Articles | Volume 19, issue 9
https://doi.org/10.5194/bg-19-2333-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2333-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling
Elisabeth Mauclet
CORRESPONDING AUTHOR
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Yannick Agnan
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Catherine Hirst
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Arthur Monhonval
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Benoît Pereira
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Aubry Vandeuren
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Maëlle Villani
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Justin Ledman
Ecosystem Dynamics Research, Center for Ecosystem Science and Society, Northern Arizona University,
Flagstaff, AZ, USA
Meghan Taylor
Ecosystem Dynamics Research, Center for Ecosystem Science and Society, Northern Arizona University,
Flagstaff, AZ, USA
Briana L. Jasinski
Ecosystem Dynamics Research, Center for Ecosystem Science and Society, Northern Arizona University,
Flagstaff, AZ, USA
Edward A. G. Schuur
Ecosystem Dynamics Research, Center for Ecosystem Science and Society, Northern Arizona University,
Flagstaff, AZ, USA
Sophie Opfergelt
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Related authors
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Maxime Thomas, Julien Fouché, Hugues Titeux, Charlotte Morelle, Nathan Bemelmans, Melissa J. Lafrenière, Joanne K. Heslop, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3428, https://doi.org/10.5194/egusphere-2025-3428, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study examines organic carbon (OC)–mineral interactions in permafrost soils undergoing thermokarst degradation in Cape Bounty (Melville Island, Canada). Chemically stabilized OC accounts for 13 ± 5 % as organo-metallic complexes and 6 ± 2 % as associations with iron oxides. Including physical protection, up to 64 ± 10 % of OC is mineral-protected. Deeper layers show a sharp decline in mineral-bound OC, suggesting increased vulnerability to degradation when exposed by deep thaw features.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Fred Worrall, Gareth Clay, Catherine Moody, and Catherine Hirst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1469, https://doi.org/10.5194/egusphere-2025-1469, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding global carbon budgets requires a knowledge of the balance between carbon dioxide and oxygen gas fluxes – oxidative ratio (OR). The OR has proved difficult to measure for terrestrial environments. We present a novel method for measuring OR using an ecosystem's carbon budget and organic matter elemental composition. We found an OR of 0.88, significantly lower than the IPCC's assumed 1.1. This lower OR value implies that terrestrial biosphere carbon budgets have been underestimated.
Noé Vandevoorde, Igor Turine, Alodie Blondel, and Yannick Agnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-943, https://doi.org/10.5194/egusphere-2025-943, 2025
Short summary
Short summary
Cover crops (CC) help capture nitrates, but their role in mitigating pesticide impacts has been less studied. We evaluated how two CC densities (vs. bare soil) affected pesticide residues in soil and solution over 3 months in a greenhouse pot experiment. Our results show that well-developed CCs, by sustaining active edaphic microbiota, enhance pesticide biodegradation across a wide range of active substances. This further confirms the role of CCs in groundwater protection.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Elisabeth Mauclet, Maëlle Villani, Arthur Monhonval, Catherine Hirst, Edward A. G. Schuur, and Sophie Opfergelt
Earth Syst. Sci. Data, 15, 3891–3904, https://doi.org/10.5194/essd-15-3891-2023, https://doi.org/10.5194/essd-15-3891-2023, 2023
Short summary
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cited articles
Aerts, R. and Chapin, F. S.: The mineral nutrition of wild plants revisited:
a re-evaluation of processes and patterns, in: Advances in Ecological
Research, Academic Press, 1–67,
https://doi.org/10.1016/S0065-2504(08)60016-1, 1999.
Aerts, R., Verhoeven, J. T. A., and Whigham, D. F.: Plant-mediated controls on
nutrient cycling in temperate fens and bogs, Ecology, 80, 2170–2181,
https://doi.org/10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2, 1999.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C., Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost thaw and liberation of inorganic nitrogen in Eastern Siberia, Permafrost Periglac. Process., 28, 605–618, https://doi.org/10.1002/ppp.1958, 2017.
Berendse, F. and Jonasson, S.: Nutrient use and nutrient cycling in northern
ecosystems, in: Chapin, F. S., Jefferies, R. L., Reynolds, J. F., Shaver, G. R.,
and Svoboda, J., Arctic Ecosystems in a Changing Climate: an
Ecophysiological Perspective, Academic Press, Toronto, Canada, 337–356,
1992.
Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., and Bonan, G. B.: The
representation of Arctic soils in the land surface model: the importance of
mosses, J. Climate, 14, 3324–3335,
https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Bieniek, P. A., Epstein, H. E.,
Comiso, J. C., Pinzon, J. E., Tucker, C. J., Steele, M., Ermold, W., and Zhang,
J.: Changing seasonality of panarctic tundra vegetation in relationship to
climatic variables, Environ. Res. Lett., 12, 055003,
https://doi.org/10.1088/1748-9326/aa6b0b, 2017.
Billings, W. D.: Constraints to plant growth, reproduction, and establishment
in Arctic environments, Arctic Alpine Res., 19, 357–365, https://doi.org/10.2307/1551400, 1987.
Burn, C. R.: Permafrost, in: Encyclopedia of Quaternary Science, 2nd
Edn., Elsevier, 464–471, https://doi.org/10.1016/B978-0-444-53643-3.00099-6, 2013.
Carey, J. C., Parker, T. C., Fetcher, N., and Tang, J.: Biogenic silica
accumulation varies across tussock tundra plant functional type, Funct.
Ecol., 31, 2177–2187, https://doi.org/10.1111/1365-2435.12912, 2017.
Carey, J. C., Abbott, B. W., and Rocha, A. V.: Plant uptake offsets silica
release from a large Arctic tundra wildfire, Earths Future, 7, 1044–1057,
https://doi.org/10.1029/2019EF001149, 2019.
Chapin, F. S.: The mineral nutrition of wild plants, Annu. Rev. Ecol. Syst.,
11, 233–260, https://doi.org/10.1146/annurev.es.11.110180.001313, 1980.
Chapin, F. S. and Shaver, G. R.: Individualistic growth response of tundra
plant species to environmental manipulations in the field, Ecology, 66,
564–576, https://doi.org/10.2307/1940405, 1985.
Chapin, F. S. and Shaver, G. R.: Differences in growth and nutrient use among
Arctic plant growth forms, Funct. Ecol., 3, 73–80,
https://doi.org/10.2307/2389677, 1989.
Chapin, F. S., Johnson, D. A., and McKendrick, J. D.: Seasonal movement of
nutrients in plants of differing growth form in an alaskan tundra ecosystem:
implications for herbivory, J. Ecol., 68, 189–209, 1980.
Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and Laundre,
J. A.: Responses of Arctic tundra to experimental and observed changes in
climate, Ecology 76, 694–711, https://doi.org/10.2307/1939337, 1995.
Chapin, F. S., Sturm, M., Serreze, M. C., Mcfadden, J. P., Key, J. R., Lloyd,
A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Chapman, W. L.,
Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C. L., Tape,
K. D., Thompson, C. D. C., Walker, D. A., and Welker, J. M.: Role of land-surface
changes in Arctic summer warming, Science, 310, 657–660,
https://doi.org/10.1126/science.1117368, 2005.
Cornelissen, J. H. C., van Bodegom, P. M., Aerts, R., Callaghan, T. V., van
Logtestijn, R. S. P., Alatalo, J., Chapin, F. S., Gerdol, R., Gudmundsson, J.,
Gwynn-Jones, D., Hartley, A. E., Hik, D. S., Hofgaard, A., Jónsdóttir,
I. S., Karlsson, S., Klein, J. A., Laundre, J., Magnusson, B., Michelsen, A.,
Molau, U., Onipchenko, V. G., Quested, H. M., Sandvik, S. M., Schmidt, I. K.,
Shaver, G. R., Solheim, B., Soudzilovskaia, N. A., Stenström, A.,
Tolvanen, A., Totland, Ø., Wada, N., Welker, J. M., and Zhao, X., and
M.O.L. Team: Global negative vegetation feedback to climate warming responses
of leaf litter decomposition rates in cold biomes, Ecol. Lett., 10, 619–627,
https://doi.org/10.1111/j.1461-0248.2007.01051.x, 2007.
DalCorso, G., Manara, A., Piasentin, S., and Furini, A.: Nutrient metal
elements in plants, Metallomics, 6, 1770–1788,
https://doi.org/10.1039/C4MT00173G, 2014.
Deane-Coe, K. K., Mauritz, M., Celis, G., Salmon, V., Crummer, K. G., Natali,
S. M., and Schuur, E. A. G.: Experimental warming alters productivity and
isotopic signatures of tundra mosses, Ecosystems, 18, 1070–1082,
https://doi.org/10.1007/s10021-015-9884-7, 2015.
Dormann, C. F. and Woodin, S. J.: Climate change in the Arctic: using plant
functional types in a meta-analysis of field experiments, Funct. Ecol.,
16, 4–17, https://doi.org/10.1046/j.0269-8463.2001.00596.x, 2002.
Druel, A., Ciais, P., Krinner, G., and Peylin, P.: Modeling the vegetation
dynamics of northern shrubs and mosses in the ORCHIDEE Land Surface Model,
J. Adv. Model. Earth Sy., 11, 2020–2035,
https://doi.org/10.1029/2018MS001531, 2019.
Finger, R. A., Turetsky, M. R., Kielland, K., Ruess, R. W., Mack, M. C., and
Euskirchen, E. S.: Effects of permafrost thaw on nitrogen availability and
plant–soil interactions in a boreal Alaskan lowland, J. Ecol., 104,
1542–1554, https://doi.org/10.1111/1365-2745.12639, 2016.
French, H. M.: Permafrost, in: The Periglacial Environment, John Wiley &
Sons Ltd., West Sussex, England, 83–115,
https://doi.org/10.1002/9781118684931.ch5, 2013.
Heijmans, M. M. P. D., Magnússon, R. Í., Lara, M. J., Frost, G. V.,
Myers-Smith, I. H., van Huissteden, J., Jorgenson, M. T., Fedorov, A. N.,
Epstein, H. E., Lawrence, D. M., and Limpens, J.: Tundra vegetation change and
impacts on permafrost, Nat. Rev. Earth Environ., 3, 68–84,
https://doi.org/10.1038/s43017-021-00233-0, 2022.
Herndon, E., Kinsman-Costello, L., and Godsey, S.: Biogeochemical Cycling of Redox-Sensitive Elements in Permafrost-Affected Ecosystems, in: Biogeochemical Cycles, edited by: Dontsova, K., Balogh-Brunstad, Z., and Le Roux, G., AGU Geophysical Monograph Series, Wiley, 245–265, https://doi.org/10.1002/9781119413332.ch12, 2020.
Hewitt, R. E., Taylor, D. L., Genet, H., McGuire, A. D., and Mack, M. C.:
Below-ground plant traits influence tundra plant acquisition of newly thawed
permafrost nitrogen, J. Ecol., 107, 950–962,
https://doi.org/10.1111/1365-2745.13062, 2019.
Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Holocene carbon stocks
and carbon accumulation rates altered in soils undergoing permafrost thaw,
Ecosystems, 15, 162–173, https://doi.org/10.1007/s10021-011-9500-4, 2012.
Hobbie, S. E.: Temperature and plant species control over litter
decomposition in Alaskan tundra, Ecol. Monogr. 66, 503–522,
https://doi.org/10.2307/2963492, 1996.
Hobbie, S. E. and Gough, L.: Foliar and soil nutrients in tundra on glacial
landscapes of contrasting ages in northern Alaska, Oecologia 131, 453–462,
https://doi.org/10.1007/s00442-002-0892-x, 2002.
Hodson, M. J., White, P. J., Mead, A., and Broadley, M. R.: Phylogenetic
variation in the silicon composition of plants, Ann. Bot., 96, 1027–1046,
https://doi.org/10.1093/aob/mci255, 2005.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Jasinski, B. L., Hewitt, R. E., Mauritz, M., Miller, S. N., Schuur, E. A. G., Taylor, M. A., Walker, X. J., and Mack, M. C.: Plant foliar nutrient response to active layer and water table depth in warming permafrost soils, J. Ecol., https://doi.org/10.1111/1365-2745.13864, online first, 2022.
Jasinski, B. L., Schuur, E. A. G., Mack, M. C., and Bonanza Creek LTER: Eight
Mile Lake Research Watershed, Thaw Gradient: peak growing season aboveground
biomass 2017, Environmental Data Initiative [data set],
https://doi.org/10.6073/PASTA/40F9AE60D635E5AAC0E562EE006D24E2, 2018.
Jonasson, S.: Nutrient content and dynamics in north Swedish shrub tundra
areas, Ecography, 6, 295–304,
https://doi.org/10.1111/j.1600-0587.1983.tb01093.x, 1983.
Jonasson, S. and Chapin, F. S.: Significance of sequential leaf development
for nutrient balance of the cotton sedge, Eriophorum vaginatum L., Oecologia,
67, 511–518, https://doi.org/10.1007/BF00790022, 1985.
Jonasson, S., Havström, M., Jensen, M., and Callaghan, T. V.: In situ
mineralization of nitrogen and phosphorus of arctic soils after
perturbations simulating climate change, Oecologia, 95, 179–186,
https://doi.org/10.1007/BF00323488, 1993.
Jonasson, S., Michelsen, A., and Schmidt, I. K.: Coupling of nutrient cycling
and carbon dynamics in the Arctic, integration of soil microbial and plant
processes, Appl. Soil Ecol., 11, 135–146,
https://doi.org/10.1016/S0929-1393(98)00145-0, 1999.
Jones, M. E., La Croix, R. E., Zeigler, J., Ying, S. C., Nico, P. S., and
Keiluweit, M.: Enzymes, manganese, or iron? Drivers of oxidative organic
matter decomposition in soils, Environ. Sci. Technol., 54, 14114–14123,
https://doi.org/10.1021/acs.est.0c04212, 2020.
Jonsdottir, I. S., Magnusson, B., Gudmundsson, J., Elmarsdottir, A., and
Hjartarson, H.: Variable sensitivity of plant communities in Iceland to
experimental warming, Glob. Change Biol., 11, 553–563,
https://doi.org/10.1111/j.1365-2486.2005.00928.x, 2005.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost degradation and ecological changes associated with a warming
climate in Central Alaska, Climatic Change, 48, 551–579,
https://doi.org/10.1023/A:1005667424292, 2001.
Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H., and Benson, A. M.:
Twenty-five year record of changes in plant cover on tundra of Northeastern
Alaska, Arct. Antarct. Alp. Res., 47, 785–806,
https://doi.org/10.1657/AAAR0014-097, 2015.
Keiluweit, M., Nico, P., Harmon, M. E., Mao, J., Pett-Ridge, J., and Kleber,
M.: Long-term litter decomposition controlled by manganese redox cycling,
P. Natl. Acad. Sci. USA, 112, E5253–E5260,
https://doi.org/10.1073/pnas.1508945112, 2015.
Keuper, F., Bodegom, P. M., Dorrepaal, E., Weedon, J. T., Hal, J., Logtestijn,
R. S. P., and Aerts, R.: A frozen feast: thawing permafrost increases
plant-available nitrogen in subarctic peatlands, Glob. Change Biol., 18,
1998–2007, https://doi.org/10.1111/j.1365-2486.2012.02663.x, 2012.
Keuper, F., Dorrepaal, E., van Bodegom, P.M., van Logtestijn, R., Venhuizen,
G., van Hal, J., and Aerts, R.: Experimentally increased nutrient
availability at the permafrost thaw front selectively enhances biomass
production of deep-rooting subarctic peatland species, Glob. Change Biol.,
23, 4257–4266, https://doi.org/10.1111/gcb.13804, 2017.
Lavoie, M., Mack, M. C., and Schuur, E. A. G.: Effects of elevated nitrogen and
temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal
soils, J. Geophys. Res.-Biogeo., 116, G03013,
https://doi.org/10.1029/2010JG001629, 2011.
Leroux, S. J., Wal, E. V., Wiersma, Y. F., Charron, L., Ebel, J. D., Ellis,
N. M., Hart, C., Kissler, E., Saunders, P. W., Moudrá, L., Tanner, A. L.,
and Yalcin, S.: Stoichiometric distribution models: ecological stoichiometry
at the landscape extent, Ecol. Lett., 20, 1495–1506,
https://doi.org/10.1111/ele.12859, 2017.
Loneragan, J. F. and Snowball, K.: Calcium requirements of plants, Aust.
J. Agr. Res., 20, 465–478,
https://doi.org/10.1071/AR9690465, 1969.
Longton, R. E. (Ed.): Cryptogams in polar ecosystems, in: Biology of Polar
Bryophytes and Lichens, Studies in Polar Research, 253–309, Cambridge
University Press, https://doi.org/10.1017/CBO9780511565212.008, 1988.
Luthin, J. N. and Guymon, G. L.: Soil moisture-vegetation-temperature
relationships in Central Alaska, J. Hydrol., 23, 233–246,
https://doi.org/10.1016/0022-1694(74)90005-5, 1974.
Ma, J. F. and Takahashi, E. (Eds.): Soil, fertilizer, and plant silicon research in
Japan, Elsevier, Amsterdam, p. 294,
https://doi.org/10.1016/B978-0-444-51166-9.X5000-3, 2002.
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., and Chapin,
F. S.: Ecosystem carbon storage in arctic tundra reduced by long-term
nutrient fertilization, Nature, 431, 440–443,
https://doi.org/10.1038/nature02887, 2004.
Mack, M. C., Finlay, J. C., DeMarco, J., Chapin, F., Schuur, E. A. G., Neff,
J. C., and Zimov, S. A.: Nitrogen and phosphorus in Yedoma soils of Northeast
Siberia: stocks, fluxes and the ecosystem consequences of nutrient release
from permafrost thaw, Presented at the American Geophysical Union, Fall
Meeting 2010, December 2010, San Fransisco, California,
abstract id. GC52A-05, 2010.
Maillard, A., Diquélou, S., Billard, V., Laîné, P., Garnica,
M., Prudent, M., Garcia-Mina, J.-M., Yvin, J.-C., and Ourry, A.: Leaf
mineral nutrient remobilization during leaf senescence and modulation by
nutrient deficiency, Front. Plant Sci., 6, 317,
https://doi.org/10.3389/fpls.2015.00317, 2015.
Marschner, H.: Marschner's mineral nutrition of higher plants, 3rd Edn.,
Elsevier, Academic Press, London, Waltham, MA,
https://doi.org/10.1016/C2009-0-63043-9, 2012.
Mauclet, E., Opfergelt, S., Agnan, Y., Hirst, C., Monhonval, A., Ledman, J.,
Taylor, M., Schuur, E. A. G., and Bonanza Creek LTER: Carbon in Permafrost
Experimental Heating Research (CIPEHR) project: Foliar mineral element
concentrations, stocks, and annual litterfall fluxes in July 2009 and 2017,
Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/597c40c5d699eec918da3e9c2eaa7bea, 2021a.
Mauclet, E., Opfergelt, S., Agnan, Y., Hirst, C., Monhonval, A., Ledman, J.,
Taylor, M., Schuur, E. A. G., and Bonanza Creek LTER: Eight Mile Lake Research
Watershed, Thaw Gradient: Foliar mineral element concentrations, stocks and
annual litterfall fluxes estimated for July 2017, Environmental Data
Initiative [data set] 5, https://doi.org/10.6073/pasta/7fad9398ec3a596b8efc092fc8fbf55d,
2021b.
Mauritz, M., Bracho, R., Celis, G., Hutchings, J., Natali, S. M., Pegoraro,
E., Salmon, V. G., Schädel, C., Webb, E. E., and Schuur, E. A. G.: Nonlinear
CO2 flux response to 7 years of experimentally induced permafrost thaw,
Glob. Change Biol., 23, 3646–3666, https://doi.org/10.1111/gcb.13661, 2017.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.:
Increased plant growth in the northern high latitudes from 1981 to 1991,
Nature, 386, 698–702, https://doi.org/10.1038/386698a0, 1997.
Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., Laundre, J. A.: Effects of
temperature and substrate quality on element mineralization in six Arctic
soils, Ecology, 72, 242–253, https://doi.org/10.2307/1938918, 1991.
Natali, S. M., Schuur, E. A. G., Trucco, C., Hicks Pries, C. E., Crummer, K. G.,
and Baron Lopez, A. F.: Effects of experimental warming of air, soil and
permafrost on carbon balance in Alaskan tundra, Glob. Change Biol., 17,
1394–1407, https://doi.org/10.1111/j.1365-2486.2010.02303.x, 2011.
Natali, S. M., Schuur, E. A. G., and Rubin, R. L.: Increased plant productivity
in Alaskan tundra as a result of experimental warming of soil and
permafrost: Increased plant productivity in Alaskan tundra, J. Ecol., 100,
488–498, https://doi.org/10.1111/j.1365-2745.2011.01925.x, 2012.
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann,
A. K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L., Björkman,
M. P., Bloom, A. A., Celis, G., Christensen, T. R., Christiansen, C. T.,
Commane, R., Cooper, E. J., Crill, P., Czimczik, C., Davydov, S., Du, J.,
Egan, J. E., Elberling, B., Euskirchen, E. S., Friborg, T., Genet, H.,
Göckede, M., Goodrich, J. P., Grogan, P., Helbig, M., Jafarov, E. E.,
Jastrow, J. D., Kalhori, A. A. M., Kim, Y., Kimball, J. S., Kutzbach, L., Lara,
M. J., Larsen, K. S., Lee, B.-Y., Liu, Z., Loranty, M. M., Lund, M., Lupascu,
M., Madani, N., Malhotra, A., Matamala, R., McFarland, J., McGuire, A. D.,
Michelsen, A., Minions, C., Oechel, W. C., Olefeldt, D., Parmentier, F.-J. W.,
Pirk, N., Poulter, B., Quinton, W., Rezanezhad, F., Risk, D., Sachs, T.,
Schaefer, K., Schmidt, N. M., Schuur, E. A. G., Semenchuk, P. R., Shaver, G.,
Sonnentag, O., Starr, G., Treat, C. C., Waldrop, M. P., Wang, Y., Welker, J.,
Wille, C., Xu, X., Zhang, Z., Zhuang, Q., and Zona, D.: Large loss of
CO2 in winter observed across the northern permafrost region, Nat.
Clim. Change, 9, 852–857, https://doi.org/10.1038/s41558-019-0592-8, 2019.
Oechel, W. C. and Van Cleve, K.: The role of bryophytes in nutrient cycling
in the taiga, in: Forest Ecosystems in the Alaskan Taiga, edited by: Van Cleve, K., Chapin, F. S., Flanagan, P. W., Viereck,
L. A., and Dyrness, C. T.,
Ecological Studies, Springer New York, New York, NY, 121–137,
https://doi.org/10.1007/978-1-4612-4902-3_9, 1986.
Osterkamp, T. E., Jorgenson, M. T., Schuur, E. A. G., Shur, Y. L., Kanevskiy,
M. Z., Vogel, J. G., and Tumskoy, V. E.: Physical and ecological changes
associated with warming permafrost and thermokarst in Interior Alaska,
Permafrost Periglac., 20, 235–256, https://doi.org/10.1002/ppp.656,
2009.
Park, B. B., Rahman, A., Han, S. H., Youn, W. B., Hyun, H. J., Hernandez, J.,
and An, J. Y.: Carbon and nutrient inputs by litterfall in evergreen and
deciduous forests in Korea, Forests, 11, 143,
https://doi.org/10.3390/f11020143, 2020.
Parker, T. C., Sanderman, J., Holden, R. D., Blume-Werry, G., Sjögersten,
S., Large, D., Castro-Díaz, M., Street, L. E., Subke, J. A., and Wookey,
P. A.: Exploring drivers of litter decomposition in a greening Arctic:
results from a transplant experiment across a treeline, Ecology, 99,
2284–2294, https://doi.org/10.1002/ecy.2442, 2018.
Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T.,
Knight, S. J., and Goetz, S. J.: Shifts in Arctic vegetation and associated
feedbacks under climate change, Nat. Clim. Change, 3, 673–677,
https://doi.org/10.1038/nclimate1858, 2013.
Pouliot, D., Latifovic, R., and Olthof, I.: Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006, Int. J. Remote Sens.,
30, 149–168, https://doi.org/10.1080/01431160802302090, 2009.
Quigley, K. M., Donati, G. L., and Anderson, T. M.: Variation in the soil
“silicon landscape” explains plant silica accumulation across environmental
gradients in Serengeti, Plant Soil, 410, 217–229,
https://doi.org/10.1007/s11104-016-3000-4, 2017.
Ravansari, R. and Lemke, L. D.: Portable X-ray fluorescence trace metal
measurement in organic rich soils: pXRF response as a function of organic
matter fraction, Geoderma, 119, 175–184,
https://doi.org/10.1016/j.geoderma.2018.01.011, 2018.
Ravansari, R., Wilson, S. C., and Tighe, M.: Portable X-ray fluorescence for
environmental assessment of soils: not just a point and shoot method,
Environ. Int., 134, 105250,
https://doi.org/10.1016/j.envint.2019.105250, 2020.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: December 2021), 2020.
Reimann, C., Koller, F., Kashulina, G., Niskavaara, H., and Englmaier, P.:
Influence of extreme pollution on the inorganic chemical composition of some
plants, Environ. Pollut., 115, 239–252,
https://doi.org/10.1016/S0269-7491(01)00106-3, 2001.
Rodenhizer, H., Ledman, J., Mauritz, M., Natali, S. M., Pegoraro, E., Plaza,
C., Romano, E., Schädel, C., Taylor, M., and Schuur, E. A. G.: Carbon thaw
rate doubles when accounting for subsidence in a permafrost warming
experiment, J. Geophys. Res.-Biogeo., 125, e2019JG005528,
https://doi.org/10.1029/2019JG005528, 2020.
Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A.,
Gurevitch, J., and Cornelissen, J.: A meta-analysis of the response of soil
respiration, net nitrogen mineralization, and aboveground plant growth to
experimental ecosystem warming, Oecologia, 126, 543–562,
https://doi.org/10.1007/s004420000544, 2001.
Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M. C.,
and Schuur, E. A. G.: Nitrogen availability increases in a tundra ecosystem
during five years of experimental permafrost thaw, Glob. Change Biol., 22,
1927–1941, https://doi.org/10.1111/gcb.13204, 2016.
Schachtman, D. P., Reid, R. J., and Ayling, S. M.: Phosphorus uptake by plants:
from soil to cell, Plant Physiol., 116, 447–453,
https://doi.org/10.1104/pp.116.2.447, 1998.
Schuur, E. A. G. and Mack, M. C.: Ecological response to permafrost thaw and
consequences for local and global ecosystem services, Annu. Rev. Ecol. Evol.
Syst., 49, 279–301, https://doi.org/10.1146/annurev-ecolsys-121415-032349,
2018.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., and Mack, M. C.: Plant species
composition and productivity following permafrost thaw and thermokarst in
Alaskan tundra, Ecosystems, 10, 280–292,
https://doi.org/10.1007/s10021-007-9024-0, 2007.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
permafrost carbon to climate change: implications for the global carbon
cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and net
carbon exchange from tundra, Nature, 459, 556–559,
https://doi.org/10.1038/nature08031, 2009.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schuur, E. A. G., Crummer, K. G., and Bonanza Creek LTER: Eight Mile Lake
Research Watershed, Thaw Gradient: Plant species composition and
productivity 2004, Environmental Data Initiative [data set],
https://doi.org/10.6073/pasta/141d911e791ee2c2903884f8719f5a3e, 2016.
Shaver, G. R.: Integrated ecosystem research in northern Alaska, 1947–1994,
in: Landscape Function and Disturbance in Arctic Tundra, Ecological Studies, edited by: Reynolds, J. F. and Tenhunen, J. D.,
Springer Berlin Heidelberg, 19–34,
https://doi.org/10.1007/978-3-662-01145-4_2, 1996.
Shaver, G. R. and Chapin, F. S.: Production: biomass relationships and element
cycling in contrasting Arctic vegetation types, Ecol. Monogr., 61, 1–31,
https://doi.org/10.2307/1942997, 1991.
Shaver, G. R., Nadelhoffer, K. J., and Giblin, A. E.: Biogeochemical diversity
and element transport in a heterogeneous landscape, the north slope of
Alaska, Ecol. Stud., 82, 105–115, 1991.
Shaver, G. R., Billings, W. D., Chapin, F. S., Giblin, A. E., Nadelhoffer, K. J.,
Oechel, W. C., and Rastetter, E. B.: Global change and the carbon balance of
Arctic ecosystems, BioScience, 42, 433–441, https://doi.org/10.2307/1311862,
1992.
Shaver, G. R., Bret-Harte, M. S., Jones, M. H., Johnstone, J., Gough, L.,
Laundre, J., and Chapin, F. S.: Species composition interacts with fertilizer
to control long-term change in tundra productivity, Ecology, 82, 3163–3181,
https://doi.org/10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2, 2001.
Shi, R., Bäßler, R., Zou, C., and Römheld, V.: Is iron phloem
mobile during senescence in trees? A reinvestigation of Rissmüller's
finding of 1874, Plant Physiol. Biochem., 49, 489–493,
https://doi.org/10.1016/j.plaphy.2011.03.004, 2011.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and
Schimel, J. P.: Long-term warming restructures Arctic tundra without changing
net soil carbon storage, Nature, 497, 615–618,
https://doi.org/10.1038/nature12129, 2013.
Sturm, M., Mcfadden, J. P., Liston, G. E., Chapin, F. S., Racine, C. H., and
Holmgren, J.: Snow–shrub interactions in Arctic tundra: a hypothesis with
climatic implications, J. Climate, 14, 336–344,
https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2, 2001a.
Taylor, M., Schuur, E. A. G., Mauritz, M., Pegoraro, E. F., Salmon, V. G.,
Natali, S. M. N., and Bonanza Creek LTER: Eight Mile Lake Research Watershed,
Carbon in Permafrost Experimental Heating Research (CiPEHR): aboveground
plant biomass, 2009–2017, Environmental Data Initiative [data set],
https://doi.org/10.6073/PASTA/1AF376985D83CD7E01C61B67ABFA9F91, 2018.
Turetsky, M. R.: The Role of Bryophytes in Carbon and Nitrogen Cycling,
Bryologist, 106, 395–409, https://doi.org/10.1639/05, 2003.
Turetsky, M. R., Mack, M. C., Hollingsworth, T. N., and Harden, J. W.: The role
of mosses in ecosystem succession and function in Alaska's boreal forest,
Can. J. Forest Res., 40, 1237–1264, https://doi.org/10.1139/X10-072, 2010.
Urbina, I., Sardans, J., Grau, O., Beierkuhnlein, C., Jentsch, A., Kreyling,
J., and Peñuelas, J.: Plant community composition affects the species
biogeochemical niche, Ecosphere, 8, e01801, https://doi.org/10.1002/ecs2.1801,
2017.
van der Kolk, H.-J., Heijmans, M. M. P. D., van Huissteden, J., Pullens, J. W. M., and Berendse, F.: Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw, Biogeosciences, 13, 6229–6245, https://doi.org/10.5194/bg-13-6229-2016, 2016.
Van Wijk, M. T. and Williams, M.: Interannual variability of plant phenology
in tussock tundra: modelling interactions of plant productivity, plant
phenology, snowmelt and soil thaw, Glob. Change Biol., 9, 743–758,
https://doi.org/10.1046/j.1365-2486.2003.00625.x, 2003.
Viereck, L. A., Van Cleve, K., and Dyrness, C. T.: Forest ecosystem
distribution in the taiga environment, in: Forest Ecosystems in
the Alaskan Taiga, edited by: Van Cleve, K., Chapin, F. S.,
Flanagan, P. W., Viereck, L. A., and Dyrness, C. T., Ecological Studies, Springer New York, New York, NY,
22–43, https://doi.org/10.1007/978-1-4612-4902-3_3, 1986.
Viers, J., Prokushkin, A. S., Pokrovsky, O. S., Auda, Y., Kirdyanov, A. V.,
Beaulieu, E., Zouiten, C., Oliva, P., and Dupré, B.: Seasonal and
spatial variability of elemental concentrations in boreal forest larch
foliage of Central Siberia on continuous permafrost, Biogeochemistry, 113,
435–449, https://doi.org/10.1007/s10533-012-9770-8, 2013.
Vitt, D. H.: Estimating moss and lichen ground layer net primary production
in tundra, peatlands, and forests, in: Principles and Standards for
Measuring Primary Production Long-Term Ecological Research Network Series, edited by: Fahey, T. J. and Knapp, A. K.,
Oxford University Press, p. 288, https://doi.org/10.1093/acprof:oso/9780195168662.003.0006, 2007.
Vogel, J., Schuur, E. A. G., Trucco, C., and Lee, H.: Response of CO2
exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst
development, J. Geophys. Res., 114, G04018,
https://doi.org/10.1029/2008JG000901, 2009.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E., Elvebakk,
A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J., Melnikov, E. S.,
Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., and the other
members of the CAVM Team: The Circumpolar Arctic vegetation map, J. Veg.
Sci., 16, 267–282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E.,
Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll,
A. B., and Epstein, H. E.: Plant community responses to experimental warming
across the tundra biome, P. Natl. Acad. Sci. USA, 103,
1342–1346, https://doi.org/10.1073/pnas.0503198103, 2006.
Washburn, A. L. (Ed.): Geocryology: a survey of periglacial processes and
environments, 2nd Edn., Wiley, New York, NY, ISBN-10 193284628X, 1980.
Weintraub, M. N. and Schimel, J. P.: Nitrogen cycling and the spread of
shrubs control changes in the carbon balance of Arctic tundra ecosystems,
BioScience, 55, 408–415, https://doi.org/10.1641/0006-3568(2005)055[0408:NCATSO]2.0.CO;2, 2005.
White, P. J.: Long-distance transport in the xylem and phloem, in:
Marschner's Mineral Nutrition of Higher Plants, edited by: Marschner, P., Elsevier, 49–70,
https://doi.org/10.1016/B978-0-12-384905-2.00003-0, 2012.
White, P. J. and Broadley, M. R.: Calcium in plants, Ann. Bot., 92, 487–511,
https://doi.org/10.1093/aob/mcg164, 2003.
Wickham, H. (Ed.): ggplot2: elegant graphics for data analysis, 2nd Edn., Use R,
Springer, New York, NY, 2016.
Wookey, P. A., Aerts, R., Bardgett, R. D., Baptist, F., Bråthen, K. A.,
Cornelissen, J. H. C., Gough, L., Hartley, I. P., Hopkins, D. W., Lavorel, S.,
and Shaver, G. R.: Ecosystem feedbacks and cascade processes: understanding
their role in the responses of Arctic and alpine ecosystems to environmental
change, Glob. Change Biol., 15, 1153–1172,
https://doi.org/10.1111/j.1365-2486.2008.01801.x, 2009.
Xu, L., Myneni, R. B., Chapin, F. S., Callaghan, T. V., Pinzon, J. E., Tucker,
C. J., Zhu, Z., Bi, J., Ciais, P., Tømmervik, H., Euskirchen, E. S.,
Forbes, B. C., Piao, S. L., Anderson, B. T., Ganguly, S., Nemani, R. R., Goetz,
S. J., Beck, P. S. A., Bunn, A. G., Cao, C., and Stroeve, J. C.: Temperature and
vegetation seasonality diminishment over northern lands, Nat. Clim. Change,
3, 581–586, https://doi.org/10.1038/nclimate1836, 2013.
Zamin, T. J., Bret-Harte, M. S., and Grogan, P.: Evergreen shrubs dominate
responses to experimental summer warming and fertilization in Canadian mesic
low arctic tundra, J. Ecol., 102, 749–766,
https://doi.org/10.1111/1365-2745.12237, 2014.
Zimov, S. A., Chuprynin, V. I., Oreshko, A. P., Chapin, F. S., Reynolds, J. F.,
and Chapin, M. C.: Steppe-tundra transition: a herbivore-driven biome shift
at the end of the Pleistocene, Am. Nat., 146, 765–794,
https://doi.org/10.1086/285824, 1995.
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show...
Altmetrics
Final-revised paper
Preprint