Research article 29 Oct 2021
Research article | 29 Oct 2021
Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea
Zouhair Lachkar et al.
Related authors
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
G. Turi, Z. Lachkar, and N. Gruber
Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, https://doi.org/10.5194/bg-11-671-2014, 2014
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, and Pillathu Moolayil Muraleedharan
Biogeosciences, 14, 3615–3632, https://doi.org/10.5194/bg-14-3615-2017, https://doi.org/10.5194/bg-14-3615-2017, 2017
Short summary
Short summary
The northern Arabian Sea hosts a winter chlorophyll bloom, which exhibits strong interannual variability. The processes responsible for this interannual variation of the bloom are investigated using observations and a model. The interannual fluctuations of the winter bloom are largely related to the interannual mixed-layer depth (MLD) anomalies, which are driven by net heat flux anomalies. MLD controls the bloom amplitude through a modulation of nutrient turbulent fluxes into the mixed layer.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Parvathi Vallivattathillam, Suresh Iyyappan, Matthieu Lengaigne, Christian Ethé, Jérôme Vialard, Marina Levy, Neetu Suresh, Olivier Aumont, Laure Resplandy, Hema Naik, and Wajih Naqvi
Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, https://doi.org/10.5194/bg-14-1541-2017, 2017
Short summary
Short summary
During late boreal summer and fall, the west coast of India (WCI) experiences hypoxia, which turns into anoxia during some years. We analyze a coupled physical–biogeochemical simulation over the 1960–2012 period to investigate the physical processes influencing oxycline interannual variability off the WCI. We show that fall WCI oxycline fluctuations are strongly related to Indian Ocean Dipole (IOD), with positive IODs preventing anoxia, while negative IODs do not necessarily result in anoxia.
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
G. Turi, Z. Lachkar, and N. Gruber
Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, https://doi.org/10.5194/bg-11-671-2014, 2014
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Oxygen export to the deep ocean following Labrador Sea Water formation
N2 fixation in the Mediterranean Sea related to the composition of the diazotrophic community and impact of dust under present and future environmental conditions
Dissolution of a submarine carbonate platform by a submerged lake of acidic seawater
Seasonal flux patterns and carbon transport from low-oxygen eddies at the Cape Verde Ocean Observatory: lessons learned from a time series sediment trap study (2009–2016)
Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition
Long-distance particle transport to the central Ionian Sea
Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment
Phosphorus cycling in the upper waters of the Mediterranean Sea (PEACETIME cruise): relative contribution of external and internal sources
The impact of the South-East Madagascar bloom on the oceanic CO2 sink
Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system
Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature
Comparing CLE-AdCSV applications using SA and TAC to determine the Fe-binding characteristics of model ligands in seawater
Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview
Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Nitrification in the oligotrophic Atlantic Ocean
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: An estimate based on the diel cycle of optical properties measured by BGC-Argo profiling floats
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
Oxygen budget of the north-western Mediterranean deep- convection region
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat
A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise)
Elevated sources of cobalt in the Arctic Ocean
Nordic Seas Acidification
Increase in ocean acidity variability and extremes under increasing atmospheric CO2
Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?
Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico
The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean
Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes
Ocean carbonate system variability in the North Atlantic Subpolar surface water (1993–2017)
Characterizing the surface microlayer in the Mediterranean Sea: trace metal concentrations and microbial plankton abundance
Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges
Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments
Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)
No nitrogen fixation in the Bay of Bengal?
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-283, https://doi.org/10.5194/bg-2021-283, 2021
Revised manuscript accepted for BG
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean we observed very low CO2 concentrations associated to a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event leaded to a strong regional CO2 ocean sink not previously observed.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-201, https://doi.org/10.5194/bg-2021-201, 2021
Revised manuscript accepted for BG
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Darren R. Clark, Andrew P. Rees, Charrisa Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-184, https://doi.org/10.5194/bg-2021-184, 2021
Revised manuscript accepted for BG
Short summary
Short summary
We undertook measurements of microbial processes in the sunlit open ocean during a cruise from the UK to Chili. These help us to understand how microbes maintain the function of remote ecosystems. We find that the microbes respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to on-going climate change.
Bo Liu, Katharina D. Six, and Tatiana Ilyina
Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021, https://doi.org/10.5194/bg-18-4389-2021, 2021
Short summary
Short summary
We incorporate a new representation of the stable carbon isotope 13C in a global ocean biogeochemistry model. The model well reproduces the present-day 13C observations. We find a recent observation-based estimate of the oceanic 13C Suess effect (the decrease in 13C/12C ratio due to uptake of anthropogenic CO2; 13CSE) possibly underestimates 13CSE by 0.1–0.26 per mil. The new model will aid in better understanding the past ocean state via comparison to 13C/12C measurements from sediment cores.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Hannah L. Bourne, James K. B. Bishop, Elizabeth J. Connors, and Todd J. Wood
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021, https://doi.org/10.5194/bg-18-3053-2021, 2021
Short summary
Short summary
To learn how the biological carbon pump works in productive coastal upwelling systems, four autonomous carbon flux explorers measured carbon flux through the twilight zone beneath an offshore-flowing filament of biologically productive water. Strikingly different particle classes dominated the carbon fluxes during successive stages of the filament evolution over 30 d. Both flux and transfer efficiency were far greater than expected, suggesting an outsized filament impact in California waters.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-123, https://doi.org/10.5194/bg-2021-123, 2021
Revised manuscript accepted for BG
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of the vast desert-like (oligotrophic) areas encountered in the global ocean. In this aim, we use a novel approach based on non-intrusive high-frequency in-situ measurements by two profiling robots, the BGC-Argo floats. Our results indicate substantial, yet variable, production rates and contribution to the whole water column of the subsurface layer that is typically considered steady and non-productive.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021, https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary
Short summary
A challenge for marine ecologists in studying phytoplankton is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small- and large-scale relationships. ML was able to provide qualitative information about the small-scale processes from large-scale information. This method could help identify important relationships from observations in future research.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
Mark Hague and Marcello Vichi
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-2021, https://doi.org/10.5194/bg-18-25-2021, 2021
Short summary
Short summary
This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought.
Arthur Capet, Luc Vandenbulcke, and Marilaure Grégoire
Biogeosciences, 17, 6507–6525, https://doi.org/10.5194/bg-17-6507-2020, https://doi.org/10.5194/bg-17-6507-2020, 2020
Short summary
Short summary
The Black Sea is 2000 m deep, but, due to limited ventilation, only about the upper 100 m contains enough oxygen to support marine life such as fish. This oxygenation depth has been shown to be decreasing (1955–2019). Here, we evidence that atmospheric warming induced a clear shift in an important ventilation mechanism. We highlight the impact of this shift on oxygenation. There are important implications for marine life and carbon and nutrient cycling if this new ventilation regime persists.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Melissa Chierici, Agneta Fransson, Emil Jeansson, Truls Johannessen, Elizabeth Jones, Siv K. Lauvset, Sólveig R. Ólafsdóttir, Abdirahman Omar, Ingunn Skjelvan, and Are Olsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-339, https://doi.org/10.5194/bg-2020-339, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems.
In this study we make a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification, and its potential effects on cold-water corals.
Friedrich A. Burger, Jasmin G. John, and Thomas L. Frölicher
Biogeosciences, 17, 4633–4662, https://doi.org/10.5194/bg-17-4633-2020, https://doi.org/10.5194/bg-17-4633-2020, 2020
Short summary
Short summary
Ensemble simulations of an Earth system model reveal that ocean acidity extremes have increased in the past few decades and are projected to increase further in terms of frequency, intensity, duration, and volume extent. The increase is not only caused by the long-term ocean acidification due to the uptake of anthropogenic CO2, but also due to changes in short-term variability. The increase in ocean acidity extremes may enhance the risk of detrimental impacts on marine organisms.
Christopher Gordon, Katja Fennel, Clark Richards, Lynn K. Shay, and Jodi K. Brewster
Biogeosciences, 17, 4119–4134, https://doi.org/10.5194/bg-17-4119-2020, https://doi.org/10.5194/bg-17-4119-2020, 2020
Short summary
Short summary
We describe a method for correcting errors in oxygen optode measurements on autonomous platforms in the ocean. The errors result from the relatively slow response time of the sensor. The correction method includes an in situ determination of the effective response time and requires the time stamps of the individual measurements. It is highly relevant for the BGC-Argo program and also applicable to gliders. We also explore if diurnal changes in oxygen can be obtained from profiling floats.
Bin Wang, Katja Fennel, Liuqian Yu, and Christopher Gordon
Biogeosciences, 17, 4059–4074, https://doi.org/10.5194/bg-17-4059-2020, https://doi.org/10.5194/bg-17-4059-2020, 2020
Short summary
Short summary
We assess trade-offs between different types of biological observations, specifically satellite ocean color and BGC-Argo profiles and the benefits of combining both for optimizing a biogeochemical model of the Gulf of Mexico. Using all available observations leads to significant improvements in observed and unobserved variables (including primary production and C export). Our results highlight the significant benefits of BGC-Argo measurements for biogeochemical model optimization and validation.
Bruce L. Greaves, Andrew T. Davidson, Alexander D. Fraser, John P. McKinlay, Andrew Martin, Andrew McMinn, and Simon W. Wright
Biogeosciences, 17, 3815–3835, https://doi.org/10.5194/bg-17-3815-2020, https://doi.org/10.5194/bg-17-3815-2020, 2020
Short summary
Short summary
We observed that variation in the Southern Annular Mode (SAM) over 11 years showed a relationship with the species composition of hard-shelled phytoplankton in the seasonal ice zone (SIZ) of the Southern Ocean. Phytoplankton in the SIZ are productive during the southern spring and summer when the area is ice-free, with production feeding most Antarctic life. The SAM is known to be increasing with climate change, and changes in phytoplankton in the SIZ may have implications for higher life forms.
Vincent Taillandier, Louis Prieur, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, and Elvira Pulido-Villena
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, https://doi.org/10.5194/bg-17-3343-2020, 2020
Short summary
Short summary
This study addresses the role played by vertical diffusion in the nutrient enrichment of the Levantine intermediate waters, a process particularly relevant inside thermohaline staircases. Thanks to a high profiling frequency over a 4-year period, BGC-Argo float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and their impact on vertical and lateral transfers of nitrate between the deep reservoir and the surface productive zone.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Pieter Demuynck, Toby Tyrrell, Alberto Naveira Garabato, Mark Christopher Moore, and Adrian Peter Martin
Biogeosciences, 17, 2289–2314, https://doi.org/10.5194/bg-17-2289-2020, https://doi.org/10.5194/bg-17-2289-2020, 2020
Short summary
Short summary
The availability of macronutrients N and Si is of key importance to sustain life in the Southern Ocean. N and Si are available in abundance at the southern boundary of the Southern Ocean due to constant supply from the deep ocean. In the more northern regions of the Southern Ocean, a decline in macronutrient concentration is noticed, especially strong for Si rather than N. This paper uses a simplified biogeochemical model to investigate processes responsible for this decline in concentration.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Cited articles
Al-Ansari, E. M., Rowe, G., Abdel-Moati, M., Yigiterhan, O., Al-Maslamani, I.,
Al-Yafei, M., Al-Shaikh, I., and Upstill-Goddard, R.: Hypoxia in the central
Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season,
Estuarine, Coast. Shelf Sci., 159, 60–68, 2015. a
Al-Rashidi, T. B., El-Gamily, H. I., Amos, C. L., and Rakha, K. A.: Sea surface
temperature trends in Kuwait bay, Arabian Gulf, Nat. Hazard., 50, 73–82,
2009. a
Al-Yamani, F. and Naqvi, S.: Chemical oceanography of the Arabian Gulf, Deep-Sea Res. Pt. II, 161, 72–80, 2019. a
Bange, H. W., Naqvi, S. W. A., and Codispoti, L.: The nitrogen cycle in the
Arabian Sea, Prog. Oceanogr., 65, 145–158, 2005. a
Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., and Jayakumar, D. A.: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales, Biogeosciences, 11, 2237–2261, https://doi.org/10.5194/bg-11-2237-2014, 2014. a
Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global
ocean circulation model using a three-year climatology of ECMWF analyses,
J. Mar. Syst., 6, 363–380, 1995. a
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O’Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue, A., and Williamson, P., 2019: Changing Ocean, Marine Ecosystems, and Dependent Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 447–588, 2019. a, b, c, d, e
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a, b
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., A., Mishonov, V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M.: World Ocean Database 2018, A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87, available at: https://www.ncei.noaa (last access: 1 August 2021), 2019. a
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., and Seibel, B. A.: Declining oxygen in the global ocean and coastal waters, Science,
359, 6371, https://doi.org/10.1126/science.aam7240, 2018. a
Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., and Al-Jailani,
H.: Causes and consequences of the 2017 coral bleaching event in the southern
Persian/Arabian Gulf, Coral Reefs, 38, 567–589, 2019. a
Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using Simple
Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017,
2008. a
Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M., and Hoteit, I.: Decadal
trends in Red Sea maximum surface temperature, Sci. Rep., 7, 1–8,
2017. a
Codispoti, L., Brandes, J. A., Christensen, J., Devol, A., Naqvi, S., Paerl,
H. W., and Yoshinari, T.: The oceanic fixed nitrogen and nitrous oxide
budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65,
85–105, 2001. a
Cummins, P. F. and Ross, T.: Secular trends in water properties at Station P in
the northeast Pacific: an updated analysis, Prog. Oceanogr., 186,
102329, https://doi.org/10.1016/j.pocean.2020.102329, 2020. a
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J. Hydrometeorol.,
3, 660–687, 2002. a
deCastro, M., Sousa, M., Santos, F., Dias, J., and Gómez-Gesteira, M.: How
will Somali coastal upwelling evolve under future warming scenarios?,
Sci. Rep., 6, 1–9, 2016. a
Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., Crusius, J., Ito, T., Baumgartner, T., Ferreira, V., Mey, J., and van Geen, A.: Centennial
changes in North Pacific anoxia linked to tropical trade winds, Science, 345,
665–668, 2014. a
do Rosário Gomes, H., Goes, J. I., Matondkar, S. P., Buskey, E. J., Basu,
S., Parab, S., and Thoppil, P.: Massive outbreaks of Noctiluca scintillans
blooms in the Arabian Sea due to spread of hypoxia, Nat. Commun., 5,
1–8, 2014. a
Frölicher, T. L., Rodgers, K. B., Stock, C. A., and Cheung, W. W.: Sources
of uncertainties in 21st century projections of potential ocean ecosystem
stressors, Global Biogeochem. Cy., 30, 1224–1243, 2016. a
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting
equations, Limnol. Oceanogr., 37, 1307–1312, 1992. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013, Vol. 3, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, edited by: Levitus, S., A. Mishonov Technical Ed., NOAA Atlas NESDIS 75, 27 pp., 2014a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013, Vol. 4, Dissolved Inorganic Nutrients (phosphate, nitrate, silicate), edied by: Levitus, S., A. Mishonov Technical Ed., NOAA Atlas NESDIS 76, 25 pp., 2014b. a
Gobler, C. J. and Baumann, H.: Hypoxia and acidification in ocean ecosystems:
coupled dynamics and effects on marine life, Biol. Lett., 12, 20150976, https://doi.org/10.1098/rsbl.2015.0976,
2016. a
Gopika, S., Izumo, T., Vialard, J., Lengaigne, M., Suresh, I., and Kumar,
M. R.: Aliasing of the Indian Ocean externally-forced warming spatial pattern
by internal climate variability, Clim. Dynam., 54, 1093–1111, 2020. a
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016. a
Guieu, C., Al Azhar, M., Aumont, O., Mahowald, N., Lévy, M., Éthé,
C., and Lachkar, Z.: Major impact of dust deposition on the productivity of
the Arabian Sea, Geophys. Res. Lett., 46, 6736–6744, 2019. a
Hameau, A., Mignot, J., and Joos, F.: Assessment of time of emergence of anthropogenic deoxygenation and warming: insights from a CESM simulation from 850 to 2100 CE, Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, 2019. a
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith,
T., and Zhang, H.-M.: Improvements of the daily optimum interpolation sea
surface temperature (DOISST) version 2.1, J. Clim., 34, 2923–2939,
2021. a
Kendall, M. G.: Rank correlation methods, 4th Edn., Griffin, London, 160 pp., 1948. a
Koné, V., Aumont, O., Lévy, M., and Resplandy, L.: Physical and biogeochemical controls of the phytoplankton seasonal cycle in the Indian Ocean: a modeling study, in: Indian Ocean Biogeochemical Processes and Ecological Variability, edited by: Wiggert, J. D., Hood, R. R., Wajih, S., Naqvi, A., Brink, K. H., and Smith, S. L., Washington, DC, American Geophysical Union, Geophysical Monograph no. 185, 147–66, https://doi.org/10.1029/2008GM000700, 2009. a
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a, b
Lachkar, Z., Smith, S., Lévy, M., and Pauluis, O.: Eddies reduce
denitrification and compress habitats in the Arabian Sea, Geophys.
Res. Lett., 43, 9148–9156, 2016. a
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, University Corporation for Atmospheric Research, https://doi.org/10.5065/D6KK98Q6, 2004. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994. a
Levin, L. A.: Manifestation, drivers, and emergence of open ocean
deoxygenation, Annual review of marine science, 10, 229–260, 2018. a
Long, M. C., Deutsch, C., and Ito, T.: Finding forced trends in oceanic oxygen,
Global Biogeochem. Cy., 30, 381–397, 2016. a
Mann, H. B.: Nonparametric tests against trend, Econometrica, J.
Econom. Soc., 13, 245–259, https://doi.org/10.2307/1907187, 1945. a
Marchesiello, P., Debreu, L., and Couvelard, X.: Spurious diapycnal mixing in
terrain-following coordinate models: The problem and a solution, Ocean
Model., 26, 156–169, 2009. a
McCreary, J. P., Yu, Z., Hood, R. R., Vinaychandran, P., Furue, R., Ishida, A.,
and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum zones,
Prog. Oceanogr., 112, 15–37, 2013. a
Merchant, C. J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin, C. E., Corlett, G. K., Good, S., McLaren, A., Rayner, N., Morak-Bozzo, S., and Donion, C.:
Sea surface temperature datasets for climate applications from Phase 1 of the
European Space Agency Climate Change Initiative (SST CCI), Geosci. Data
J., 1, 179–191, 2014. a
Oschlies, A., Koeve, W., Landolfi, A., and Kähler, P.: Loss of fixed
nitrogen causes net oxygen gain in a warmer future ocean, Nat.
Commun., 10, 1–7, 2019. a
Piontkovski, S. and Al-Oufi, H.: The Omani shelf hypoxia and the warming
Arabian Sea, Int. J. Environ. Stud., 72, 256–264,
2015. a
Praveen, V., Ajayamohan, R., Valsala, V., and Sandeep, S.: Intensification of
upwelling along Oman coast in a warming scenario, Geophys. Res.
Lett., 43, 7581–7589, 2016. a
Queste, B. Y., Vic, C., Heywood, K. J., and Piontkovski, S. A.: Physical
controls on oxygen distribution and denitrification potential in the north
west Arabian Sea, Geophys. Res. Lett., 45, 4143–4152, 2018. a
Rabalais, N. N., Turner, R. E., and Wiseman Jr., W. J.: Gulf of Mexico hypoxia,
aka “The dead zone”, Ann. Rev. Ecol. Syst., 33,
235–263, 2002. a
Ramesh, R., Purvaja, G., and Subramanian, V.: Carbon and phosphorus transport
by the major Indian rivers, J. Biogeogr., 22, 409–415, 1995. a
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V.,
Rowell, D., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003. a
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012. a
Robinson, C.: Microbial respiration, the engine of ocean deoxygenation,
Front. Mar. Sci., 5, 533, https://doi.org/10.3389/fmars.2018.00533, 2019. a
Schott, F. A., Xie, S.-P., and McCreary Jr., J. P.: Indian Ocean circulation and
climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404, 2005. a
Sooraj, K., Terray, P., and Mujumdar, M.: Global warming and the weakening of
the Asian summer monsoon circulation: assessments from the CMIP5 models,
Climate Dynamics, 45, 233–252, 2015. a
Stewart, K., Kim, W., Urakawa, S., Hogg, A. M., Yeager, S., Tsujino, H.,
Nakano, H., Kiss, A., and Danabasoglu, G.: JRA55-do-based repeat year forcing
datasets for driving ocean–sea-ice models, Ocean Model., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557,
2020. a
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008. a
Strong, A. E., Liu, G., Skirving, W., and Eakin, C. M.: NOAA's Coral Reef Watch
program from satellite observations, Ann. GIS, 17, 83–92, 2011. a
Swapna, P., Jyoti, J., Krishnan, R., Sandeep, N., and Griffies, S.:
Multidecadal weakening of Indian summer monsoon circulation induces an
increasing northern Indian Ocean sea level, Geophys. Res. Lett., 44,
10560–10572, https://doi.org/10.1002/2017GL074706, 2017. a, b
Vallivattathillam, P., Iyyappan, S., Lengaigne, M., Ethé, C., Vialard, J., Levy, M., Suresh, N., Aumont, O., Resplandy, L., Naik, H., and Naqvi, W.: Positive Indian Ocean Dipole events prevent anoxia off the west coast of India, Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, 2017. a
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci. USA, 105,
15452–15457, 2008. a
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
This study documents and quantifies a significant recent oxygen decline in the upper layers of...
Altmetrics
Final-revised paper
Preprint