Articles | Volume 18, issue 18
https://doi.org/10.5194/bg-18-5053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
Department of Geography and Geospatial Analysis Center, Miami
University, Oxford, OH, USA
Juha Aalto
Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
Department of Geosciences and Geography, University of Helsinki,
Helsinki, Finland
Ville-Veikko Paunu
Centre for Sustainable Consumption and Production, Finnish Environment Institute (SYKE), Helsinki, Finland
Steve R. Arnold
Institute for Climate and Atmospheric Science, School of Earth and
Environment, University of Leeds, Leeds, United Kingdom
Sabine Eckhardt
Department of Atmospheric and Climate Research (ATMOS), Norwegian Institute for Air Research, Kjeller, Norway
Zbigniew Klimont
International Institute for Applied Systems Analysis (IIASA),
Laxenburg, Austria
Justin J. Fain
Department of Geography and Geospatial Analysis Center, Miami
University, Oxford, OH, USA
Nikolaos Evangeliou
Department of Atmospheric and Climate Research (ATMOS), Norwegian Institute for Air Research, Kjeller, Norway
Ari Venäläinen
Weather and Climate Change Impact Research, Finnish Meteorological Institute, Helsinki, Finland
Nadezhda M. Tchebakova
V. N. Sukachev Institute of Forests, Siberian Branch, Russian Academy
of Sciences, Krasnoyarsk, Russian Federation
Elena I. Parfenova
V. N. Sukachev Institute of Forests, Siberian Branch, Russian Academy
of Sciences, Krasnoyarsk, Russian Federation
Kaarle Kupiainen
Ministry of the Environment Finland, Aleksanterinkatu 7,
P.O. Box 35, 00023 Government, Helsinki, Finland
Amber J. Soja
National Institute of Aerospace, Hampton, VA, USA
National Aeronautics and Space Administration (NASA) Langley Research Center, Hampton, VA, USA
Lin Huang
Climate Research Division, ASTD/STB, Environment and Climate Change
Canada, Toronto, Canada
Simon Wilson
Arctic Monitoring and Assessment Programme (AMAP) Secretariat,
Tromsø, Norway
Related authors
No articles found.
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3423, https://doi.org/10.5194/egusphere-2025-3423, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In summer 2019, unusually high aerosol levels were measured in the Arctic, linked to wildfires, volcanic eruptions, and anthropogenic pollution. Using various instruments and models, we traced their origins and found good agreement between methods. The particles were mostly non-absorbing, but still we found a reduction of the solar radiation reaching the surface. This study shows that combining different measurements improves our understanding of how distant events affect the Arctic climate.
This article is included in the Encyclopedia of Geosciences
Petr Vodička, Kimitaka Kawamura, Bhagawati Kunwar, Lin Huang, Dhananjay Kumar, Md. Mozammel Haque, Ambarish Pokhrel, Sangeeta Sharma, and Leonard Barrie
Atmos. Chem. Phys., 25, 10215–10228, https://doi.org/10.5194/acp-25-10215-2025, https://doi.org/10.5194/acp-25-10215-2025, 2025
Short summary
Short summary
Carbonate carbon (CC) is not negligible in Arctic total suspended particles (TSPs). If not considered, CC biases the contribution of elemental and organic carbon. CC content in TSPs was strongly reflected in the δ13C values of total carbon (TC). The carbon contribution from CaCO3 supports the strong dependence of CC and δ13C on Ca. Finally, two hypothetical CC sources were identified based on the analysis of air mass back trajectories: dust resuspension and marine microorganisms.
This article is included in the Encyclopedia of Geosciences
Maria P. Veláquez-García, Richard J. Pope, Steven T. Turnock, Chetan Deva, David P. Moore, Guilherme Mataveli, Steve R. Arnold, Ruth M. Doherty, and Martyn P. Chiperffield
EGUsphere, https://doi.org/10.5194/egusphere-2025-3579, https://doi.org/10.5194/egusphere-2025-3579, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Incorporating fire simulation into climate models is crucial for accurately representing the interactions between fires, ecosystems, and climate, thereby enhancing climate projections. In South America, the INFERNO fire model captures active fire zones, e.g. the Amazon Arc of Deforestation, but it overestimates emissions in other areas (mainly in tree-rich ecosystems). The model errors capturing seasonal emission cycles relate to the effects of soil moisture on plant flammability and growth.
This article is included in the Encyclopedia of Geosciences
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
Atmos. Chem. Phys., 25, 7719–7739, https://doi.org/10.5194/acp-25-7719-2025, https://doi.org/10.5194/acp-25-7719-2025, 2025
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution at this high Arctic station, with a persistent smoke layer extending over the whole troposphere in summer.
This article is included in the Encyclopedia of Geosciences
Christopher D. Holmes, Joshua P. Schwarz, Charles H. Fite, Anxhelo Agastra, Holly K. Nowell, Katherine Ball, T. Paul Bui, Johnathan Dean-Day, Zachary C. J. Decker, Joshua P. DiGagni, Glenn S. Diskin, Emily M. Gargulinski, Hannah Halliday, Shobha Kondragunta, John B. Nowak, David A. Peterson, Michael A. Robinson, Amber J. Soja, Rebecca A. Washenfelder, Chuanyu Xu, and Robert J. Yokelson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-307, https://doi.org/10.5194/essd-2025-307, 2025
Preprint under review for ESSD
Short summary
Short summary
Smoke age is an important factor in the chemical and physical evolution of smoke. Two methods for determining the age of smoke are applied to the NASA-NOAA FIREX-AQ field campaign: one based on wind speed and distance, and another using an ensemble of modeled air parcel trajectories. Both methods are evaluated, with the trajectory method, which includes plume rise and uncertainty estimates, proving more accurate.
This article is included in the Encyclopedia of Geosciences
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari
EGUsphere, https://doi.org/10.5194/egusphere-2025-1366, https://doi.org/10.5194/egusphere-2025-1366, 2025
Short summary
Short summary
A study in Fairbanks, Alaska, measured winter aerosol fluxes on snow. Both emission and deposition occurred, with larger particles settling faster. Weather influenced dispersion and deposition, while wind-driven turbulence enhanced deposition despite stable conditions. Results show aerosol accumulation in snow impacts pollution and snowmelt. Findings help improve aerosol models and pollution studies in cold cities.
This article is included in the Encyclopedia of Geosciences
Lubna Dada, Benjamin T. Brem, Lidia-Marta Amarandi-Netedu, Martine Collaud Coen, Nikolaos Evangeliou, Christoph Hueglin, Nora Nowak, Robin Modini, Martin Steinbacher, and Martin Gysel-Beer
Aerosol Research, 3, 315–336, https://doi.org/10.5194/ar-3-315-2025, https://doi.org/10.5194/ar-3-315-2025, 2025
Short summary
Short summary
We investigated the sources of ultrafine particles (UFPs) in Payerne, Switzerland, highlighting the significant role of secondary processes in elevating UFP concentrations to levels comparable to urban areas. As the first study in rural midland Switzerland to analyze new particle formation events and secondary contributions, it offers key insights for air quality regulation and the role of agriculture in Switzerland and central Europe.
This article is included in the Encyclopedia of Geosciences
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
This article is included in the Encyclopedia of Geosciences
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
This article is included in the Encyclopedia of Geosciences
Xinyue Shao, Yaman Liu, Xinyi Dong, Minghuai Wang, Ruochong Xu, Joel A. Thornton, Duseong S. Jo, Man Yue, Wenxiang Shen, Manish Shrivastava, Stephen R. Arnold, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-1526, https://doi.org/10.5194/egusphere-2025-1526, 2025
Short summary
Short summary
Highly Oxygenated Organic Molecules (HOMs) are key precursors of secondary organic aerosols (SOA). Incorporating the HOMs chemical mechanism into a global climate model allows for a reasonable reproduction of observed HOM characteristics. HOM-SOA constitutes a significant fraction of global SOA, and its distribution and formation pathways exhibit strong sensitivity to uncertainties in autoxidation processes and peroxy radical branching ratios.
This article is included in the Encyclopedia of Geosciences
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
This article is included in the Encyclopedia of Geosciences
Cameron McErlich, Felix Goddard, Alex Aves, Catherine Hardacre, Nikolaos Evangeliou, and Laura E. Revell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1575, https://doi.org/10.5194/egusphere-2025-1575, 2025
Short summary
Short summary
Airborne microplastics are a new air pollutant but are not yet included in most global models. We add them to the UK Earth System Model to show how they move, change, and are removed from air. Smaller microplastics persist for longer and can travel further, even to Antarctica. While their current role in air pollution is small, their presence is expected to grow in future. This work offers a framework to assess future impacts of microplastics on air quality and climate.
This article is included in the Encyclopedia of Geosciences
Nikolaos Evangeliou, Ondřej Tichý, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier A. Hauglustaine
Aerosol Research, 3, 155–174, https://doi.org/10.5194/ar-3-155-2025, https://doi.org/10.5194/ar-3-155-2025, 2025
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances, improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production, as did the accumulated NH3. Excess NH3 reacted with HNO3 to make NO3-. In high-NH3 conditions such as those in 2020, a small reduction in NOx levels drove faster oxidation of NO3- and slower deposition of total inorganic NO3-, causing high secondary PM2.5.
This article is included in the Encyclopedia of Geosciences
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
This article is included in the Encyclopedia of Geosciences
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy S. Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve R. Arnold, Andrea Baccarini, Maurizio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
Atmos. Meas. Tech., 18, 1163–1184, https://doi.org/10.5194/amt-18-1163-2025, https://doi.org/10.5194/amt-18-1163-2025, 2025
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed on board a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, and NOx) in Fairbanks during winter 2022. Data calibration with reference measurements and machine learning methods enabled us to document pollution at the surface and power plant plumes aloft.
This article is included in the Encyclopedia of Geosciences
Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid
Atmos. Meas. Tech., 18, 817–828, https://doi.org/10.5194/amt-18-817-2025, https://doi.org/10.5194/amt-18-817-2025, 2025
Short summary
Short summary
The study highlighted the performance of Atmotube PRO sensor particulate matter (PM) data. The result showed inter-sensor variability among the Atmotube PRO sensor data. This study showed 62.5 % of the sensors used for the study exhibited greater precision in their PM2.5 measurements. The overall performance showed that sensors passed the base testing using 1 h averaged data and that a multiple linear regression model using relative humidity values improved the performance of the PM2.5 data.
This article is included in the Encyclopedia of Geosciences
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
This article is included in the Encyclopedia of Geosciences
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4135, https://doi.org/10.5194/egusphere-2024-4135, 2025
Short summary
Short summary
This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions.
This article is included in the Encyclopedia of Geosciences
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025, https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Short summary
Past atmospheric NH3 pollution in south-eastern Europe was reconstructed by analysing ammonium in an ice core drilled at the Mount Elbrus (Caucasus, Russia). The observed 3.5-fold increase in ice concentrations between 1750 and 1990 CE is in good agreement with estimated past dominant ammonia emissions from agriculture, mainly from south European Russia and Türkiye. In contrast to present-day conditions, the ammonium level observed in 1750 CE indicates significant natural emissions at that time.
This article is included in the Encyclopedia of Geosciences
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
This article is included in the Encyclopedia of Geosciences
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
This article is included in the Encyclopedia of Geosciences
Hazel Mooney, Stephen Arnold, Benjamin Silver, Piers Forster, and Catherine Scott
EGUsphere, https://doi.org/10.5194/egusphere-2024-3895, https://doi.org/10.5194/egusphere-2024-3895, 2025
Short summary
Short summary
We simulate the potential changes in natural emissions of volatile gases from the land surface in the UK following afforestation from present-day woodland cover of 13 % to 19 % by 2050. We estimate present-day annual UK emissions of isoprene at 40 kt yr-1 and total monoterpenes at 46 kt yr-1, but emissions from afforested experiments show between a 4 % decrease and 131 % increase in emissions, explained by the variation in emissions activity between and within needleleaf and broadleaf trees.
This article is included in the Encyclopedia of Geosciences
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
This article is included in the Encyclopedia of Geosciences
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
This article is included in the Encyclopedia of Geosciences
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
This article is included in the Encyclopedia of Geosciences
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
This article is included in the Encyclopedia of Geosciences
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
This article is included in the Encyclopedia of Geosciences
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
This article is included in the Encyclopedia of Geosciences
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
This article is included in the Encyclopedia of Geosciences
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
This article is included in the Encyclopedia of Geosciences
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
This article is included in the Encyclopedia of Geosciences
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
This article is included in the Encyclopedia of Geosciences
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
This article is included in the Encyclopedia of Geosciences
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
This article is included in the Encyclopedia of Geosciences
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
This article is included in the Encyclopedia of Geosciences
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
This article is included in the Encyclopedia of Geosciences
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
This article is included in the Encyclopedia of Geosciences
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
This article is included in the Encyclopedia of Geosciences
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
This article is included in the Encyclopedia of Geosciences
Marianne Tronstad Lund, Gunnar Myhre, Ragnhild Bieltvedt Skeie, Bjørn Hallvard Samset, and Zbigniew Klimont
Atmos. Chem. Phys., 23, 6647–6662, https://doi.org/10.5194/acp-23-6647-2023, https://doi.org/10.5194/acp-23-6647-2023, 2023
Short summary
Short summary
Here we show that differences, in magnitude and trend, between recent global anthropogenic emission inventories have a notable influence on simulated regional abundances of anthropogenic aerosol over the 1990–2019 period. This, in turn, affects estimates of radiative forcing. Our findings form a basis for comparing existing and upcoming studies on anthropogenic aerosols using different emission inventories.
This article is included in the Encyclopedia of Geosciences
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
This article is included in the Encyclopedia of Geosciences
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
This article is included in the Encyclopedia of Geosciences
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
This article is included in the Encyclopedia of Geosciences
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
This article is included in the Encyclopedia of Geosciences
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
This article is included in the Encyclopedia of Geosciences
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
This article is included in the Encyclopedia of Geosciences
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
This article is included in the Encyclopedia of Geosciences
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
This article is included in the Encyclopedia of Geosciences
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
This article is included in the Encyclopedia of Geosciences
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144, https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
Short summary
The amount of underground ice in the Arctic permafrost has a central role when assessing climate change-induced changes to natural conditions and human activity in the Arctic. Here, we present compilations of field-verified ground ice observations and high-resolution estimates of Northern Hemisphere ground ice content. The data highlight the variability of ground ice contents across the Arctic and provide called-for information to be used in modelling and environmental assessment studies.
This article is included in the Encyclopedia of Geosciences
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
This article is included in the Encyclopedia of Geosciences
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
This article is included in the Encyclopedia of Geosciences
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
This article is included in the Encyclopedia of Geosciences
Richard J. Pope, Rebecca Kelly, Eloise A. Marais, Ailish M. Graham, Chris Wilson, Jeremy J. Harrison, Savio J. A. Moniz, Mohamed Ghalaieny, Steve R. Arnold, and Martyn P. Chipperfield
Atmos. Chem. Phys., 22, 4323–4338, https://doi.org/10.5194/acp-22-4323-2022, https://doi.org/10.5194/acp-22-4323-2022, 2022
Short summary
Short summary
Nitrogen oxides (NOx) are potent air pollutants which directly impact on human health. In this study, we use satellite nitrogen dioxide (NO2) data to evaluate the spatial distribution and temporal evolution of the UK official NOx emissions inventory, with reasonable agreement. We also derived satellite-based NOx emissions for several UK cities. In the case of London and Birmingham, the NAEI NOx emissions are potentially too low by >50%.
This article is included in the Encyclopedia of Geosciences
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
This article is included in the Encyclopedia of Geosciences
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
This article is included in the Encyclopedia of Geosciences
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
This article is included in the Encyclopedia of Geosciences
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
This article is included in the Encyclopedia of Geosciences
Lin Huang, Wendy Zhang, Guaciara M. Santos, Blanca T. Rodríguez, Sandra R. Holden, Vincent Vetro, and Claudia I. Czimczik
Atmos. Meas. Tech., 14, 3481–3500, https://doi.org/10.5194/amt-14-3481-2021, https://doi.org/10.5194/amt-14-3481-2021, 2021
Short summary
Short summary
Radiocarbon (14C)-based source apportionment of aerosol carbon fractions requires the physical separation of OC from EC and minimizing of the incorporation of extraneous carbon. Using pure and mixed reference materials ranging in age from modern to fossil, we show that the ECT9 protocol effectively isolates OC and EC. This work expands existing opportunities for characterizing and monitoring sources of carbonaceous aerosols, including µg C-sized samples from the Arctic.
This article is included in the Encyclopedia of Geosciences
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
This article is included in the Encyclopedia of Geosciences
Joanna E. Dyson, Graham A. Boustead, Lauren T. Fleming, Mark Blitz, Daniel Stone, Stephen R. Arnold, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 5755–5775, https://doi.org/10.5194/acp-21-5755-2021, https://doi.org/10.5194/acp-21-5755-2021, 2021
Short summary
Short summary
The hydroxyl radical (OH) dominates the removal of atmospheric pollutants, with nitrous acid (HONO) recognised as a major OH source. For remote regions HONO production through the action of sunlight on aerosol surfaces can provide a source of nitrogen oxides. In this study, HONO production rates at illuminated aerosol surfaces are measured under atmospheric conditions, a model consistent with the data is developed and aerosol production of HONO in the atmosphere is shown to be significant.
This article is included in the Encyclopedia of Geosciences
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
This article is included in the Encyclopedia of Geosciences
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
This article is included in the Encyclopedia of Geosciences
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
This article is included in the Encyclopedia of Geosciences
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021, https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Short summary
We present an investigation of the usability of newly developed real-time concentration monitoring systems, which are based on the gamma-ray counting of aerosol filters. These high-resolution data were used for inverse modeling of the 106Ru release in 2017. Our inverse modeling results agree with previously published estimates and provide better temporal resolution of the estimates.
This article is included in the Encyclopedia of Geosciences
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
This article is included in the Encyclopedia of Geosciences
Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset
Earth Syst. Dynam., 11, 977–993, https://doi.org/10.5194/esd-11-977-2020, https://doi.org/10.5194/esd-11-977-2020, 2020
Short summary
Short summary
Achieving the Paris Agreement temperature goals requires both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of short-lived climate forcers (SLCFs). Here we quantify the near- and long-term global temperature impacts of emissions of individual SLCFs and CO2 from 7 economic sectors in 13 regions in order to provide the detailed knowledge needed to design efficient mitigation strategies at the sectoral and regional levels.
This article is included in the Encyclopedia of Geosciences
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
This article is included in the Encyclopedia of Geosciences
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate
change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113,
11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Ahtikoski, A. and Hökkä, H: Intensive forest management – does it
pay off financially on drained peatlands?, Can. J. For. Res., 49, 1101–1113,
https://doi.org/10.1139/cjfr-2019-0007, 2019.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alaska Division of Forestry: 2019 EOY handout, available at:
http://forestry.alaska.gov/Assets/pdfs/firestats/2019 Alaska Fire Statistics.pdf (last access: 13 September 2021),
2020.
Alaska Wildland Fire Information: Despite heavy snow melt, Deshka Landing
hot spots still smoldering, available at:
https://akfireinfo.com/2020/04/24/despite-heavy-snow-melt-deshka-landing-hot-spots-still-smoldering/ (last access: 13 September 2021),
2020.
Alexander, H. D. and Mack, M. C.: Gap regeneration within mature deciduous
forests of Interior Alaska: Implications for future forest change, Forest
Ecol. Manage., 396, 35–43, https://doi.org/10.1016/j.foreco.2017.04.005,
2017.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C.,
Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., and
Sandler, R.: Cost-effective control of air quality and greenhouse gases in
Europe: Modeling and policy applications, Environ. Model Softw., 26,
1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011.
Amann, M., Kiesewetter, G., Schöpp, W., Klimont, Z., Winiwarter, W.,
Cofala, J., Rafaj, P., Höglund-Isaksson, L., Gomez-Sabriana, A., Heyes,
C., and Purohit, P.: Reducing global air pollution: the scope for further
policy interventions, Philos. T. R. Soc. A., 378, 20190331,
https://doi.org/10.1098/rsta.2019.0331, 2020.
AMAP: AMAP Assessment Report: Arctic Pollution Issues, Arctic Monitoring and
Assessment Programme (AMAP), Oslo, Norway, xii+859 pp., available at:
https://www.amap.no/documents/doc/amap-assessment-report-arctic-pollution-issues/68 (last access: 13 September 2021),
1998.
AMAP: Assessment 2011: The Impact of Black Carbon on Arctic Climate, Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, Technical Report
no. 4, available at: https://www.amap.no/documents/download/977/inline (last access: 13 September 2021),
2011.
AMAP: Assessment 2015: Black carbon and ozone as Arctic climate forcers.
Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, available
at: http://hdl.handle.net/11374/1607, 2015.
AMAP: Assessment 2021: Impacts of short-lived climate forcers on Arctic climate, air quality, and human health, Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, available at: https://www.amap.no/documents/doc/impacts-of-short-lived-climate-forcers-on-arctic-climate-air-quality-and-human-health.-summary-for-policy-makers/3512, last access: 13 September 2021.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000GB001382, 2001.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning –
an updated assessment, Atmos. Chem. Phys., 19, 8523–8546,
https://doi.org/10.5194/acp-19-8523-2019, 2019.
Achard, F., Eva, H. D., Mollicone, D., and Beuchle, R.: The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests, Philos. T. R. Soc. B, 363, 2329–2337, https://doi.org/10.1098/rstb.2007.2203, 2008.
Aviales: Information about the forest fire situation on the territory of the constituent entities of the Russian Federation as of 12/31/2019, available at: https://bit.ly/3nolcSK (last access: 13 September 2021), 2019 (in Russian).
Baranchikov, Y. N. and Montgomery, M. E.: Chapter XXXVI – Siberian Moth, in:
The use of classical biological control to preserve forests in North
America, edited by: Van Driesche, R. and Reardon, R. C., United States
Department of Agriculture, Forest Service, Forest Health Technology
Enterprise Team, Morgantown, WV, USA, 383–391, 2014.
Barry, T., Daviðsdóttir, B., Einarsson, N., and Young, O. R.: The
Arctic Council: an agent of change?, Glob. Environ. Change, 63, 102099,
https://doi.org/10.1016/j.gloenvcha.2020.102099, 2020.
Betänkande av 2018 års skogsbrandsutredning: Skogsbränderna
sommaren 2018 [Forest fires in summer 2018, in Swedish], Statens offentliga
utredningar (SOU) 2019, Stockholm, 1–334, 2019.
Bieniek, P. A., Bhatt, U. S., York, A., Walsh, J. E., Lader, R., Strader, H.,
Ziel, R., Jandt, R. R., and Thoman, R. L.: Lightning variability in
dynamically downscaled simulations of Alaska's present and future summer
climate, J, Appl, Meteorol, Climatol,, 59, 1139–1152,
https://doi.org/10.1175/JAMC-D-19-0209.1, 2020.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Blyakharchuk, T. A., Tchebakova, N. M., Parfenova, E. I., and Soja, A. J.:
Potential influence of the late Holocene climate on settled farming versus
nomadic cattle herding in the Minusinsk Hollow, south-central Siberia,
Environ. Res. Lett., 9, 065004, https://doi.org/10.1088/1748-9326/9/6/065004, 2014.
Blouin, K. D., Flannigan, M. D., Wang, X., and Kochtubajda, B.: Ensemble
lightning prediction models for the province of Alberta, Canada, Int. J.
Wildland Fire, 25, 421–432, https://doi.org/10.1071/WF15111, 2016.
Boike, J., Grau, T., Heim, B., Günther, F., Langer, M., Muster, S.,
Gouttevin, I., and Lange, S.: Satellite-derived changes in the permafrost
landscape of central Yakutia, 2000–2011: Wetting, drying, and fires, Glob.
Planet. Change, 139, 116, https://doi.org/10.1016/j.gloplacha.2016.01.001,
2016.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos,, 109, 203,
https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., and
Kinne, S.: Bounding the role of black carbon in the climate system: A
scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boulanger, Y., Gauthier, S., Gray, D. R., Le Goff, H., Lefort, P., and
Morissette, J.: Fire regime zonation under current and future climate over
eastern Canada, Ecol. Appl., 23, 904–923, https://doi.org/10.1890/12-0698.1,
2013.
Boulanger, Y., Gauthier, S., and Burton, P. J.: A refinement of models
projecting future Canadian fire regimes using homogeneous fire regime zones,
Can. J. Forest Res., 44, 365–376, https://doi.org/10.1139/cjfr-2013-0372,
2014.
Bowman, D. M., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der
Werf, G. R., and Flannigan, M.: Vegetation fires in the Anthropocene, Nat.
Rev. Earth Environ., 1, 500–515, https://doi.org/10.1038/s43017-020-0085-3,
2020.
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F. J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky, V. E., and Walsh, J. E.: Key indicators of Arctic climate change: 1971–2017, Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019.
Burke, C., Wich, S., Kusin, K., McAree, O., Harrison, M.E., Ripoll, B.,
Ermiasi, Y., Mulero-Pázmány, M., and Longmore, S.: Thermal-Drones as
a Safe and Reliable Method for Detecting Subterranean Peat Fires, Drones, 3,
23, https://doi.org/10.3390/drones3010023, 2019.
Calef, M. P., Varvak, A., and McGuire, A. D.: Differences in human versus
lightning fires between urban and rural areas of the boreal forest in
interior Alaska, Forests, 8, 422, https://doi.org/10.3390/f8110422, 2017.
Carter, T. S., Heald, C. L., Jimenez, J. L., Campuzano-Jost, P., Kondo, Y.,
Moteki, N., Schwarz, J. P., Wiedinmyer, C., Darmenov, A. S., da Silva, A. M.,
and Kaiser, J. W.: How emissions uncertainty influences the
distribution and radiative impacts of smoke from fires in North America,
Atmos. Chem. Phys., 20, 2073–2097,
https://doi.org/10.5194/acp-20-2073-2020, 2020.
Cartier, K. M. S.: Southern Greenland wildfire extinguished, Eos, 98,
https://doi.org/10.1029/2017EO080905, 2017.
Chang, K. Y., Riley, W. J., Crill, P. M., Grant, R. F., Rich, V. I., and
Saleska, S. R.: Large carbon cycle sensitivities to climate across a
permafrost thaw gradient in subarctic Sweden, The Cryosphere, 13, 647– 663,
https://doi.org/10.5194/tc-13-647-2019, 2019.
Chernokulsky, A. and Esau, I: Cloud cover and cloud types in the Eurasian
Arctic in 1936–2012, Int. J. Climatol., 39,
5771–5790, https://doi.org/10.1002/joc.6187, 2019.
Christensen, E. G., Fernandez-Anez, N., and Rein, G.: Influence of soil
conditions on the multidimensional spread of smouldering combustion in
shallow layers, Combust Flame, 214, 361–370,
https://doi.org/10.1016/j.combustflame.2019.11.001, 2020.
CIFFC: Canadian Interagency Forest Fire Centre: Fire Hectares by Year,
available at: https://ciffc.net/en/ext/hectares-by-year (last access: 13 September 2021), 2020.
Cogos, S., Östlund, L. and Roturier, S.: Forest fire and indigenous Sami
land use: place names, fire dynamics, and ecosystem change in Northern
Scandinavia, Human Ecol., 47, 51–64,
https://doi.org/10.1007/s10745-019-0056-9, 2019.
Comer, B., Osipova, L., Georgeff, E., and Mao, X.: The International
Maritime Organization's proposed Arctic heavy fuel oil ban: Likely
implications and opportunities for improvement, International Council on
Clean Transportation, available at:
https://theicct.org/sites/default/files/publications/Arctic-HFO-ban-sept2020.pdf (last access: 13 September 2021), 2020.
Conard, S. G. and Ivanova, G. A.: Wildfire in Russian boreal
forests – Potential impacts of fire regime characteristics on emissions and
global carbon balance estimates, Environ. Pollut., 98, 305,
https://doi.org/10.1016/S0269-7491(97)00140-1, 1997.
Conard, S. G. and Ponomarev, E.: Fire in the North, Wildfire Magazine,
available at:
https://www.iawfonline.org/article/fire-in-the-north-the-2020-siberian-fire-season/ (last access: 13 September 2021),
2020.
Copernicus Atmosphere Monitoring Service Information: CAMS GFAS, ECMWF [data set], available at: https://apps.ecmwf.int/datasets/data/cams-gfas/ (last access 13 September 2021), 2020.
Daanen, R. P., Ingeman-Nielsen, T., Marchenko, S. S., Romanovsky, V. E.,
Foged, N., Stendel, M., Christensen, J. H., and Hornbech Svendsen, K.:
Permafrost degradation risk zone assessment using simulation models, The
Cryosphere, 5, 1043–1056, https://doi.org/10.5194/tc-5-1043-2011, 2011.
Davies, G. M., Kettridge, N., Stoof, C. R., Gray, A., Ascoli, D., Fernandes,
P. M., Marrs, R., Allen, K. A., Doerr, S. H., Clay, G. D., and McMorrow, J.: The
role of fire in UK peatland and moorland management: the need for informed,
unbiased debate, Philos. T. R. Soc. Lond. B, 371, 20150342,
https://doi.org/10.1098/rstb.2015.0342, 2016.
de Groot, W. J., Flannigan, M. D., and Stocks, B. J.: Climate change and
wildfires, González-Cabán, Armando, tech. coord. Proceedings of the
fourth international symposium on fire economics, planning, and policy:
climate change and wildfires, available at:
https://www.fs.fed.us/psw/publications/documents/psw_gtr245/psw_gtr245_001.pdf (last access: 13 September 2021), 2013.
de Rigo, D., Libertà, G., Houston Durrant, T., Artés Vivancos, T.,
and San-Miguel-Ayanz, J.: Forest fire danger extremes in Europe under
climate change: variability and uncertainty, Publication Office of the
European Union, Luxembourg, https://doi.org/10.2760/13180, 2017.
Dronin, N. and Kirilenko, A.: Climate change, food stress, and security in
Russia, Reg. Environ. Change, 11, 167–178,
https://doi.org/10.1007/s10113-010-0165-x, 2011.
DSB: Direktoratet for samfunnssikkerhet og beredskap, Personal
communication, March 2020, availabe at: https://www.dsb.no/ (last access: 13 September 2021), 2020.
Duncan, B. N., Ott, L. E., Abshire, J. B., Brucker, L., Carroll, M. L., Carton, J., Comiso, J. C., Dinnat, P., Forbes, E. P., Gonsamo, B. C., Gregg, A., Hall, W. W., Ialongo, D. K., Jandt, I., Kahn, R.,
Karpechko, R. A., Kawa, A., Kato, S. R., Kumpula, T., Kyrölä, E., Loboda, T. V., McDonald, K. C., Montesano, P. M., Nassar, R., Neigh, C. S. R., Parkinson, C. L., Poulter, B., Pulliainen, J., Rautiainen, K., Rogers, B. M., Rousseaux, C. S., Soja, A. J., Steiner, N., Tamminen, J., Taylor, P. C., Tzortziou, M. A., Virta, H., Wang, J. S., Watts, J. D., Winker, D. M., and Wu, D. L.: Space-Based Observations for Understanding Changes in
the Arctic-Boreal Zone, Rev. Geophys., 58, e2019RG000652,
https://doi.org/10.1029/2019RG000652, 2020.
Elmes, M. C., Thompson, D. K., Sherwood, J. H., and Price, J. S.:
Hydrometeorological conditions preceding wildfire, and the subsequent
burning of a fen watershed in Fort McMurray, Alberta, Canada, Nat. Hazards
Earth Syst. Sci., 18, 157–170, https://doi.org/10.5194/nhess-18-157-2018,
2018.
Estop-Aragonés, C., Czimczik, C. I., Heffernan, L., Gibson, C., Walker,
J. C., Xu, X., and Olefeldt, D.: Respiration of aged soil carbon during fall
in permafrost peatlands enhanced by active layer deepening following
wildfire but limited following thermokarst, Environ. Res. Lett., 13, 085002,
https://doi.org/10.1088/1748-9326/aad5f0, 2018.
Evangeliou, N., Kylling, A., Eckhardt, S., Myroniuk, V., Stebel, K., Paugam,
R., Zibtsev, S., and Stohl, A.: Open fires in Greenland in summer 2017:
transport, deposition and radiative effects of BC, OC and BrC emissions,
Atmos. Chem. Phys., 19, 1393–1411,
https://doi.org/10.5194/acp-19-1393-2019, 2019.
Fain, J. and McCarty, J.: AMAP SLCF EG Pan-Arctic Fire Emissions Model, version 1.0.0 Data Set, Zenodo [data set], https://doi.org/10.5281/zenodo.4648723, 2021.
Fisher, J. A., Jacob, D. J., Purdy, M. T., Kopacz, M., Le Sager, P.,
Carouge, C., Holmes, C. D., Yantosca, R. M., Batchelor, R. L., Strong, K.,
Diskin, G. S., Fuelberg, H. E., Holloway, J. S., Hyer, E. J., McMillan, W.
W., Warner, J., Streets, D. G., Zhang, Q., Wang, Y., and Wu, S.: Source
attribution and interannual variability of Arctic pollution in spring
constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations
of carbon monoxide, Atmos. Chem. Phys., 10, 977–996,
https://doi.org/10.5194/acp-10-977-2010, 2010.
Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., and
Gowman, L. M.: Global wildland fire season severity in the 21st century,
Forest Ecol. Manag., 294, 54–61, https://doi.org/10.1016/j.foreco.2012.10.022,
2013.
Foster, A. C., Armstrong, A. H., Shuman, J. K., Shugart, H. H., Rogers, B. M.,
Mack, M. C., Goetz, S. J., and Ranson, K. J.: Importance of tree-and
species-level interactions with wildfire, climate, and soils in interior
Alaska: Implications for forest change under a warming climate, Ecol. Model.,
409, 108765, https://doi.org/10.1016/j.ecolmodel.2019.108765, 2019.
French, N. H., Jenkins, L. K., Loboda, T. V., Flannigan, M., Jandt, R.,
Bourgeau-Chavez, L. L., and Whitley, M.: Fire in arctic tundra of Alaska:
past fire activity, future fire potential, and significance for land
management and ecology, Int. J. Wildland Fire, 24, 1045–1061,
https://doi.org/10.1071/wf14167, 2015.
Furyaev, V. V.: Pyrological regimes and dynamics of the southern taiga
forests in Siberia, in: Fire in ecosystems of boreal Eurasia, edited by:
Goldammer, J. G. and Furyaev, V. V., Springer, Dordrecht, the Netherlands, 168–185,
https://doi.org/10.1007/978-94-015-8737-2_12, 1996.
Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M., and Valendik, E. N.: Effects
of fire and climate on successions and structural changes in the Siberian
boreal forest, Eurasian J. Forest Res., 2, 1–15, 2001.
Fusco, E. J., Finn, J. T., Abatzoglou, J. T., Balch, J. K., Dadashi, S., and
Bradley, B. A.: Detection rates and biases of fire observations from MODIS
and agency reports in the conterminous United States, Remote Sens. Environ.,
220, 30–40, https://doi.org/10.1016/j.rse.2018.10.028, 2019.
Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan,
M. D., and Olefeldt, D.: Wildfire as a major driver of recent permafrost
thaw in boreal peatlands, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-05457-1 , 2018.
Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C. O.: An
active-fire based burned area mapping algorithm for the MODIS sensor, Remote
Sens. Environ., 113, 408–420, https://doi.org/10.1016/j.rse.2008.10.006,
2009.
Giglio, L., Schroeder, W.m and Justice, C.O.: The collection 6 MODIS active
fire detection algorithm and fire products, Remote Sens. Environ, 178, 31–41,
https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Gralewicz, N. J., Nelson, T. A., and Wulder, M. A.: Factors influencing
national scale wildfire susceptibility in Canada, Forest Ecol. Manag., 265,
20–29, https://doi.org/10.1016/j.foreco.2011.10.031, 2012.
Granath, G., Moore, P. A., Lukenbach, M. C., and Waddington, J. M.:
Mitigating wildfire carbon loss in managed northern peatlands through
restoration, Sci. Rep., 6, 1–9, https://doi.org/10.1038/srep28498, 2016.
Granström, A. and Niklasson, M.: Potentials and limitations for human
control over historic fire regimes in the boreal forest, Philos. T. R.
Soc. Lond. B, 363, 2351–2356,
https://doi.org/10.1098/rstb.2007.2205, 2008.
Groenemeijer, P., Vajda, A., Lehtonen, I., Kämäräinen, M.,
Venäläinen, A., Gregow, H., Becker, N., Nissen, K., Ulbrich, U.,
Paprotny, D., and Morales Napoles, O.: Present and future probability of
meteorological and hydrological hazards in Europe, Final report of
Deliverable 2.5 for the Risk Analysis of Infrastructure Networks in response
to extreme weather (RAIN) project, available at:
http://rain-project.eu/wp-content/uploads/2016/09/D2.5_REPORT_final.pdf (last access: 13 September 2021), 2016.
Gromny, E., Lewiński, S., Rybicki, M., Malinowski, R., Krupiński,
M., Nowakowski, A., and Jenerowicz, M.: Creation of training dataset for
Sentinel-2 land cover classification, in: Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments
2019, Vol. 11176, p. 111763D, International Society for Optics and
Photonics, available at: http://s2glc.cbk.waw.pl/ (last access: 13 September 2021), 2019.
Günther, A., Barthelmes, A., Huth, V., Joosten, H., Jurasinski, G.,
Koebsch, F., and Couwenberg, J.: Prompt rewetting of drained peatlands
reduces climate warming despite methane emissions, Nat. Commun., 11, 1644,
https://doi.org/10.1038/s41467-020-15499-z, 2020.
Haddaway, N. R., Bethel, A., Dicks, L. V., Koricheva, J., Macura, B.,
Petrokofsky, G., Pullin, A. S., Savilaakso, S., and Stewart, G. B.: Eight
problems with literature reviews and how to fix them, Nat. Ecol. Evol., 4,
1582, https://doi.org/10.1038/s41559-020-01295-x, 2020.
Hall, J. V. and Loboda, T. V.: Quantifying the Potential for Low-Level
Transport of Black Carbon Emissions from Cropland Burning in Russia to the
Snow-Covered Arctic, Front. Earth Sci., 5, 109,
https://doi.org/10.3389/feart.2017.00109, 2017.
Hall, J. and Loboda, T.: Quantifying the variability of potential black
carbon transport from cropland burning in Russia driven by atmospheric
blocking events, Environ. Res. Lett., 13,
055010, https://doi.org/10.1088/1748-9326/aabf65, 2018.
Hanes, C. C., Wang, X., Jain, P., Parisien, M. A., Little, J. M., and Flannigan,
M. D.: Fire-regime changes in Canada over the last half century, Can. J. Forest
Res., 49, 256, https://doi.org/10.1139/cjfr-2018-0293, 2019.
Hannah, L., Roehrdanz, P. R., KC, K. B., Fraser, E. D., Donatti, C. I., Saenz,
L., Wright, T. M., Hijmans, R. J., Mulligan, M., Berg, A., and van Soesbergen,
A.: The environmental consequences of climate-driven agricultural frontiers,
PLoS One, 15, e0228305, https://doi.org/10.1371/journal.pone.0228305, 2020.
Hayasaka, H., Sokolova, G. V., Ostroukhov, A., and Naito, D: Classification
of Active Fires and Weather Conditions in the Lower Amur River Basin, Rem.
Sens., 12, 3204, https://doi.org/10.3390/rs12193204, 2020.
Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M.,
Barr, A. G., Black, T. A., Blanken, P. D., Carey, S. K., Chen, J., and Chi, J.:
Increasing contribution of peatlands to boreal evapotranspiration in a
warming climate, Nat. Clim. Change, 10, 555,
https://doi.org/10.1038/s41558-020-0763-7, 2020.
Hislop, S., Haywood, A., Jones, S., Soto-Berelov, M., Skidmore, A., and
Nguyen, T. H.: A satellite data driven approach to monitoring and reporting
fire disturbance and recovery across boreal and temperate forests, Int. J.
Appl. Earth Obs., 87, 102034, https://doi.org/10.1016/j.jag.2019.102034,
2020.
Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P., and
Schöpp, W.: Technical potentials and costs for reducing global
anthropogenic methane emissions in the 2050 timeframe – results from the
GAINS model, Environ. Res. Commun., 2, 025004,
https://doi.org/10.1088/2515-7620/ab7457, 2020.
Holloway, J. E., Lewkowicz, A. G., Douglas, T. A., Li, X., Turetsky, M. R.,
Baltzer, J. L., and Jin, H.: Impact of wildfire on permafrost landscapes: A
review of recent advances and future prospects, Permafrost Periglac.,
31, 371–382, https://doi.org/10.1002/ppp.2048, 2020.
Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M.,
Kelly, R., and Dietze, M. C.: Arctic tundra fires: natural variability and
responses to climate change, Front. Ecol. Environ., 13, 369–377,
https://doi.org/10.1890/150063,2015.
Hu, Y., Fernandez-Anez, N., Smith, T. E., and Rein, G.: Review of emissions
from smouldering peat fires and their contribution to regional haze
episodes, Int. J. Wildland Fire, 27, 293, https://doi.org/10.1071/wf17084,
2018.
Huang, X. and Rein, G.: Computational study of critical moisture and depth
of burn in peat fires, Int. J. Wildland Fire, 24, 798–808,
https://doi.org/10.1071/WF14178, 2015.
Huang, X. and Rein, G.: Downward spread of smouldering peat fire: the role
of moisture, density and oxygen supply, Int. J. Wildland Fire., 26, 907–918,
https://doi.org/10.1071/WF16198, 2017.
Huang, X. and Rein, G.: Upward-and-downward spread of smoldering peat fire,
Proc. Combust Inst., 37, 4025–4033,
https://doi.org/10.1016/j.proci.2018.05.125, 2019.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald,
G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., and Treat,
C.: Large stocks of peatland carbon and nitrogen are vulnerable to
permafrost thaw, P. Natl. Acad. Sci., 117, 20438,
https://doi.org/10.1073/pnas.1916387117, 2020.
Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements, Atmos. Chem. Phys., 14, 6643–6667, https://doi.org/10.5194/acp-14-6643-2014, 2014.
Ingram, R. C., Moore, P. A., Wilkinson, S., Petrone, R. M., and Waddington,
J. M.: Postfire soil carbon accumulation does not recover boreal peatland
combustion loss in some hydrogeological settings, J. Geophys. Res.-Biogeo., 124, 775, https://doi.org/10.1029/2018jg004716, 2019.
Innes, R. J.: Fire regimes of Alaskan tundra communities, U.S. Department of
Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences
Laboratory (Producer), available at:
https://www.fs.fed.us/database/feis/fire_regimes/AK_tundra/all.html (last access: 13 September 2021), 2013.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow,
A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming,
J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch,
V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS
reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556,
https://doi.org/10.5194/acp-19-3515-2019, 2019.
Ioffe, G. and Nefedova, T.: Marginal farmland in European Russia, Eurasian
Geogr. Econ., 45, 45–49, https://doi.org/10.2747/1538-7216.45.1.45, 2004.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M.,
available at: https://www.ipcc.ch/report/ar5/wg1/ (last access: 13 September 2021), 2013.
Ivanova, G. A., Kukavskaya, E. A., Ivanov, V. A., Conard, S. G., and McRae,
D. J.: Fuel characteristics, loads and consumption in Scots pine forests of
central Siberia, J. Forest Res., 31, 2507,
https://doi.org/10.1007/s11676-019-01038-0, 2019
Jain, P., Tye, M. R., Paimazumder, D., and Flannigan, M.: Downscaling fire
weather extremes from historical and projected climate models, Climatic Change, 163,
1–28, https://doi.org/10.1007/s10584-020-02865-5, 2020.
Jenkins, M. J., Runyon, J. B., Fettig, C. J., Page, W. G., and Bentz, B. J.:
Interactions among the mountain pine beetle, fires, and fuels, Forest Sci., 60,
489–501, https://doi.org/10.5849/forsci.13-017, 2014.
Jiang, Y., Rocha, A. V., O'Donnell, J. A., Drysdale, J. A., Rastetter, E.
B., Shaver, G. R., and Zhuang, Q.: Contrasting soil thermal responses to
fire in Alaskan tundra and boreal forest, J. Geophys. Res.-Earth. Surf.,
120, 363, https://doi.org/10.1002/2014jf003180, 2015.
Johnston, D. C., Turetsky, M. R., Benscoter, B. W., and Wotton, B. M.: Fuel
load, structure, and potential fire behaviour in black spruce bogs, Can. J.
Forest Res., 45, 888, https://doi.org/10.1139/cjfr-2014-0334, 2015.
Johnston, J. M., Johnston, L. M., Wooster, M. J., Brookes, A., McFayden, C.,
and Cantin, A. S.: Satellite detection limitations of sub-canopy smouldering
wildfires in the North American Boreal Forest, Fire, 1, 28,
https://doi.org/10.3390/fire1020028, 2018.
Johnston, L.M., Wang, X., Erni, S., Taylor, S.W., McFayden, C.B., Oliver,
J.A., Stockdale, C., Christianson, A., Boulanger, Y., Gauthier, S., and
Arseneault, D.: Wildland fire risk research in Canada, Environ. Rev., 28,
164, https://doi.org/10.1139/er-2019-0046, 2020.
Jones, B. M., Breen, A. L., Gaglioti, B. V., Mann, D. H., Rocha, A. V., Grosse,
G., Arp, C. D., Kunz, M. L., and Walker, D. A.: Identification of unrecognized
tundra fire events on the north slope of Alaska, J. Geophys. Res.-Biogeo., 118, 1334, https://doi.org/10.1002/jgrg.20113, 2013.
Jones, B. M., Grosse, G., Arp, C. D., Miller, E., Liu, L., Hayes, D. J., and
Larsen, C. F.: Recent Arctic tundra fire initiates widespread thermokarst
development, Sci. Rep., 5, 15865, https://doi.org/10.1038/srep15865, 2015.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones,
L., Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and Van Der
Werf, G. R.: Biomass burning emissions estimated with a global fire
assimilation system based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Karjalainen, O., Aalto, J., Luoto, M., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Hjort, J.: Circumpolar permafrost maps
and geohazard indices for near-future infrastructure risk assessments,
Sci. Data, 6, 190037, https://doi.org/10.1038/sdata.2019.37 , 2019.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate
change and forest fires synergistically drive widespread melt events of the
Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111, 7964,
https://doi.org/10.1073/pnas.1405397111, 2014.
Kellomäki, S., Strandman, H., Heinonen, T., Asikainen, A.,
Venäläinen, A., and Peltola, H.: Temporal and spatial change in
diameter growth of boreal Scots pine, Norway spruce, and birch under
recent-generation (CMIP5) global climate model projections for the 21st
century, Forests, 9, 118, https://doi.org/10.3390/f9030118, 2018.
Ketola, J.: Forest fire activity and burned area for Finland, Emergency
Services Academy, Personal communication to Henrik Lindberg, based on rescue
service database PRONTO, available at:
https://prontonet.fi/Pronto3/online3/OnlineTilastot.htm (last access: 13 September 2021), 2020.
Kicklighter, D. W., Cai, Y., Zhuang, Q., Parfenova, E. I., Paltsev, S.,
Sokolov, A. P., Melillo, J. M., Reilly, J. M., Tchebakova, N. M., and Lu, X.:
Potential influence of climate-induced vegetation shifts on future land use
and associated land carbon fluxes in Northern Eurasia, Environ. Res. Lett.,
9, 035004, https://doi.org/10.1088/1748-9326/9/3/035004, 2014.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P.,
Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of
particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681,
https://doi.org/10.5194/acp-17-8681-2017, 2017.
Kharuk, V. I., Im, S. T., Ranson, K. J., and Yagunov, M. N.: Climate-Induced
Northerly Expansion of Siberian Silkmoth Range, Forests, 8, 301,
https://doi.org/10.3390/f8080301, 2017.
Kharuk, V. I., Ponomarev, E. I., Ivanova, G. A., Dvinskaya, M. L., Coogan, S. C.,
and Flannigan, M. D.: Wildfires in the Siberian taiga, Ambio, 1, 1–22,
https://doi.org/10.1007/s13280-020-01490-x, 2021.
Kieft, J., Smith, T., Someshwar, S., and Boer, R.: Towards Anticipatory
Management of Peat Fires to Enhance Local Resilience and Reduce Natural
Capital Depletion, Ecosystem-Based Disaster Risk Reduction and Adaptation in
Practice, Springer, 2016.
Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C.
L., Archer-Nicholls, S., Lowe, D., Arnold, S. R., Knote, C., Khan, M. F.,
Latif, M. T., Kuwata, M., Budisulistiorini, S. H., and Syaufina, L.: New
estimate of particulate emissions from Indonesian peat fires in 2015, Atmos.
Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019f,
2019.
King, M., Altdorff, D., Li, P., Galagedara, L., Holden, J., and Unc, A.:
Northward shift of the agricultural climate zone under 21st-century global
climate change, Sci. Rep., 8, 7904,
https://doi.org/10.1038/s41598-018-26321-8, 2018.
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., and
Anslow, F. S.: Attribution of the Influence of Human-Induced Climate Change
on an Extreme Fire Season, Earths Future, 7, 2–10,
https://doi.org/10.1029/2018ef001050, 2019.
Kirillina, K., Shvetsov, E. G., Protopopova, V. V., Thiesmeyer, L., and Yan,
W.: Consideration of anthropogenic factors in boreal forest fire regime
changes during rapid socio-economic development: case study of forestry
districts with increasing burnt area in the Sakha Republic, Russia, Environ.
Res. Lett., 15, 035009, https://doi.org/10.1088/1748-9326/ab6c6e, 2020.
Klimont, Z. and Heyes, C.: GAINS Global emission fields of air pollutants and GHGs, IIASA [data set], available at: https://iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html, (last access: 13 September 2021), 2019.
Knorr, W., Dentener, F., Hantson, S., Jiang, L., Klimont, Z., and Arneth, A.: Air quality impacts of European wildfire emissions in a changing climate, Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, 2016.
Koster, R. D., Darmenov, A. S., and da Silva, A. M.: The Quick Fire
Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4,
Technical Report Series on Global Modeling and Data Assimilation, available
at: https://ntrs.nasa.gov/search.jsp?R=20180005253 (last access: 13 September 2021), 2015.
Kotlyakov, V. and Khromova, T.: Land Resources of Russia – Maps of
Permafrost and Ground Ice, Boulder, Colorado USA: National Snow and Ice Data
Center, available at: https://nsidc.org/data/GGD600/versions/1 (last access: 13 September 2021), 2002.
Krause, A., Kloster, S., Wilkenskjeld, S., and Paeth, H.: The sensitivity of
global wildfires to simulated past, present, and future lightning frequency,
J. Geophys. Res.-Biogeo., 119, 312, https://doi.org/10.1002/2013jg002502,
2014.
Krawchuk, M. A. and Moritz, M. A.: Constraints on global fire activity vary
across a resource gradient, Ecology, 92, 121–132, 2011.
Krawchuk, M. A., Cumming, S. G., Flannigan, M. D., and Wein, R. W.: Biotic and
abiotic regulation of lightning fire initiation in the mixedwood boreal
forest, Ecology, 87, 458–468, https://doi.org/10.1890/05-1021,
2006.
Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., and Hayhoe,
K.: Global pyrogeography: the current and future distribution of wildfire,
PLOS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009.
Kukavskaya, E. A., Soja, A. J., Petkov, A. P., Ponomarev, E. I., Ivanova, G.
A., and Conard, S. G.: Fire emissions estimates in Siberia: evaluation of
uncertainties in area burned, land cover, and fuel consumption, Can. J.
Forest Res., 43, 493, https://doi.org/10.1139/cjfr-2012-0367, 2013.
Kukavskaya, E. A., Buryak, L. V., Shvetsov, E. G., Conard, S. G., and Kalenskaya,
O. P.: The impact of increasing fire frequency on forest transformations in
southern Siberia, Forest Ecol. Manag., 382, 225,
https://doi.org/10.1016/j.foreco.2016.10.015, 2016.
Kutcher, H. R. and Malhi, S. S.: Residue burning and tillage effects on diseases and yield of barley (Hordeum vulgare) and canola (Brassica napus), Soil Till. Res., 109, 153–160, https://doi.org/10.1016/j.still.2010.06.001, 2010.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont,
Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell,
D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma,
M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D.
P.: Historical (1850–2000) gridded anthropogenic and biomass burning
emissions of reactive gases and aerosols: methodology and application,
Atmos. Chem. Phys., 10, 7017–7039,
https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lara, M. J., McGuire, A. D., Euskirchen, E. S., Genet, H., Yi, S., Rutter, R.,
Iversen, C., Sloan, V., and Wullschleger, S. D.: Local-scale Arctic tundra
heterogeneity affects regional-scale carbon dynamics, Nat. Commun., 11, 4925,
https://doi.org/10.1038/s41467-020-18768-z, 2020.
Larjavaara, M., Kuuluvainen, T., and Rita, H.: Spatial distribution of
lightning-ignited forest fires in Finland, Forest Ecol. Manag., 208, 177,
https://doi.org/10.1016/j.foreco.2004.12.005, 2005.
Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C., and Veraverbeke, S.:
Influence of Fire on the Carbon Cycle and Climate, Curr. Clim. Change Rep., 5,
112–123, https://doi.org/10.1007/s40641-019-00128-9, 2019.
Law, K. S. and Stohl, A.: Arctic air pollution: Origins and impacts,
Science, 315, 1537, https://doi.org/10.1126/science.1137695, 2007.
Lawrence, D. M. and Slater, A. G.: A projection of severe near-surface
permafrost degradation during the 21st century, Geophys. Res. Lett,
32, L24401, https://doi.org/10.1029/2005GL025080, 2005.
Lehtonen, I., Venäläinen, A., Kämäräinen, M., Peltola, H., and Gregow, H.: Risk of large-scale fires in boreal forests of Finland under changing climate, Nat. Hazards Earth Syst. Sci., 16, 239–253, https://doi.org/10.5194/nhess-16-239-2016, 2016.
Lidskog, R., Johansson, J., and Sjödin, D.: Wildfires, responsibility
and trust: public understanding of Sweden's largest wildfire, Scand. J. Forest
Res., 34, 319, https://doi.org/10.1080/02827581.2019.1598483, 2019.
Lindberg, H., Punttila, P., and Vanha-Majamaa, I.: The challenge of
combining variable retention and prescribed burning in Finland, Ecol.
Proc., 9, 4, https://doi.org/10.1186/s13717-019-0207-3, 2020.
Little, J. M., Jandt, R. R., Drury, S., Molina, A., and Lane, B.: Evaluating
the effectiveness of fuel treatments in Alaska-Final Report to the Joint
Fire Science Program, JFSP Project No. 14-5-01-27, University of
Alaska-Fairbanks, available at: https://www.fs.fed.us/psw/pubs/58856 (last access: 13 September 2021), 2018.
Liu, T.: Fire Inventories: Regional Evaluation, Comparison, and Metrics (FIRECAM) Tool, Earth Engine Apps [data], available at: https://globalfires.earthengine.app/view/firecam (last access: 13 September 2021), 2020.
Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif,
M. T., and Karambelas, A.: Diagnosing spatial biases and uncertainties in
global fire emissions inventories: Indonesia as regional case study, Remote
Sens. Environ., 237, 111557, https://doi.org/10.31223/osf.io/nh57j, 2020.
Loboda, T. V., Hall, J. V., Hall, A. H., and Shevade, V. S.: ABoVE: Cumulative
Annual Burned Area, Circumpolar High Northern Latitudes, 2001–2015,
available at: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1526 (last access: 13 September 2021), ORNL DAAC, Oak Ridge, TN, USA,
https://doi.org/10.3334/ORNLDAAC/1526, 2017.
Loepfe, L., Lloret, F., and Román-Cuesta, R. M.: Comparison of burnt
area estimates derived from satellite products and national statistics in
Europe, Int. J. Remote Sens., 33, 3653,
https://doi.org/10.1080/01431161.2011.631950, 2012.
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G.,
Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., and
Chawchai, S.: Expert assessment of future vulnerability of the global
peatland carbon sink, Nat. Clim. Change, 11, 70–77,
https://doi.org/10.1038/s41558-020-00944-0, 2021.
Loranty, M. M., Lieberman-Cribbin, W., Berner, L. T., Natali, S. M., Goetz,
S. J., Alexander, H. D., and Kholodov, A. L.: Spatial variation in
vegetation productivity trends, fire disturbance, and soil carbon across
arctic-boreal permafrost ecosystems, Environ. Res. Lett., 11, 095008,
https://doi.org/10.1088/1748-9326/11/9/095008, 2016.
Malevsky-Malevich, S. P., Molkentin, E. K., Nadyozhina, E. D., and Shklyarevich,
O. B.: Numerical simulation of permafrost parameters distribution in Russia,
Cold. Reg. Sci. Technol., 32, 1–11,
https://doi.org/10.1016/s0165-232x(01)00018-0, 2001.
Markuse, P.: Before/After Comparison of the July/August 2019 Greenland
Wildfire: Analysis from Sentinel-2, available at:
https://pierre-markuse.net/2019/08/19/before-after-comparison-of-the-july-august-2019-greenland-wildfire/ (last access: 13 September 2021),
2019.
Masrur, A., Petrov, A. N., and DeGroote, J.: Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015, Environ. Res. Lett., 13, 014019, https://doi.org/10.1088/1748-9326/aa9a76, 2018.
McCarty, J. L., Krylov, A., Prishchepov, A. V., Banach, D. M., Tyukavina,
A., Potapov, P., and Turubanova, S.: Agricultural fires in European Russia,
Belarus, and Lithuania and their impact on air quality, 2002–2012, In
Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the
Soviet Union in 1991, Springer, 2017.
McCarty, J. L., Smith, T. E., and Turetsky, M. R.: Arctic fires re-emerging,
Nat. Geosci., 13, 658, https://doi.org/10.1038/s41561-020-00645-5, 2020.
McGwinn, K.: Hikers warned as Greenland wildfire burns out of control,
Arctic Today, available at:
https://www.arctictoday.com/hikers-warned-as-greenland-wildfire-burns-out-of-control/ (last access: 13 September 2021),
2019.
McWethy, D. B., Schoennagel, T., Higuera, P. E., Krawchuk, M., Harvey, B.
J., Metcalf, E. C., Schultz, C., Miller, C., Metcalf, A.L., Buma, B. and
Virapongse, A.: Rethinking resilience to wildfire, Nat. Sustain, 2, 797,
https://doi.org/10.1038/s41893-019-0353-8, 2019.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F., and Rogers. B. M.:
Expansion of high-latitude deciduous forests driven by interactions between
climate warming and fire, Nat. Plants, 5, 952,
https://doi.org/10.1038/s41477-019-0495-8, 2019.
Melekhov, I. S.: Forest Science: “Forest Industry” Textbook, Moscow, 1980 (in Russian).
Michaelides, R. J., Schaefer, K., Zebker, H. A., Parsekian, A., Liu, L.,
Chen, J., Natali, S., Ludwig, S. and Schaefer, S.R.: Inference of the impact
of wildfire on permafrost and active layer thickness in a discontinuous
permafrost region using the remotely sensed active layer thickness (ReSALT)
algorithm, Environ. Res. Lett., 14, 035007,
https://doi.org/10.1088/1748-9326/aaf932, 2019.
Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F.,
Lamarque, J. F., Grégoire, J. M., and Pétron, G.: Emissions of gases
and particles from biomass burning during the 20th century using satellite
data and an historical reconstruction, Atmos. Environ., 44, 1469,
https://doi.org/10.1016/j.atmosenv.2010.01.011, 2010.
Miller, M. E., Billmire, M., Bourgeau-Chavez, L., Elliot, W. J., Robichaud,
P. R., and MacDonald, L.: Rapid response tools and datasets for post-fire
modeling in Boreal and Arctic Environments, Spring 2017 AFSC Remote Sensing
Workshop: Opportunities to Apply Remote Sensing in Boreal/Arctic Wildfire
Management and Science, available at:
https://digitalcommons.mtu.edu/mtri_p/290 (last access: 13 September 2021), 2017.
Mölders, N. and Kramm, G.: Climatology of Air Quality in Arctic
Cities – Inventory and Assessment, Open J. Air Pollut., 7,
48–93, https://doi.org/10.4236/ojap.2018.71004, 2018.
Molinari, C., Lehsten, V., Blarquez, O., Carcaillet, C., Davis, B. A.,
Kaplan, J. O., Clear, J., and Bradshaw, R. H.: The climate, the fuel and the
land use: Long-term regional variability of biomass burning in boreal
forests, Glob. Change Biol., 24, 4929–4945, https://doi.org/10.1111/gcb.14380,
2018.
Monks, S. A., Arnold, S. R., and Chipperfield, M. P.: Evidence for El
Niño-Southern Oscillation (ENSO) influence on Arctic CO interannual
variability through biomass burning emissions, Geophys. Res. Lett., 39,
L14804, https://doi.org/10.1029/2012GL052512, 2012.
Montesano, P. M., Neigh, C. S., Macander, M., Feng, M., and Noojipady, P.: The
bioclimatic extent and pattern of the cold edge of the boreal forest: the
circumpolar taiga-tundra ecotone, Environ. Res. Lett., 15,
105019, https://doi.org/10.1088/1748-9326/abb2c7, 2020.
Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.J., Willis, M.,
Bates, B., Willamson, C., and Peterman, K.: ArcticDEM: a publicly available,
high resolution elevation model of the Arctic, available at:
https://livingatlas2.arcgis.com/arcticdemexplorer/ (last access: 13 September 2021), 2016.
Mottershead, K. D., McGee, T. K., and Christianson, A.: Evacuating a First
Nation Due to Wildfire Smoke: The Case of Dene Tha' First Nation, Int. J.
Disaster Risk. Sci., 11, 274, https://doi.org/10.1007/s13753-020-00281-y, 2020.
NIFC: National Interagency Fire Center: Total Wildland Fires and Acres
(1926–2019), available at:
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html (last access: 13 September 2021), 2019.
Nikolakis, W., Roberts, E., Hotte, N. and Ross, R.M.: Goal setting and
Indigenous fire management: a holistic perspective, Int. J. Wildland Fire, 29,
974, https://doi.org/10.1071/WF20007, 2020.
Nitzbon, J., Westermann, S., Langer, M., Martin, L. C., Strauss, J., Laboor,
S., and Boike, J.: Fast response of cold ice-rich permafrost in northeast
Siberia to a warming climate, Nat. Commun., 11, 2201,
https://doi.org/10.1038/s41467-020-15725-8, 2020.
Nordregio.: Indigenous population in the Arctic, available at:
https://nordregio.org/maps/indigenous-population-in-the-arctic/ (last access: 13 September 2021), 2019.
Nugent, K. A., Strachan, I. B., Roulet, N. T., Strack, M., Frolking, S., and
Helbig, M.: Prompt active restoration of peatlands substantially reduces
climate impact, Environ. Res. Lett., 14, 124030,
https://doi.org/10.1088/1748-9326/ab56e6, 2019.
Oliva, P. and Schroeder, W.: Assessment of VIIRS 375 m active fire detection
product for direct burned area mapping, Remote Sens. Environ., 160, 144,
https://doi.org/10.1016/j.rse.2015.01.010, 2015.
O'Neill, H. B., Burn, C. R., Allard, M., Arenson, L. U., Bunn, M. I., Connon, R. F., Kokelj, S. A., Kokelj, S. V., LeBlanc, A.-M., Morse, P. D., and Smith, S. L.: Permafrost thaw and northern development, Nat. Clim. Chang., 10, 722–723, https://doi.org/10.1038/s41558-020-0862-5, 2020.
Päätalo, M.-L.: Factors influencing occurrence and impacts of fires
in northern European forests, Silva Fenn., 32, 185–202,
https://doi.org/10.14214/sf.695, 1998.
Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison,
L., Kucsera, T., da Silva, A., Wang, J., Oda, T., and Cui, G.: Six global
biomass burning emission datasets: intercomparison and application in one
global aerosol model, Atmos. Chem. Phys., 20, 969–994,
https://doi.org/10.5194/acp-20-969-2020, 2020.
Parfenova, E., Tchebakova, N., and Soja, A.: Assessing landscape potential
for human sustainability and `attractiveness' across Asian Russia in a
warmer 21st century, Environ. Res. Lett., 14, 065004,
https://doi.org/10.1088/1748-9326/ab10a8, 2019.
Parisien, M. A., Miller, C., Parks, S. A., DeLancey, E. R., Robinne, F. N.,
and Flannigan, M. D.: The spatially varying influence of humans on fire
probability in North America, Environ. Res. Lett., 11, 075005,
https://doi.org/10.1088/1748-9326/11/7/075005, 2016.
Parisien, M. A., Barber, Q. E., Hirsch, K. G., Stockdale, C. A., Erni, S., Wang,
X., Arseneault, D., and Parks, S. A.: Fire deficit increases wildfire risk for
many communities in the Canadian boreal forest, Nat. Commun., 11, 2121,
https://doi.org/10.1038/s41467-020-15961-y, 2020.
Partain Jr., J. L., Alden, S., Strader, H., Bhatt, U. S., Bieniek, P. A.,
Brettschneider, B. R., Walsh, J. E., Lader, R. T., Olsson, P. Q., Rupp, T. S.,
and Thoman Jr., R. L.:. An assessment of the role of anthropogenic climate
change in the Alaska fire season of 2015 [in “Explaining Extremes of 2015 from a Climate Perspective”], B. Am. Meteorol. Soc., 97, S14–S18,
https://doi.org/10.1175/bams-d-16-0149.1, 2016.
Peltola, H., Kilpeläinen, A., and Kellomäki, S.: Diameter growth of
Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon
dioxide concentration under boreal conditions, Tree Physiol., 22, 963–972,
https://doi.org/10.1093/treephys/22.14.963, 2002.
Pickell, P. D., Coops, N. C., Ferster, C. J., Bater, C. W., Blouin, K. D.,
Flannigan, M. D., and Zhang, J.: An early warning system to forecast the
close of the spring burning window from satellite-observed greenness,
Sci. Rep., 7, 1–10, https://doi.org/10.1038/s41598-017-14730-0, 2017.
Pimentel, R. and Arheimer, B.: Hydrological impacts of a wildfire in a
Boreal region: The Västmanland fire 2014 (Sweden), Sci. Total Environ.
756, 143519, https://doi.org/10.1016/j.scitotenv.2020.143519, 2021.
Polikarpov, N. P., Andreeva, N. M., Nazimova, D. I., Sirotinina, A. V., and
Sofronov, M. A.: Formation composition of the forest zones in Siberia as a
reflection of forest-forming tree species interrelations, Russ. J. Forest Sci., 5,
3–11, 1998.
Prat-Guitart, N., Rein, G., Hadden, R. M., Belcher, C. M., and Yearsley, J. M.:
Propagation probability and spread rates of self-sustained smouldering fires
under controlled moisture content and bulk density conditions, Int. J.
Wildland Fire, 25, 456–465, https://doi.org/10.1071/WF15103, 2016.
Prishchepov, A. V., Schierhorn, F., Dronin, N., Ponkina, E. V., and
Müller, D.: 800 Years of Agricultural Land-use Change in Asian (Eastern)
Russia, in: KULUNDA: Climate Smart Agriculture, Innovations in Landscape
Research, edited by: Frühauf, M., Guggenberger, G., Meinel, T.,
Theesfeld, I., Lentz, S., Springer, Cham, Switzerland, 67–87,
https://doi.org/10.1007/978-3-030-15927-6_6, 2020.
Púčik, T., Groenemeijer, P., Rädler, A. T., Tijssen, L., Nikulin,
G., Prein, A. F., van Meijgaard, E., Fealy, R., Jacob, D., and Teichmann, C.:
Future changes in European severe convection environments in a regional
climate model ensemble, J. Clim., 30, 6771,
https://doi.org/10.1175/jcli-d-16-0777.1, 2017.
Pureswaran, D. S., Roques, A., and Battisti, A.: Forest insects and climate
change, Curr. Forest Rep., 4, 35–50, https://doi.org/10.1007/s40725-018-0075-6,
2018.
Qi, L. and Wang, S.: Sources of black carbon in the atmosphere and in snow
in the Arctic, Sci. Total Environ., 691, 442–454,
https://doi.org/10.1016/j.scitotenv.2019.07.073, 2019.
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov,
M. M., Daniëls, F. J. A., Eidesen, P. B., Ermokhina, K. A., Frost, G. V.,
Jedrzejek, B., Jorgenson, M. T., Kennedy, B. E., Kholod, S. S., Lavrinenko,
I. A., Lavrinenko, O. V., Magnússon, B., Matveyeva, N. V.,
Metúsalemsson, S., Nilsen, L., Olthof, I., Pospelov, I. N., Pospelova,
E. B., Pouliot, D., Razzhivin, V., Schaepman-Strub, G., Šibík, J.,
Telyatnikov, M. Y., and Troeva, E.: A raster version of the Circumpolar Arctic
Vegetation Map (CAVM), Remote Sens. Environ., 232, 111297,
https://doi.org/10.1016/j.rse.2019.111297, 2019.
Rein, G.: Smoldering combustion, in: SFPE Handbook of Fire Protection
Engineering, edited by: Hurley, M. J., Gottuk, D., Hall, J. R., Harada, K.,
Kuligowski, E., Puchovsky, M., Torero, J., Watts, J. M., and Wieczoreks, C., Springer New York, New York, New York, 581–603,
https://doi.org/10.1007/978-1-4939-2565-0_19, 2016.
Rein, G., Cleaver, N., Ashton, C., Pironi, P., and Torero, J. L.: The
severity of smouldering peat fires and damage to the forest soil, Catena,
74, 304–309, https://doi.org/10.1016/j.catena.2008.05.008, 2008.
Rémy, S., Veira, A., Paugam, R., Sofiev, M., Kaiser, J. W., Marenco, F.,
Burton, S. P., Benedetti, A., Engelen, R. J., Ferrare, R., and Hair, J. W.:
Two global data sets of daily fire emission injection heights since 2003,
Atmos. Chem. Phys., 17, 2921–2942,
https://doi.org/10.5194/acp-17-2921-2017, 2017.
Riley, K. L., Williams, A. P., Urbanski, S. P., Calkin, D. E., Short, K. C.,
and O'Connor, C. D.: Will Landscape Fire Increase in the Future? A Systems
Approach to Climate, Fire, Fuel, and Human Drivers, Curr. Pollut. Rep., 5,
9–24, https://doi.org/10.1007/s40726-019-0103-6, 2019.
Robinne, F. N., Parisien, M. A., and Flannigan, M.: Anthropogenic influence
on wildfire activity in Alberta, Canada, Int. J. Wildland Fire, 25,
1131–1143, https://doi.org/10.1071/wf16058, 2016.
Robinne, F. N., Hallema, D. W., Bladon, K. D., and Buttle, J. M: Wildfire
impacts on hydrologic ecosystem services in North American high-latitude
forests: A scoping review, J. Hydrol., 581, 124360,
https://doi.org/10.1016/j.jhydrol.2019.124360, 2020.
Rocha, A. V., Loranty, M. M., Higuera, P. E., Mack, M. C., Hu, F. S., Jones,
B. M., Breen, A. L., Rastetter, E. B., Goetz, S. J., and Shaver, G. R.: The
footprint of Alaskan tundra fires during the past half-century: implications
for surface properties and radiative forcing, Environ. Res. Lett., 7,
044039, https://doi.org/10.1088/1748-9326/7/4/044039, 2012.
Rogers, B. M., Veraverbeke, S., Azzari, G., Czimczik, C. I., Holden, S. R.,
Mouteva, G. O., Sedano, F., Treseder, K. K., and Randerson, J. T.: Quantifying
fire-wide carbon emissions in interior Alaska using field measurements and
Landsat imagery, J. Geophys. Res.-Biogeo., 119, 1608,
https://doi.org/10.1002/2014JG002657, 2014.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of
tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228, https://doi.org/10.1038/ngeo2352, 2015.
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E., and Turetsky, M.:
Focus on changing fire regimes: interactions with climate, ecosystems, and
society, Environ. Res. Lett., 15, 030201,
https://doi.org/10.1088/1748-9326/ab6d3a, 2020.
Ronkainen, T., Väliranta, M., and Tuittila, E.-S.: Fire pattern in a
drainage-affected boreal bog, Boreal Environ. Res., 18, 309–316, 2013.
Santoso, M. A., Cui, W., Amin, H. M., Christensen, E. G., Nugroho, Y. S., and
Rein, G.: Laboratory study on the suppression of smouldering peat wildfires:
effects of flow rate and wetting agent, Int. J. Wildland Fire, 30, 378–390,
https://doi.org/10.1071/WF20117, 2021.
Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson,
W. R., Mao, J., and Pratt, K. A.: Local Arctic air pollution: A neglected but
serious problem, Earth's Future, 6, 1385,
https://doi.org/10.1029/2018EF000952, 2018.
Scholten, R. and Veraverbeke, S.: Alaska Fire Science Consortium:
Spatiotemporal patterns of overwintering fire in Alaska, available at:
https://akfireconsortium.files.wordpress.com/2020/03/fsh_2020mar25_holdoverfires-1.pdf (last access: 13 September 2021), 2020.
Seidl, R., Schelhaas, M. J., Rammer, W., and Verkerk, P. J.: Increasing
forest disturbances in Europe and their impact on carbon storage, Nat.
Clim. Change, 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Sherstyukov, B. G. and Sherstyukov, A. B.: Assessment of increase in forest
fire risk in Russia till the late 21st century based on scenario experiments
with fifth-generation climate models, Russ. Meteorol. Hydro+, 39, 292,
https://doi.org/10.3103/s1068373914050021, 2014.
Shiwakoti, S., Zheljazkov, V. D., Gollany, H. T., Kleber, M., Xing, B., and
Astatkie, T.:. Micronutrients in the Soil and Wheat: Impact of 84
Years of Organic or Synthetic Fertilization and Crop Residue Management,
Agronomy, 9, 464, https://doi.org/10.3390/agronomy9080464, 2019.
Shugart, H. H., Leemans, R., and Bonan, G. B.: A Systems Analysis of the Global
Boreal Forest, Cambridge University Press, New York, USA, 1–565,
https://doi.org/10.1017/CBO9780511565489.022, 1992.
Shuman, J. K., Foster, A. C., Shugart, H. H., Hoffman-Hall, A., Krylov, A.,
Loboda, T., Ershov, D., and Sochilova, E.: Fire disturbance and climate
change: implications for Russian forests, Environ. Res. Lett., 12, 035003,
https://doi.org/10.1088/1748-9326/aa5eed, 2017.
Shumilova, L. V.: Botanical Geography of Siberia, Tomsk University Press,
Tomsk, USSR, 1962.
Shvidenko, A. Z. and Nilsson, S.: Extent, distribution, and ecological role
of fire in Russian forests, in: Fire, climate change, and carbon cycling in
the boreal forest, edited by: Kasischke E. S. and Stocks B. J., Springer, New
York, NY, 132–150, https://doi.org/10.1007/978-0-387-21629-4_16, 2000.
Sidorova, E. J.: The incorporation of Traditional Ecological Knowledge in
the Arctic Council: Lip service?, Polar Rec., 56, 1–12,
https://doi.org/10.1017/S0032247420000273, 2020.
Silva, J. S. and Harrison, S. P.: Humans, Climate and Land Cover as
Controls on European Fire Regimes, in: Towards integrated fire
management-Outcomes of the European Project Fire Paradox, edited by: Silva,
J. S., Rego, F. C., Fernandes, P., and Rigolot, E., European Forest Institute,
Joensuu, Finald, 49–59, 2010.
Sirin, A., Maslov, A., Medvedeva, M., Vozbrannaya, A., Valyaeva, N.,
Tsyganova, O., Glukhova, T., and Makarov, D.: Multispectral Remote Sensing
Data as a Tool for Assessing the Need and the Effectiveness for Peatland
Restoration, In Proceedings of the 9th European Conference on Ecological
Restoration, edited by: Tolvanen, A. and Hekkala, A. M., Finnish Forest Research
Institute, Oulu, Finland, p. 133, 2014.
Sirin, A., Medvedeva, M., Maslov, A., and Vozbrannaya, A.: Assessing the
Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted
Peatlands: Comparing Different Multispectral Satellite Data, Land, 7, 71,
https://doi.org/10.3390/land7020071, 2018.
Sizov, O., Ezhova, E., Tsymbarovich, P., Soromotin, A., Prihod'ko, N.,
Petäjä, T., Zilitinkevich, S., Kulmala, M., Bäck, J., and
Köster, K.: Fire and vegetation dynamics in northwest Siberia during the
last 60 years based on high-resolution remote sensing, Biogeosciences, 18,
207–228, https://doi.org/10.5194/bg-18-207-2021, 2021.
Sjöström, J., Plathner, F. V., and Granström, A.: Wildfire
ignition from forestry machines in boreal Sweden, Int. J. Wildland Fire, 28,
666, https://doi.org/10.1071/wf18229, 2019.
Smirnov, N. S., Korotkov, V. N., and Romanovskaya, A. A.: Black carbon
emissions from wildfires on forest lands of the Russian Federation in
2007–2012, Russ. Meteorol. Hydro+, 40, 435,
https://doi.org/10.3103/s1068373915070018, 2015.
Sofronov, M. A. and Volokitina A. V.: Wildfire Ecology in Continuous
Permafrost Zone, in: Permafrost Ecosystems, Ecological Studies (Analysis and
Synthesis), Vol. 209, edited by: Osawa, A., Zyryanova, O., Matsuura, Y.,
Kajimoto, T., and Wein, R., Springer, Dordrecht, the Netherlands, 59–82,
https://doi.org/10.1007/978-1-4020-9693-8_4, 2010.
Sofronov, M. A., Volokitina, A. V., and Shvidenko, A. Z.: Wildland fires in the
north of Central Siberia, Commonw. For. Rev., 77, 124–127, 1998.
Sofronov, M. A., Volokitina, A., Kajimoto, T., Matsuura, Y., and Uemura, S.:
Zonal peculiarities of forest vegetation controlled by fires in northern
Siberia, Euras. J. Forest Res., 1, 51–57, 2000.
Soja, A. J., Cofer, W. R., Shugart, H. H., Sukhinin, A. I., Stackhouse, P. W.,
McRae, D. J., and Conard, S. G.: Estimating fire emissions and disparities in
boreal Siberia (1998–2002), J. Geophys. Res.-Atmos., 109, D14S06,
https://doi.org/10.1029/2004JD004570, 2004a.
Soja, A. J., Sukhinin, A. I., Cahoon Jr., D. R., Shugart, H. H., and Stackhouse
Jr., P. W.: AVHRR-derived fire frequency, distribution and area burned in
Siberia, Int. J. Remote Sens., 25, 1939,
https://https://doi.org/10.1080/01431160310001609725, 2004b.
Soja, A. J., Shugart, H. H., Sukhinin, A., Conard, S., and Stackhouse Jr.,
P. W.: Satellite-Derived Mean Fire Return Intervals As Indicators Of Change
In Siberia (1995–2002), Mitig. Adapt. Strat. Glob. Change, 11, 75–96,
https://doi.org/10.1007/s11027-006-1009-3, 2006.
Sommers, W. T., Loehman, R. A., and Hardy, C. C.: Wildland fire emissions,
carbon, and climate: Science overview and knowledge needs, Forest Ecol.
Manag., 317, 1–8, https://doi.org/10.1016/j.foreco.2013.12.014, 2014.
Stralberg, D., Wang, X., Parisien, M. A., Robinne, F. N., Sólymos, P.,
Mahon, C. L., Nielsen, S. E., and Bayne, E. M.: Wildfire-mediated vegetation
change in boreal forests of Alberta, Canada, Ecosphere, 9, e02156,
https://doi.org/10.1002/ecs2.2156, 2018.
Stone, R.: As the Arctic thaws, Indigenous Alaskans demand a voice in
climate change research, Sci. Mag.,
https://doi.org/10.1126/science.abe7149, 2020.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes
in Arctic melt season and implications for sea ice loss, Geophys. Res.
Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Tchebakova, N. M., Parfenova, E., and Soja, A. J.: The effects of climate,
permafrost and fire on vegetation change in Siberia in a changing climate,
Environ. Res. Lett., 4, 045013,
https://doi.org/10.1088/1748-9326/4/4/045013, 2009.
Tchebakova, N. M., Rehfeldt, G. E., and Parfenova, E.: From Vegetation Zones
to Climatypes: Effects of Climate Warming on Siberian Ecosystems, in:
Permafrost Ecosystems, Ecological Studies (Analysis and Synthesis), edited
by: Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., and Wein, R.,
Springer, Dordrecht, Germany, 427–446,
https://doi.org/10.1007/978-1-4020-9693-8_22, 2010.
Tchebakova, N. M., Parfenova, E. I., Lysanova, G. I., and Soja, A. J.:
Agroclimatic potential across central Siberia in an altered twenty-first
century, Environ. Res. Lett., 6, 045207,
https://doi.org/10.1088/1748-9326/6/4/045207, 2011.
Tchebakova, N. M., Chuprova, V. V., Parfenova, E. I., Soja, A. J., and
Lysanova, G. I.: Evaluating the agroclimatic potential of Central Siberia,
in: Novel Methods for Monitoring and Managing Land and Water Resources in
Siberia, edited by: Mueller, L., Sheudshen, A., and Eulenstein, F., Springer,
Cham, https://doi.org/10.1007/978-3-319-24409-9_10, 2016.
Terrier, A., Girardin, M. P., Périé, C., Legendre, P., and Bergeron,
Y.: Potential changes in forest composition could reduce impacts of climate
change on boreal wildfires, Ecol. Appl., 23, 21–35,
https://doi.org/10.1890/12-0425.1, 2013.
Teufel, B. and Sushama, L.: Abrupt changes across the Arctic permafrost
region endanger northern development, Nat. Clim. Change, 9, 858,
https://doi.org/10.1038/s41558-019-0614-6, 2019.
Theesfeld, I. and Jelinek, L.: A misfit in policy to protect Russia's black
soil region, An institutional analytical lens applied to the ban on burning
of crop residues, Land Use Policy, 67, 517,
https://doi.org/10.1016/j.landusepol.2017.06.018, 2017.
Thomas, J. L., Polashenski, C. M., Soja, A. J., Marelle, L., Casey, K. A., Choi,
H. D., Raut, J. C., Wiedinmyer, C., Emmons, L. K., Fast, J. D., and Pelon, J.:
Quantifying black carbon deposition over the Greenland ice sheet from forest
fires in Canada, Geophys. Res. Lett., 44, 7965,
https://doi.org/10.1002/2017gl073701, 2017.
Thompson, D. K. and Morrison, K.: A classification scheme to determine wildfires from the satellite record in the cool grasslands of southern Canada: considerations for fire occurrence modelling and warning criteria, Nat. Hazards Earth Syst. Sci., 20, 3439–3454, https://doi.org/10.5194/nhess-20-3439-2020, 2020.
Thompson, D. K., Simpson, B. N., Whitman, E., Barber, Q. E., and Parisien,
M. A.: Peatland hydrological dynamics as a driver of landscape connectivity
and fire activity in the boreal plain of Canada, Forests, 10, 534,
https://doi.org/10.3390/f10070534, 2019.
Turetsky, M., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., and Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015.
Tymstra, C., Stocks, B. J., Cai, X., and Flannigan, M. D.: Wildfire
management in Canada: Review, challenges and opportunities, Prog.
Disaster Scie., 5, 100045, https://doi.org/10.1016/j.pdisas.2019.100045,
2020.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in
global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6,
3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen,
Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G.
J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,
https://doi.org/10.5194/essd-9-697-2017, 2017.
Van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G.,
Rücker, G., French, N. H. F., Archibald, S., Carvalho Jr., J. A., Cook,
G. D., de Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S.,
McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti,
L., Manuri, S., Meyer, C. P., Siegert, F., Trollope, L. A., and Trollope, W.
S. W.: Biomass burning fuel consumption rates: a field measurement database,
Biogeosciences, 11, 7305–7329, https://doi.org/10.5194/bg-11-7305-2014,
2014.
Veira, A., Lasslop, G., and Kloster, S.: Wildfires in a warmer climate:
emission fluxes, emission heights, and black carbon concentrations in
2090–2099, J. Geophys. Res.-Atmos., 121, 3195,
https://doi.org/10.1002/2015jd024142, 2016.
Venäläinen, A., Lehtonen, I., Laapas, M., Ruosteenoja, K., Tikkanen,
O. P., Viiri, H., Ikonen, V. P., and Peltola, H.: Climate change induces
multiple risks to boreal forests and forestry in Finland: A literature
review, Glob Change Biol., 26, 4178, https://doi.org/10.1111/gcb.15183, 2020.
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E.,
Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of recent
large fire years in North American boreal forests, Nat. Clim. Change, 7,
529, https://doi.org/10.1038/nclimate3329, 2017.
Viatte, C., Strong, K., Hannigan, J., Nussbaumer, E., Emmons, L. K., Conway, S., Paton-Walsh, C., Hartley, J., Benmergui, J., and Lin, J.: Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models, Atmos. Chem. Phys., 15, 2227–2246, https://doi.org/10.5194/acp-15-2227-2015, 2015.
Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T., Tsigaridis,
K., and Mangeon, S.: Interannual variability of tropospheric trace gases and
aerosols: the role of biomass burning emissions, J. Geophys. Res.-Atmos.,
120, 7157–7173, https://doi.org/10.1002/2014JD022926, 2015.
Waigl, C. F., Stuefer, M., Prakash, A., and Ichoku, C.: Detecting high and
low-intensity fires in Alaska using VIIRS I-band data: An improved
operational approach for high latitudes, Remote Sens. Environ., 199, 389,
https://doi.org/10.1016/j.rse.2017.07.003, 2017.
Waigl, C. F., Prakash, A., Stuefer, M., Verbyla, D., and Dennison, P.: Fire
detection and temperature retrieval using EO-1 Hyperion data over selected
Alaskan boreal forest fires, Int. J. Appl. Earth Obs., 81, 72–84,
https://doi.org/10.1016/j.jag.2019.03.004, 2019.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz, S.,
Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A., and Turetsky, M. R.:
Increasing wildfires threaten historic carbon sink of boreal forest soils,
Nature, 572, 520–523, https://doi.org/10.1038/s41586-019-1474-y, 2019.
Walker, X. J., Rogers, B. M., Veraverbeke, S., Johnstone, J. F., Baltzer, J. L.,
Barrett, K., Bourgeau-Chavez, L., Day, N. J., de Groot, W. J., Dieleman, C. M.
and Goetz, S.: Fuel availability not fire weather controls boreal wildfire
severity and carbon emissions, Nat. Clim. Change, 10, 1130,
https://doi.org/10.1038/s41558-020-00920-8, 2020.
Walsh, J. E., Ballinger, T. J., Euskirchen, E. S., Hanna, E., Mård, J.,
Overland, J. E., Tangen, H., and Vihma, T.: Extreme weather and climate events
in northern areas: A review, Earth-Sci. Rev., 209, 103324,
https://doi.org/10.1016/j.earscirev.2020.103324, 2020.
Wang, X., Parisien, M. A., Taylor, S. W., Candau, J. N., Stralberg, D.,
Marshall, G. A., Little, J. M., and Flannigan, M. D.: Projected changes in daily
fire spread across Canada over the next century, Environ. Res. Lett., 12,
025005, https://doi.org/10.1088/1748-9326/aa5835, 2017.
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R.
F., and Friedl, M. A.: Extensive land cover change across Arctic–Boreal
Northwestern North America from disturbance and climate forcing, Glob. Change
Biol., 26, 807, https://doi.org/10.1111/gcb.14804, 2019.
Watson, J. G., Cao, J., Chen, L.-W. A., Wang, Q., Tian, J., Wang, X.,
Gronstal, S., Ho, S. S. H., Watts, A. C., and Chow, J. C.: Gaseous, PM2.5
mass, and speciated emission factors from laboratory chamber peat
combustion, Atmos. Chem. Phys., 19, 14173–14193,
https://doi.org/10.5194/acp-19-14173-2019, 2019.
Wein, R. W.: Frequency and characteristics of arctic tundra fires, Arctic,
29, 213, https://doi.org/10.14430/arctic2806, 1976.
Whitman, E., Parisien, M. A., Thompson, D. K., and Flannigan, M. D.:
Short-interval wildfire and drought overwhelm boreal forest resilience, Sci.
Rep., 9, 18796, https://doi.org/10.1038/s41598-019-55036-7, 2019.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J.
A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning,
Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011,
2011.
Wilkinson, S. L., Moore, P. A., Thompson, D. K., Wotton, B. M., Hvenegaard,
S., Schroeder, D., and Waddington, J. M.: The effects of black spruce fuel
management on surface fuel condition and peat burn severity in an
experimental fire, Can. J. For. Res., 48, 1433,
https://doi.org/10.1139/cjfr-2018-0217, 2018.
Wilkinson, S. L., Moore, P. A., and Waddington, J. M.: Assessing Drivers of
Cross-Scale Variability in Peat Smoldering Combustion Vulnerability in
Forested Boreal Peatlands, Front. Forest Glob. Change, 2, 1–11,
https://doi.org/10.3389/ffgc.2019.00084, 2019.
Wilson, G. N.: Indigenous Internationalism in the Arctic, in: The Palgrave
Handbook of Arctic Policy and Politics, edited by: Coates, K.S., and
Holroyd, C., Palgrave Macmillan, Cham, Switzerland, 27–40,
https://doi.org/10.1007/978-3-030-20557-7_3, 2020.
Witze, A.: The Arctic is burning like never before-and that's bad news for
climate change, Nature, 585, 336–337,
https://doi.org/10.1038/d41586-020-02568-y, 2020.
Wotton, B. M., Martell, D. L., and Logan, K. A.: Climate change and
people-caused forest fire occurrence in Ontario, Climatic Change, 60, 275,
https://doi.org/10.1023/A:1026075919710, 2003.
Wotton, B. M., Flannigan, M. D., and Marshall, G. A.: Potential climate
change impacts on fire intensity and key wildfire suppression thresholds in
Canada, Environ. Res. Lett., 12, 095003,
https://doi.org/10.1088/1748-9326/aa7e6e, 2017.
Wrona, F. J., Johansson, M., Culp, J. M., Jenkins, A., Mård, J., Myers‐Smith, I. H., Prowse, T. D., Vincent, W. F., and Wookey, P. A.: Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime, J. Geophys. Res.-Biogeo., 121, 650–675, https://doi.org/10.1002/2015JG003133, 2016.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates
of global peatland distribution based on a meta-analysis, Catena, 160, 134–140,
https://doi.org/10.1016/j.catena.2017.09.010, 2018.
Xu, W., He, H. S., Hawbaker, T. J., Zhu, Z., and Henne, P. D.: Estimating
burn severity and carbon emissions from a historic megafire in boreal
forests of China, Sci. Total Environ., 716, 136534,
https://doi.org/10.1016/j.scitotenv.2020.136534, 2020.
Yanagiya, K. and Furuya, M.: Post-wildfire surface deformation near
Batagay, Eastern Siberia, detected by L-band and C-band InSAR, J. Geophys.
Res., 125, e2019JF005473, https://doi.org/10.1029/2019JF005473, 2020.
York, A., Bhatt, U. S., Gargulinski, E., Garbinski, Z., Jain, P., Soja, A.,
Thoman, R. L., and Ziel, R: Wildland Fire in High Northern Latitudes, in:
Arctic Report Card 2020, edited by: Thoman, R. L., Richter-Menge, J., and
Druckenmiller, M. L.,
https://doi.org/10.25923/2gef-3964, 2020.
Young, A. M., Higuera, P. E., Duffy, P. A., and Hu, F. S.: Climatic
thresholds shape northern high-latitude fire regimes and imply vulnerability
to future climate change, Ecogeg, 40, 606,
https://doi.org/10.1111/ecog.02205, 2016.
Young, T. K. and Bjerregaard, P.: Towards estimating the indigenous
population in circumpolar regions, Int. J. Circumpolar Health, 78, 1653749,
https://doi.org/10.1080/22423982.2019.1653749, 2019.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402,
https://doi.org/10.1029/2010gl043584, 2010.
Yuan, H., Richter, F., and Rein, G.: A multi-step reaction scheme to
simulate self-heating ignition of coal: Effects of oxygen adsorption and
smouldering combustion, Proc. Combust. Inst., 38, 4717–4725,
https://doi.org/10.1016/j.proci.2020.07.016, 2021.
Zhang, R., Huang, C., Zhan, X., Jin, H., and Song, X. P.: Development of
S-NPP VIIRS global surface type classification map using support vector
machines, Int. J. Digit. Earth, 11, 212,
https://doi.org/10.1080/17538947.2017.1315462, 2018.
Zhu, C., Kobayashi, H., Kanaya, Y., and Saito, M.: Size-dependent
validation of MODIS MCD64A1 burned area over six vegetation types in boreal
Eurasia: Large underestimation in croplands, Sci. Rep., 7, 4181,
https://doi.org/10.1038/s41598-017-03739-0, 2017.
Download
- Article
(1652 KB) - Full-text XML
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A...
Altmetrics
Final-revised paper
Preprint