Articles | Volume 19, issue 5
https://doi.org/10.5194/bg-19-1571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient
Rey Harvey Suello
CORRESPONDING AUTHOR
ECOSPHERE, Biology Department, University of Antwerp, 2610 Antwerp, Belgium
Simon Lucas Hernandez
ECOSPHERE, Biology Department, University of Antwerp, 2610 Antwerp, Belgium
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
Steven Bouillon
Division of Soil and Water Management, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Jean-Philippe Belliard
ECOSPHERE, Biology Department, University of Antwerp, 2610 Antwerp, Belgium
Luis Dominguez-Granda
Department of Sustainable Water Management, Escuela Superior Politecnica del Litoral, EC090903 Guayaquil, Ecuador
Marijn Van de Broek
Department of Environmental Systems Science, Swiss Federal Institute of Technology, 8006 Zurich, Switzerland
Andrea Mishell Rosado Moncayo
Department of Sustainable Water Management, Escuela Superior Politecnica del Litoral, EC090903 Guayaquil, Ecuador
John Ramos Veliz
Department of Sustainable Water Management, Escuela Superior Politecnica del Litoral, EC090903 Guayaquil, Ecuador
Karem Pollette Ramirez
Department of Sustainable Water Management, Escuela Superior Politecnica del Litoral, EC090903 Guayaquil, Ecuador
Gerard Govers
Division of Soil and Water Management, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Stijn Temmerman
ECOSPHERE, Biology Department, University of Antwerp, 2610 Antwerp, Belgium
Related authors
No articles found.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Lennert Schepers, Mona Huyzentruyt, Matthew L. Kirwan, Glenn R. Guntenspergen, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2362, https://doi.org/10.5194/egusphere-2025-2362, 2025
Short summary
Short summary
In some tidal marshes, vegetation can convert to ponds as a result of sea level rise. We investigated to what extent this is related to decreasing strength of the marsh soil in relation to sea level rise. We found a reduction of marsh soil strength in areas with more inundation by sea water and more ponding, which results in easier erosion of the marsh and thus further expansion of ponds. This decrease in marsh soil strength is highly related to lower content of roots in the soil.
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
Biogeosciences, 22, 2733–2747, https://doi.org/10.5194/bg-22-2733-2025, https://doi.org/10.5194/bg-22-2733-2025, 2025
Short summary
Short summary
We studied how different organic and inorganic nutrient inputs affect soil organic carbon (SOC) down to 70 cm in Kenya. After 19 years, all organic treatments increased SOC stocks compared with the control, but mineral nitrogen had no significant effect. Manure was the organic treatment that significantly increased SOC at the deepest soil depths, as its effect could be observed down to 60 cm. Manure was the best strategy to limit SOC loss in croplands and maintain soil quality after deforestation.
Zita Kelemen, David P. Gillikin, and Steven Bouillon
Biogeosciences, 22, 2621–2635, https://doi.org/10.5194/bg-22-2621-2025, https://doi.org/10.5194/bg-22-2621-2025, 2025
Short summary
Short summary
We analysed the C and O stable isotope composition (δ13C, δ18O) across the growth axis of museum-archived and recent Chambardia wissmanni shells from the Oubangui River (Congo basin) covering sections of the past ~120 years. Recent shells showed a much wider range of δ18O values compared to historical specimens, consistent with the suggestion that dry periods in the upper Congo basin have become more extreme in recent times and highlighting the potential of this species to reconstruct hydroclimatic conditions.
Marijn Van de Broek, Fiona Stewart-Smith, Moritz Laub, Marc Corbeels, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2025-2287, https://doi.org/10.5194/egusphere-2025-2287, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
To improve soil health and increase crop yields, organic matter is commenly added to arable soils. Studying the effect of different organic amenmends on soil organic carbon sequestration in four long-term field trials in Kenya, we found that only a small portion (< 7 %) of added carbon was stabilised. Moreover, this was only observed in the top 15 cm of the soil. These results underline the challenges associated with increasing the organic carbon content of tropical arable soils.
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
Biogeosciences, 22, 1427–1446, https://doi.org/10.5194/bg-22-1427-2025, https://doi.org/10.5194/bg-22-1427-2025, 2025
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions as long as more data to constrain model parameters are not available.
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024, https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
Short summary
We used the DayCent model to assess the potential impact of integrated soil fertility management (ISFM) on maize production, soil fertility, and greenhouse gas emission in Kenya. After adjustments, DayCent represented measured mean yields and soil carbon stock changes well and N2O emissions acceptably. Our results showed that soil fertility losses could be reduced but not completely eliminated with ISFM and that, while N2O emissions increased with ISFM, emissions per kilogram yield decreased.
Claude Raoul Müller, Johan Six, Liesa Brosens, Philipp Baumann, Jean Paolo Gomes Minella, Gerard Govers, and Marijn Van de Broek
SOIL, 10, 349–365, https://doi.org/10.5194/soil-10-349-2024, https://doi.org/10.5194/soil-10-349-2024, 2024
Short summary
Short summary
Subsoils in the tropics are not as extensively studied as those in temperate regions. In this study, the conversion of forest to agriculture in a subtropical region affected the concentration of stabilized organic carbon (OC) down to 90 cm depth, while no significant differences between 90 cm and 300 cm were detected. Our results suggest that subsoils below 90 cm are unlikely to accumulate additional stabilized OC through reforestation over decadal periods due to declining OC input with depth.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six
SOIL, 9, 301–323, https://doi.org/10.5194/soil-9-301-2023, https://doi.org/10.5194/soil-9-301-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Liesa Brosens, Benjamin Campforts, Gerard Govers, Emilien Aldana-Jague, Vao Fenotiana Razanamahandry, Tantely Razafimbelo, Tovonarivo Rafolisy, and Liesbet Jacobs
Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, https://doi.org/10.5194/esurf-10-209-2022, 2022
Short summary
Short summary
Obtaining accurate information on the volume of geomorphic features typically requires high-resolution topographic data, which are often not available. Here, we show that the globally available 12 m TanDEM-X DEM can be used to accurately estimate gully volumes and establish an area–volume relationship after applying a correction. This allowed us to get a first estimate of the amount of sediment that has been mobilized by large gullies (lavaka) in central Madagascar over the past 70 years.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Chen Wang, Lennert Schepers, Matthew L. Kirwan, Enrica Belluco, Andrea D'Alpaos, Qiao Wang, Shoujing Yin, and Stijn Temmerman
Earth Surf. Dynam., 9, 71–88, https://doi.org/10.5194/esurf-9-71-2021, https://doi.org/10.5194/esurf-9-71-2021, 2021
Short summary
Short summary
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of bare patches is a symptom of habitat degradation. We found that the occurrence of bare patches and regrowth of vegetation is related to spatial variations in soil surface elevation and to the distance and connectivity to tidal creeks. These relations are similar in three marshes at very different geographical locations. Our results may help nature managers to conserve and restore coastal marshes.
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Cited articles
Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., and
Brogueira, M. J : Behaviour of organic carbon in nine contrasting European
estuaries, Estuar. Coast. Shelf Sci., 54, 241–262,
https://doi.org/10.1007/s10533-004-3362-1, 2011.
Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L.,
and Guevara, M.: Carbon stocks and soil sequestration rates of tropical
riverine wetlands, Biogeosciences, 12, 3805–3818,
https://doi.org/10.5194/bg-12-3805-2015, 2015.
Allen, J. R. L.: Salt-marsh growth and stratification: a numerical model
with special reference to the Severn Estuary, southwest Britain, Mar.
Geol., 95, 77–96, https://doi.org/10.1016/0025-3227(90)90042-I, 1990.
Alongi, D. M.: Carbon sequestration in mangrove forests, Carbon Manag.,
3, 313–322, https://doi.org/10.4155/cmt.12.20, 2012.
Alongi, D. M.: Carbon cycling and storage in mangrove forests, Ann. Rev. Mar. Sci., 6, 195–219, https://doi.org/10.1146/annurev-marine-010213-135020,
2014.
Arreaga Vargas, P: Análisis del comportamiento de la salinidad (intrusión salina) en el sistema Río Guayas Canal de Jambelí como parte del cambio climático, Vol. 10, Acta Oceanografico del Pacifco, 2000.
Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J.J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Andrew, D. L., and Lovelock C. E.: Global patterns in mangrove soil
carbon stocks and losses, Nat. Clim. Change, 7, 523–528, https://doi.org/10.4236/as.2015.63031, 2017.
Barr, J. G., Engel, V., Fuentes, J. D., Zieman, J. C., O'Halloran, T. L.,
Smith, T. J., and Anderson, G. H.: Controls on mangrove forest-atmosphere
carbon dioxide exchanges in western Everglades National Park, J.
Geophys. Res.-Biogeo., 115, G02020, https://doi.org/10.1029/2009JG001186,
2010.
Borges, A. V. and Abril, G.: Carbon Dioxide and Methane Dynamics in
Estuaries, in: Treatise on Estuarine and
Coastal Science, edited by: Wolanski, E. and McLusky, D. S., Vol. 5, Academic Press, Waltham, 119–161,
https://doi.org/10.1007/s00027-018-0617-9, 2011
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H, Smith, T., and Twilley, R. R.: Mangrove production and carbon
sinks: a revision of global budget estimates, Global Biogeochem. Cy.,
22, GB2013, https://doi.org/10.1029/2007GB003052, 2008.
Burkett, V. and Kusler, J.: Climate change: potential impacts and
interactions in wetlands of the untted states 1, J.
Am. Water Resour. As., 36, 313–320,
https://doi.org/10.1111/j.1752-1688.2000.tb04270.x, 2000.
Cifuentes, L. A., Coffin, R. B., Solorzano, L., Cardenas, W., Espinoza, J.,
and Twilley, R. R.: Isotopic and elemental variations of carbon and
nitrogen in a mangrove estuary, Estuar. Coast. Shelf Sci., 43,
781–800, https://doi.org/10.1006/ecss.1996.0103, 1996.
Craft, C.: Freshwater input structures soil properties, vertical accretion,
and nutrient accumulation of Georgia and US tidal marshes, Limnol.
Oceanogr., 52, 1220–1230, https://doi.org/10.4319/lo.2007.52.3.1220,
2007.
Cucalón, E.: Oceanographic characteristics off the coast of Ecuador, A
sustainable shrimp mariculture industry for Ecuador, University of Rhode
Island, Narragansett, RI, Coastal Resources Center, 1989.
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M.,
and Kanninen, M.: Mangroves among the most carbon-rich forests in the
tropics, Nat. Geosci., 4, 293–297, https://doi.org/10.1038/ngeo1123,
2011.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., and Anger, K.: A world
without mangroves, Science, 317, 41–42, https://doi.org/10.1126/science.317.5834.41b, 2007.
Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., and
Aburto-Oropeza, O.: Coastal landforms and accumulation of mangrove peat
increase carbon sequestration and storage, P. Natl.
Acad. Sci. USA, 113, 4404–4409, https://doi.org/10.1073/pnas.1519774113, 2016.
French, J. R.: Numerical simulation of vertical marsh growth and adjustment
to accelerated sea-level rise, north Norfolk, UK, Earth Surf. Proc. Land., 18, 63–81, https://doi.org/10.1002/esp.3290180105,
1993.
Hansen, K., Butzeck, C., Eschenbach, A., Gröngröft, A., Jensen, K.,
and Pfeiffer, E. M.: Factors influencing the organic carbon pools in tidal
marsh soils of the Elbe estuary (Germany), J. Soil. Sediment.,
17, 47–60, https://doi.org/10.1007/s11368-016-1500-8, 2017.
Jacotot, A., Marchand, C., and Allenbach, M.: Tidal variability of CO2 and
CH4 emissions from the water column within a Rhizophora mangrove forest (New
Caledonia), Sci. Total Environ., 631, 334–340,
https://doi.org/10.1016/j.scitotenv.2018.03.006, 2018
Jennerjahn, T. C.: Relevance and magnitude of “Blue Carbon” storage in
mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks,
Estuar. Coast. Shelf Sci., 247, 107027,
https://doi.org/10.1016/J.ECSS.2020.107027, 2020.
Jennerjahn, T. C.: Relevance of allochthonous input from an
agriculture-dominated hinterland for “Blue Carbon” storage in mangrove
sediments in Java, Indonesia, in: Dynamic Sedimentary Environments of
Mangrove Coasts, Elsevier, 393–414,
https://doi.org/10.1016/B978-0-12-816437-2.00017-3, 2021.
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R.,
and Fagherazzi, S.: Overestimation of marsh vulnerability to sea level rise,
Nat. Clim. Change, 6, 253–260, https://doi.org/10.1038/nclimate2909, 2016.
Kristensen, E.: Mangrove crabs as ecosystem engineers; with emphasis on
sediment processes, J. Sea Res., 59, 30–43,
https://doi.org/10.1016/j.seares.2007.05.004, 2007.
Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon
dynamics in mangrove ecosystems: a review, Aquat. Bot., 89, 201–219,
https://doi.org/10.1016/j.aquabot.2007.12.005, 2008.
Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M.,
Ransby, D., and Jennerjahn, T. C.: Variability in the organic carbon
stocks, sources, and accumulation rates of Indonesian mangrove
ecosystems, Estuar. Coast. Shelf Sci., 218, 310–323, https://doi.org/10.1016/j.ecss.2018.12.007, 2019.
Leopold, A., Marchand, C., Deborde, J., and Allenbach, M.: Temporal
variability of CO2 fluxes at the sediment-air interface in mangroves (New
Caledonia), Sci. Total Environ., 502, 617–626,
https://doi.org/10.1016/j.scitotenv.2014.09.066, 2015.
Locatelli, T., Binet, T., Kairo, J. G., King, L., Madden, S., Patenaude, G., Upton, C., and Huxham, M.: Turning the tide: how blue carbon and payments for
ecosystem services (PES) might help save mangrove forests, Ambio, 43,
981–995, https://doi.org/10.1007/s13280-014-0530-y, 2014.
Lovelock, C. E., Sorrell, B. K., Hancock, N., Hua, Q., and Swales, A.:
Mangrove forest and soil development on a rapidly accreting shore in New
Zealand, Ecosystems, 13, 437–451,
https://doi.org/10.1007/s10021-010-9329-2, 2010.
Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J., and Eyre, B.
D.: Groundwater-derived dissolved inorganic and organic carbon exports from
a mangrove tidal creek: The missing mangrove carbon sink?, Limnol.d
Oceanogr., 58, 475–488, https://doi.org/10.4319/lo.2013.58.2.0475,
2013.
Marchand, C.: Soil carbon stocks and burial rates along a mangrove forest
chronosequence (French Guiana), Forest Ecol. Manag., 384, 92–99,
https://doi.org/10.1016/j.foreco.2016.10.030, 2017.
Marchand, C., Baltzer, F., Lallier-Vergès, E., and Albéric, P.:
Pore-water chemistry in mangrove sediments: relationship with species
composition and developmental stages (French Guiana), Mar. Geol.,
208, 361–381, https://doi.org/10.1016/j.margeo.2004.04.015, 2004.
Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa,
D., and Baillif, P.: Heavy metals distribution in mangrove sediments along
the mobile coastline of French Guiana, Mar. Chem., 98, 1–17,
https://doi.org/10.1016/j.marchem.2005.06.001, 2006.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C., Schlesinger, W., and Silliman, B. R.: A blueprint for blue carbon: toward an
improved understanding of the role of vegetated coastal habitats in
sequestering CO2, Front. Ecol. Environ., 9, 552–560,
https://doi.org/10.1890/110004, 2011.
Mueller, P., Ladiges, N., Jack, A., Schmiedl, G., Kutzbach, L., Jensen, K.,
and Nolte, S.: Assessing the long-term carbon-sequestration potential of
the semi-natural salt marshes in the European Wadden Sea, Ecosphere, 10, e02556,
https://doi.org/10.1002/ecs2.2556, 2019.
Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., and Kurnianto, S.: The potential of Indonesian
mangrove forests for global climate change mitigation, Nat. Clim.
Change, 5, 1089, https://doi.org/10.1038/nclimate2734, 2015.
Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., De Young, C., Fonseca, L. E., and Grimsdith, G.: Blue carbon: the role of healthy oceans in binding carbon. United Nations Environment Program, GRID-Ardenal, 78, 35–44, ISBN 978-82-7701-060-1, 2009.
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marba, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and Baldera, A.: Estimating global “blue carbon”
emissions from conversion and degradation of vegetated coastal ecosystems,
PloS One, 7, e43542, https://doi.org/10.1371/journal.pone.0043542, 2012.
Pethick, J. S.: Long-term accretion rates on tidal salt marshes, J.
Sediment. Res., 51, 571–577,
https://doi.org/10.1306/212F7CDE-2B24-11D7-8648000102C1865D, 1981.
Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., Wang, Y., and Yong, J. W. H.: The Loss
of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern,
PLoS ONE, 5, e10095, https://doi.org/10.1371/journal.pone.0010095, 2010
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria2014, https://www.R-project.org (last access: 21 March 2021), 2017.
Ranjan, R. K., Routh, J., Ramanathan, A. L., and Klump, J. V.: Elemental
and stable isotope records of organic matter input and its fate in the
Pichavaram mangrove–estuarine sediments (Tamil Nadu, India), Mar.
Chem., 126, 163–172, https://doi.org/10.1016/j.marchem.2011.05.005,
2011.
Reynaud, J. Y., Witt, C., Pazmiño, A., and Gilces, S.: Tide-dominated
deltas in active margin basins: Insights from the Guayas estuary, Gulf of
Guayaquil, Ecuador, Mar. Geol., 403, 165–178,
https://doi.org/10.1016/j.margeo.2018.06.002, 2018.
Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C.: Allochthonous
and autochthonous contributions to carbon accumulation and carbon store in
southeastern Australian coastal wetlands, Estuar. Coast. Shelf
Sci., 128, 84–92, https://doi.org/10.1016/j.ecss.2013.05.010, 2013.
Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J.,
and Megonigal, J. P.: Limits on carbon sequestration in arid blue carbon
ecosystems, Ecol. Appl., 27, 859–874,
https://doi.org/10.1002/eap.1489, 2017.
Sturm, K., Werner, U., Grinham, A., and Yuan, Z.: Tidal variability in
methane and nitrous oxide emissions along a subtropical estuarine gradient,
Estuar. Coast. Shelf Sci., 192, 159–169,
https://doi.org/10.1016/j.ecss.2017.04.027, 2017.
Suello, R. H.:
Suello et al. 2022, Biogeosciences, Data and Codes, Mendeley Data [data set], https://doi.org/10.17632/fv8sx6kfzf, 2022.
Taillardat, P., Friess, D. A., and Lupascu, M.: Mangrove blue carbon
strategies for climate change mitigation are most effective at the national
scale, Biol. Lett., 14, 20180251,
https://doi.org/10.1098/rsbl.2018.0251, 2018.
Temmerman, S., Govers, G., Meire, P., and Wartel, S.: Modelling long-term
tidal marsh growth under changing tidal conditions and suspended sediment
concentrations, Scheldt estuary, Belgium, Mar. Geol., 193, 151–169,
2003.
Temmerman, S., Govers, G., Wartel, S., and Meire, P.: Modelling estuarine
variations in tidal marsh sedimentation: response to changing sea level and
suspended sediment concentrations, Mar. Geol., 212, 1–19, 2004.
Tue, N. T., Quy, T. D., Hamaoka, H., Nhuan, M. T., and Omori, K.: Sources and
Exchange of Particulate Organic Matter in an Estuarine Mangrove Ecosystem of
Xuan Thuy National, 1060–1068, http://www.jstor.org/stable/23257618 (last access: 7 July 2021), 2012.
Tue, N. T., Dung, L. V., Nhuan, M. T., and Omori, K.: Carbon storage of a
tropical mangrove forest in Mui Ca Mau National Park, Vietnam, Catena, 121,
119–126, https://doi.org/10.1016/J.CATENA.2014.05.008, 2014.
Twilley, R. R., Gottfried, R. R., Rivera-Monroy, V. H., Zhang, W., Armijos,
M. M., and Bodero, A.: An approach and preliminary model of integrating
ecological and economic constraints of environmental quality in the Guayas
River estuary, Ecuador, Environ. Sci. Pol., 1, 271–288, 1998.
Twilley, R. R., Cárdenas, W., Rivera-Monroy, V. H., Espinoza, J.,
Suescum, R., Armijos, M. M., and Solórzano, L : The Gulf of Guayaquil
and the Guayas river estuary, Ecuador, in: Coastal marine ecosystems of Latin
America, Springer, Berlin, Heidelberg, 245–263, https://doi.org/10.1007/978-3-662-04482-7_18, 2001.
Van de Broek, M., Temmerman, S., Merckx, R., and Govers, G.: Controls on
soil organic carbon stocks in tidal marshes along an estuarine salinity
gradient, Biogeosciences, 13, 6611–6624,
https://doi.org/10.5194/bg-13-6611-2016, 2016.
Van de Broek, M., Vandendriessche, C., Poppelmonde, D., Merckx, R.,
Temmerman, S., andGovers, G.: Long-term organic carbon sequestration in
tidal marsh sediments is dominated by old-aged allochthonous inputs in a
macrotidal estuary, Glob. Change Biol., 24,
2498–2512, https://doi.org/10.1111/GCB.14089, 2018.
Weiss, C., Weiss, J., Boy, J., Iskandar, I., Mikutta, R., and Guggenberger,
G.: Soil organic carbon stocks in estuarine and marine mangrove ecosystems
are driven by nutrient colimitation of P and N, Ecol. Evol.,
6, 5043–5056, https://doi.org/10.15488/302, 2016.
Yee, S.: REDD and BLUE carbon: carbon payments for mangrove conservation, UC San Diego: Center for Marine Biodiversity and Conservation, https://escholarship.org/uc/item/2bc6j8pz, last access: 19 January 2021, 2010.
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
This research shows indications that the age of the mangrove forest and its position along a...
Altmetrics
Final-revised paper
Preprint