oceanogr., 29,
236–249, https://doi.org/10.4319/lo.1984.29.2.0236, 1984.
Wiltshire, K. H. and Manly, B. F. J.: The warming trend at Helgoland Roads,
North Sea: phytoplankton response, Helgol. Mar. Res., 58, 269–273,
https://doi.org/10.1007/s10152-004-0196-0, 2004.
Ye, H., Yang, T., Zhu, G., Jiang, S., and Wu, L.: Pore water geochemistry in
shallow sediments from the northeastern continental slope of the South China
sea, Mar. Pet. Geol., 75, 68–82,
https://doi.org/10.1016/j.marpetgeo.2016.03.010, 2016.
Zebracki, M., Eyrolle-Boyer, F., Evrard, O., Claval, D., Mourier, B.,
Gairoard, S., Cagnat, X., and Antonelli, C.: Tracing the origin of suspended
sediment in a large Mediterranean river by combining continuous river
monitoring and measurement of artificial and natural radionuclides, Sci.
Total Environ., 502, 122–132,
https://doi.org/10.1016/j.scitotenv.2014.08.082, 2015.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I.,
Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W.,
Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and
Wakeham, S. G.: Selective preservation of organic matter in marine
environments; processes and impact on the sedimentary record,
Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
It remains challenging to fully understand what controls carbon burial in marine sediments...
Altmetrics
Final-revised paper
Preprint