Articles | Volume 19, issue 9
https://doi.org/10.5194/bg-19-2353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Melanie S. Verlinden
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Hamada AbdElgawad
Botany and Microbiology Department, Faculty of Science, Beni Suef
University, Beni Suef, 62521, Egypt
Integrated Molecular Plant Physiology Research (IMPRES), Department of
Biology, University of Antwerp, Antwerp, 2020, Belgium
Arne Ven
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Lore T. Verryckt
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Sebastian Wieneke
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Remote Sensing Centre for Earth System Research (RSC4Earth), Faculty of
Physics and Earth Sciences, University of Leipzig, 04109 Leipzig, Germany
Ivan A. Janssens
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Plant and Vegetation Ecology (PLECO), Department of Biology,
University of Antwerp, Wilrijk, 2610, Belgium
Related authors
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Laëtitia Bréchet, Mercedes Ibáñez, Robert B. Jackson, Benoît Burban, Clément Stahl, Damien Bonal, and Ivan A. Janssens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3501, https://doi.org/10.5194/egusphere-2025-3501, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Net ecosystem and soil fluxes of the greenhouse gases, methane (CH4) and nitrous oxide (N2O), were measured at a wet tropical forest site. The measurements covered a 26-month period including contrasting seasons. The forest absorbed CH4 during the driest season and emitted it during the wettest, while consistently emitting N2O. Some of the upland soil consistently absorbed CH4 but emitted N2O. Statistical models showed soil water content as one of the key drivers of these greenhouse gas fluxes.
Arthur Vienne, Jennifer Newell, Jasper Roussard, Rory Doherty, Siobhan F. Cox, Gary Lyons, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-3232, https://doi.org/10.5194/egusphere-2025-3232, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explored how adding crushed basalt and biochar to soil affects plant growth, soil carbon emissions, and plant trace metal uptake. While basalt alone increased carbon dioxide release from soil, combining it with biochar reduced this effect. Biochar also boosted plant growth and lowered the amount of trace metals taken up by crops. These findings suggest that using biochar with basalt may improve soil health and help manage environmental risks.
Andrew S. Kowalski, Ivan A. Janssens, and Óscar Pérez-Priego
EGUsphere, https://doi.org/10.5194/egusphere-2025-2695, https://doi.org/10.5194/egusphere-2025-2695, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Humidification of air reduces the abundances of dry-air gas components such as oxygen, explaining why tropical humidity can be "stifling". This is overlooked due to the common expression of gas concentrations as fractions of dry air. Such neglect of water vapour also masks the key role of its sources and sinks in activating transport mechanisms of other gases. Humidity should be quantified whenever reporting gas concentrations.
Jet Rijnders, Arthur Vienne, and Sara Vicca
Biogeosciences, 22, 2803–2829, https://doi.org/10.5194/bg-22-2803-2025, https://doi.org/10.5194/bg-22-2803-2025, 2025
Short summary
Short summary
A mesocosm experiment was set up to investigate how maize responds to the application of basalt, concrete fines, and steel slag, using a dose–response approach. Biomass increased with basalt application but did not change with concrete fines or steel slag, except for increased tassel biomass. Mg, Ca, and Si generally increased in the crops, whereas toxic trace elements remained unaffected or even decreased in the plants. Overall, crops were positively affected by the application of silicate materials.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Arthur Vienne, Patrick Frings, Jet Rijnders, Tim Jesper Suhrhoff, Tom Reershemius, Reinaldy P. Poetra, Jens Hartmann, Harun Niron, Miguel Portillo Estrada, Laura Steinwidder, Lucilla Boito, and Sara Vicca
EGUsphere, https://doi.org/10.5194/egusphere-2025-1667, https://doi.org/10.5194/egusphere-2025-1667, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Our study explores Enhanced Weathering (EW) using basalt rock dust to combat climate change. We treated corn-planted mesocosms with varying basalt amounts and monitored them for 101 days. Surprisingly, we found no significant inorganic carbon dioxide removal (CDR). However, rock weathering was evident through increased exchangeable bases. While immediate inorganic CDR benefits were not observed, basalt amendment may enhance soil health and potentially long-term carbon sequestration.
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Cited articles
AbdElgawad, H., Avramova, V., Baggerman, G., Van Raemdonck, G., Valkenborg,
D., Van Ostade, X., Guisez, Y., Prinsen, E., Asard, H., Van den Ende, W.,
Gerrit, T. S., and Beemster, G. T. S.: Starch biosynthesis contributes to the
maintenance of photosynthesis and leaf growth under drought stress in maize,
Plant Cell Environ., 43, 2254–2271, https://doi.org/10.1111/pce.13813, 2020.
AbdElgawad, H., Peshev, D., Zinta, G., Van den Ende, W., Janssens, I. A., and
Asard, H.: Climate extreme effects on the chemical composition of temperate
grassland species under ambient and elevated CO2: a comparison of
fructan and non-Fructan accumulators, Plos One, 9, e92044, https://doi.org/10.1371/journal.pone.0092044, 2014.
Ashraf, M. and Harris, P. J. C.: Photosynthesis under stressful
environments: An overview, Photosynthetica, 51, 163–190, https://doi.org/10.1007/s11099-013-0021-6, 2013.
Atkin, O. K., Turnbull, M. H., Zaragoza-Castells, J., Fyllas, N. M., Lloyd
J., Meir, P., and Griffin, K. L.: Increased light inhibition of respiration
as soil fertility declines along a post-glacial chronosequence in New
Zealand, Plant Soil, 367, 163–182, https://doi.org/10.1007/s11104-013-1686-0, 2013.
Augé, R. M., Toler, H. D., and Saxton, A. M.: Mycorrhizal stimulation of
leaf gas exchange in relation to root colonization, shoot size, leaf
phosphorus and nitrogen: a quantitative analysis of the literature using
meta-regression, Front. Plant Sci., 7, 1084, https://doi.org/10.3389/fpls.2016.01084,
2016.
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil
parent material – A major driver of plant nutrient limitations in
terrestrial ecosystems, Glob. Change Biol., 23, 3808–3824, https://doi.org/10.1111/gcb.13691, 2017.
Beauchamp, E. G. and Hamilton, H. A.: Optimum ratios of nitrogen and
phosphorus fertilizers for corn determined by Homes' method of systematic
variation, Can. J. Plant Sci., 50, 141–150, https://doi.org/10.4141/cjps70-027, 1970.
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M.,
Ahmed, N., and Zhang, L.: Role of arbuscular mycorrhizal fungi in plant
growth regulation: implications in abiotic stress tolerance, Front. Plant
Sci., 10, 1068, https://doi.org/10.3389/fpls.2019.01068, 2019.
Brooks, A.: Effects of phosphorus nutrition on ribulose 1,5-bisphosphate
carboxylase activation, photosynthetic quantum yield and amounts of some
Calvin-cycle metabolites in spinach leaves, Aust. J. Plant Physiol., 13,
221–237, https://doi.org/10.1071/PP9860221, 1986.
Brooks, A., Woo, K. C., and Wong, S. C.: 1988 Effects of phosphorus nutrition
on the response of photosynthesis to CO2 and O2, activation of
ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and
3-phosphoglycerate in spinach leaves, Photosyn. Res., 15, 133–141, https://doi.org/10.1007/bf00035257, 1988.
Bhagwat, A. S.: Activation of spinach ribulose 1,5-bisphosphate carboxylase
by inorganic phosphate, Plant Sci. Lett., 23, 197–206, 1981.
Burghelea, C., Zaharescu, D. G., Dontsova, K., Maier, R., Huxman, T., and
Chorover, J.: Mineral nutrient mobilization by plants from rock: influence
of rock type and arbuscular mycorrhiza, Biogeochemistry, 124, 187–203, https://doi.org/10.1007/s10533-015-0092-5, 2015.
Calderón-Vázquez, C., Alatorre-Cobos, F., Simpson-Williamson, J., and
Herrera-Estrella, L.: Maize under phosphate limitation, in: Handbook of
Maize: Its Biology, edited by: Bennetzen, J. L. and Hake, S. C., Springer,
New York, USA, 381–404, https://doi.org/10.1007/978-0-387-79418-1_19,
2009.
Dall'Osto, L., Cazzaniga, S., Havaux, M., and Bassi, R.: Enhanced
photoprotection by protein-bound vs free xanthophyll pools: a comparative
analysis of chlorophyll b and xanthophyll biosynthesis mutants, Mol. Plant.,
3, 576–593, https://doi.org/10.1093/mp/ssp117, 2010.
da Silva, J. M. and Arrabaça, M. C.: Contributions of soluble
carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: A comparison
between rapidly and slowly imposed water stress, J. Plant Physiol., 161,
551–555, https://doi.org/10.1078/0176-1617-01109, 2004.
Duursma, R. A.: Plantecophys - An R Package for Analysing and Modelling Leaf
Gas Exchange Data, Plos One, 10, e0143346, https://doi.org/10.1371/journal.pone.0143346, 2015.
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A.,
Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L.,
Siemann E. H., and Sterner, R. W.: Nutritional constraints in terrestrial and
freshwater food webs, Nature, 408, 578–580, https://doi.org/10.1038/35046058,
2000.
Emran, M., Rashad, M., Gispert, M., and Pardini, G.: Increasing soil
nutrients availability and sustainability by glomalin in alkaline soils,
Agricul. Biosystems Eng., 2, 74–84, 2017.
Etesami, H., Jeong, B. R., and Glick, B. R.: Contribution of arbuscular
mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake
by plant, Front. Plant Sci., 12, 1355, https://doi.org/10.3389/fpls.2021.699618, 2021.
Griffin, K. L. and Seemann, J. R.: Plants, CO2 and photosynthesis in
the 21st century, Chem. Biol., 3, 245–254, https://doi.org/10.1016/S1074-5521(96)90104-0, 1996.
Güsewell, S.: N : P ratios in terrestrial plants: Variation and functional
significance, New Phytol., 164, 243–266, https://doi.org/10.1111/j.1469-8137.2004.01192.x, 2004.
Halsted, M. and Lynch, J. P.: Phosphorus responses of C3 and C4
species, J. Exp. Bot., 47, 497–505, https://doi.org/10.1093/jxb/47.4.497, 1996.
Hartnett, D. C. and Wilson, G. W. T.: Mycorrhizae influence plant community
structure and diversity in tallgrass prairie, Ecology, 80, 1187–1195, https://doi.org/10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2, 1999.
Heskel, M. A. and Tang, J.: Environmental controls on light inhibition of
respiration and leaf and canopy daytime carbon exchange in a temperate
deciduous forest, Tree Physiol., 38, 1886–1902, https://doi.org/10.1093/treephys/tpy103, 2018.
Heskel, M. A., Anderson, O. R., Atkin, O. K., Turnbull, M. H., and Griffin,
K. L.: Leaf- and cell-level carbon cycling responses to a nitrogen and
phosphorus gradient in two Arctic tundra species, Am. J. Bot., 99,
1702–1714, https://doi.org/10.3732/ajb.1200251, 2012.
Heskel, M. A., Atkin, O. K., Turnbull, M. H., and Griffin, K. L.: Bringing the
Kok effect to light: A review on the integration of daytime respiration and
net ecosystem exchange, Ecosphere, 4, 1–14, https://doi.org/10.1890/ES13-00120.1, 2013.
Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C., Karst,
J., Koide, R. T., Pringle, A., Zabinski, C., Bever, J. D., Moore, J. C.,
Wilson, G. W. T., Klironomos, J. N., and Umbanhowar, J.: A meta-analysis of
context-dependency in plant response to inoculation with mycorrhizal fungi,
Ecol. Lett., 13, 394–407, https://doi.org/10.1111/j.1461-0248.2009.01430.x, 2010.
Hu, Y., Chen, J., Hui, D., Wang, Y.-P., Li, J., Chen, J., Chen, G., Zhu, Y.,
Zhang, L., Zhang, D., and Deng, Q.: Mycorrhizal fungi alleviate
acidification-induced phosphorus limitation: Evidence from a decade-long
field experiment of simulated acid deposition in a tropical forest in south
China, Glob. Change Biol., 00, 1–15, https://doi.org/10.1111/gcb.16135, 2022.
Jacob, J. and Lawlor, D. W.: Stomatal and mesophyll limitations of
photosynthesis in phosphate deficient sunflower, maize and wheat plants, J.
Exp. Bot., 42, 1003–1011, https://doi.org/10.1093/jxb/42.8.1003, 1991.
Jacob, J. and Lawlor, D. W.: Dependence of photosynthesis of sunflower and
maize leaves on phosphate supply, ribulose-1,5-bisphosphate
carboxylase/oxygenase activity, and ribulose-1,5-bisphosphate pool size,
Plant Physiol., 98, 801–807, https://doi.org/10.1104/pp.98.3.801, 1992.
Jahns, P. and Holzwarth, A. R.: The role of the xanthophyll cycle and of
lutein in photoprotection of photosystem II, Biochim. Biophys. Ac., 1817,
182–193, https://doi.org/10.1016/j.bbabio.2011.04.012, 2012.
Jansa, J., Finlay, R., Wallander, H., Smith, F. A., and Smith, S. E.: Role of
mycorrhizal symbioses in phosphorus cycling, in: Phosphorus in Action. Soil
Biology, vol 26, edited by: Bünemann, E., Oberson, A. and Frossard, E.,
Springer, Berlin, Heidelberg, Germany, 137–168, https://doi.org/10.1007/978-3-642-15271-9_6, 2011.
Jeannette, E., Reyss, A., Gregory, N., Gantet, P., and Prioul, J. L.:
Carbohydrate metabolism in a heat-girdled maize source leaf, Plant Cell
Environ., 23, 61–69, https://doi.org/10.1046/j.1365-3040.2000.00519.x, 2000.
Johnston, A. E. and Poulton, P. R.: Phosphorus in Agriculture: A Review of
Results from 175 Years of Research at Rothamsted, UK, J. Environ. Qual., 48,
1133–1144, https://doi.org/10.2134/jeq2019.02.0078, 2019.
Khan, A., Lu, G., Ayaz, M., Zhang, H., Wang, R., Lv, F., Yang, X., Sun, B.,
and Zhang, S.: Phosphorus efficiency, soil phosphorus dynamics and critical
phosphorus level under long-term fertilization for single and double
cropping systems, Agr. Ecosyst. Environ., 256, 1–11, https://doi.org/10.1016/j.agee.2018.01.006, 2018.
Kobae, Y.: Dynamic phosphate uptake in arbuscular mycorrhizal roots under
field conditions, Front. Environ. Sci., 6, 159, https://doi.org/10.3389/fenvs.2018.00159, 2019.
Koerselman, W. and Meuleman, A. F. M.: The vegetation N : P ratio: a new tool
to detect the nature of nutrient limitation, J. Appl. Ecol., 33, 1441–1450,
https://doi.org/10.2307/2404783, 1996.
Kok, B.: A critical consideration of the quantum yield of
Chlorella-photosynthesis, Enzymologia, 13, 1–56, 1948.
Kuczyńska, P., Latowski, D., Niczyporuk, S., Olchawa-Pajor, M., Jahns,
P., Gruszecki, W. I., and Strzałka, K.: Zeaxanthin epoxidation – an in
vitro approach, Acta Biochim. Pol. 59, 105–107, https://doi.org/10.18388/abp.2012_2182, 2012.
Lambers, H., Raven, J. A., Shaver, G. R., and Smith, S. E.: Plant
nutrient-acquisition strategies change with soil age, Trends Ecol. Evol.,
23, 95–103, https://doi.org/10.1016/j.tree.2007.10.008, 2008.
Lewis, J. D., Griffin, K. L., Thomas, R. B., and Strain, B. R.: Phosphorus
supply affects the photosynthetic capacity of loblolly pine grown in
elevated carbon dioxide, Tree Physiol., 14, 1229–1244, https://doi.org/10.1093/treephys/14.11.1229, 1994.
Loustau, D., Brahim, M. B., Gaudillère, J. P., and Dreyer, E.:
Photosynthetic responses to phosphorus nutrition in two-year-old maritime
pine seedlings, Tree Physiol., 19, 707–715, https://doi.org/10.1093/treephys/19.11.707,
1999.
Miner, G. L. and Bauerle, W. L.: Seasonal responses of photosynthetic
parameters in maize and sunflower and their relationship with leaf
functional traits, Plant Cell Environ., 42, 1561–1574, https://doi.org/10.1111/pce.13511, 2019.
Miransari, M.: Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress, Plant Biol., 12, 563–569, https://doi.org/10.1111/j.1438-8677.2009.00308.x, 2010.
Parihar, M., Rakshit, A., Meena, V. S., Gupta, V. K., Rana, K., Choudhary,
M., Tiwari, G., Mishra, P. K., Pattanayak, A., Bisht, J. K., Jatav, S. S.,
Khati, P., and Jatav, H. S.: The potential of arbuscular mycorrhizal fungi in
C cycling: a review, Arch. Microbiol., 202, 1581–1596, https://doi.org/10.1007/s00203-020-01915-x, 2020.
Parry, M. A., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E., and
Andralojc, P. J.: Rubisco regulation: a role for inhibitors, J. Exp. Bot.,
59, 1569–1580, https://doi.org/10.1093/jxb/ern084, 2008.
Paul, M. J. and Foyer, C. H.: Sink regulation of photosynthesis, J. Exp.
Bot., 52, 1383–1400, https://doi.org/10.1093/jexbot/52.360.1383, 2001.
Paul, M. J. and Stitt, M.: Effects of nitrogen and phosphorus deficiencies
on levels of carbohydrates, respiratory enzymes and metabolites in seedlings
of tobacco and their response to exogenous sucrose, Plant Cell Environ., 16,
1047–1057, https://doi.org/10.1111/j.1365-3040.1996.tb02062.x, 1993.
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M.,
Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E.,
Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced
nitrogen-phosphorus imbalances alter natural and managed ecosystems across
the globe. Nat. Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013.
Pieters, A.
J., Paul, M. J., and Lawlor, D. W.: Low sink demand limits photosynthesis
under P(i) deficiency, J. Exp. Bot., 52, 1083–1091, https://doi.org/10.1093/jexbot/52.358.1083, 2001.
Plenchette, C., Clermont-Dauphin, C., Meynard, J. M., and Fortin, J. A.:
Managing arbuscular mycorrhizal fungi in cropping systems, Can. J. Plant
Sci., 85, 31–40, https://doi.org/10.4141/P03-159, 2005.
Rao, I. M. and Terry, N.: Leaf phosphate status, photosynthesis, and carbon
partitioning in sugar beet I. Changes in growth, gas exchange, and Calvin
cycle enzymes, Plant Physiol., 90, 814–819, https://doi.org/10.1104/pp.90.3.814, 1989.
Řezáčová, V., Slavíková, R., Zemková, L.,
Konvalinková, T., Procházková, V., Št'ovíček, V.,
Hršelová, H., Beskid, O., Hujslová, M., Gryndlerová, H.,
Gryndler, M., Püschel, D., and Jansa, J.: Mycorrhizal symbiosis induces
plant carbon reallocation differently in C3 and C4 Panicum
grasses, Plant Soil, 425, 441–456, https://doi.org/10.1007/s11104-018-3606-9, 2018.
Rillig, M. C., Field, C. B., and Allen, M. F.: Soil biota responses to long-term
atmospheric CO2 enrichment in two California annual
grasslands, Oecologia, 119, 572–577, https://doi.org/10.1007/s004420050821, 1999.
Rodríguez, D. and Goudriaan, J.: Effects of phosphorus and drought
stresses on dry-matter and phosphorus allocation in wheat, J. Plant Nutr.,
18, 2501–2517, https://doi.org/10.1080/01904169509365080, 1995.
Rodríguez, D., Keltjens, W. G., and Goudriaan, J.: Plant leaf area
expansion and assimilate production in wheat (Triticum aestivum L.) growing under low
phosphorus conditions, Plant Soil, 200, 227–240, https://doi.org/10.1023/a:1004310217694,
1998.
Rodríguez, D., Andrade, F. H., and Goudriaan, J.: Does assimilate supply
limit leaf expansion in wheat grown in the field under low phosphorus
availability?, Field Crops Res., 67, 227–238, https://doi.org/10.1016/s0378-4290(00)00098-8, 2000.
Rogers, A.: The use and misuse of Vcmax in Earth System Models,
Photosynth. Res., 119, 15–29, https://doi.org/10.1007/s11120-013-9818-1, 2014.
Roy-Bolduc, A. and Hijri, M.: The use of mycorrhizae to enhance phosphorus
uptake: A way out the phosphorus crisis, J. Biofertil. Biopestici., 2, 104,
https://doi.org/10.4172/2155-6202.1000104, 2011.
Sánchez-Calderón, L., Chacon-López, A., Perez-Torres, C., and
Herrera-Estrella, L.: Phosphorus: Plants strategies to cope with its
scarcity, in: Cell Biology of Metals and Nutrients, Plant Cell Monographs,
vol 17, edited by: Hell, R. and Mendel, R. R., Springer, Berlin, Heidelberg,
Germany, 173–198, https://doi.org/10.1007/978-3-642-10613-2_8, 2010.
Schlüter, U., Colmsee, C., Scholz, U., Bräutigam, A., Weber, A. P.
M., Zellerhoff, N., Bucher, M., Fahnenstich, H., and Sonnewald, U.:
Adaptation of maize source leaf metabolism to stress related disturbances in
carbon, nitrogen and phosphorus balance, BMC Genomics 14, 442, https://doi.org/10.1186/1471-2164-14-442, 2013.
Schulze, E.-D., Beck, E., and Müller-Hohenstein, K. (Eds.): Plant
Ecology, Springer, Berlin, Heidelberg, Germany, ISBN 3-540-20833-X, 2005.
Shapiro, J. B., Griffin, K. L., Lewis, J. D., and Tissue, T. D.: Response of
Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen
availability and temperature, New Phytol., 162, 377–386, https://doi.org/10.1111/j.1469-8137.2004.01046.x, 2004.
Smith, S. E. and Read, D. J.: Mycorrhizal Symbiosis, 3rd Edn.,
Academic Press, London, UK, ISBN 9780123705266, 2008.
Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A.: Roles of
arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between
pathways of phosphorus uptake in arbuscular mycorrhizal roots have important
implications for understanding and manipulating plant phosphorus
acquisition, Plant Physiol., 156, 1050–1057, https://doi.org/10.1104/pp.111.174581,
2011.
Sulpice, R., Tschoep, H., von Korff, M., Bussis, D., Usadel, B., Hohne, M.,
Witucka-Wall, H., Altmann, T., Stitt, M., and Gibon, Y.: Description and
applications of a rapid and sensitive non-radioactive microplate-based assay
for maximum and initial activity of D-ribulose-1,5-bisphosphate
carboxylase/oxygenase, Plant Cell Environ., 30, 1163–1175, https://doi.org/10.1111/j.1365-3040.2007.01679.x, 2007.
Temminghoff, E. E. J. M. and Houba, V. J. G.: Plant Analysis Procedures,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-2976-9, 2004.
Tennant, D.: A test of a modified line intersect method of estimating root
length, J. Ecol., 63, 995–1001, https://doi.org/10.2307/2258617, 1975.
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., and Prentice, I. C.:
Mycorrhizal association as a primary control of the CO2 fertilization
effect, Science, 353, 72–74, https://doi.org/10.1126/science.aaf4610, 2016.
Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu,
L., and Zaehle, S.: A new model of the coupled carbon, nitrogen, and
phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996),
Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, 2019.
Usuda, H. and Shimogawara, K.: Phosphate deficiency in maize, I. Leaf
phosphate status, growth, photosynthesis and carbon partitioning, Plant Cell
Physiol., 32, 497–504, https://doi.org/10.1093/oxfordjournals.pcp.a078107, 1991.
Ven, A., Verbruggen, E., Verlinden, M. S., Olsson, P. A., Wallander, H., and
Vicca, S.: Mesh bags underestimated arbuscular mycorrhizal abundance but
captured fertilization effects in a mesocosm experiment, Plant Soil, 446,
563–575, https://doi.org/10.1007/s11104-019-04368-4, 2020a.
Ven, A., Verlinden, M. S., Fransen, E., Olsson, P. A., Verbruggen, E.,
Wallander, H., and Vicca, S.: Phosphorus addition increased carbon
partitioning to autotrophic respiration but not to biomass production in an
experiment with Zea mays, Plant Cell Environ., 43, 2054–2065, https://doi.org/10.1111/pce.13785, 2020b.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E.,
Plaxton, W. C., Price, C., Scheible, W.-R., Shane, M. W., White, P. J., and
Raven, J. A.: Opportunities for improving phosphorus-use efficiency in crop
plants, New Phytol., 195, 306–320, https://doi.org/10.1111/j.1469-8137.2012.04190.x,
2012.
Verlinden, M. S., Broeckx, L. S., Zona, D., Berhongaray, G., De Groote, T.,
Camino Serrano, M., Janssens, I. A., and Ceulemans, R.: Net ecosystem
production and carbon balance of an SRC poplar plantation during its first
rotation, Biomass Bioenerg., 56, 412–422, https://doi.org/10.1016/j.biombioe.2013.05.033, 2013.
Verlinden, M. S., Ven, A., Verbruggen, E., Janssens, I. A., Wallander, H.,
and Vicca, S.: Favorable effect of mycorrhizae on biomass production
efficiency exceeds their carbon cost in a fertilization experiment, Ecology,
99, 2525–2534, https://doi.org/10.1002/ecy.2502, 2018.
Verlinden, M. S., AbdElgawad, H., Ven, A., Verryckt, L. T., Wieneke, S., Janssens, I. A., and Vicca, S.: Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi, Zenodo [data set], https://zenodo.org/record/6428027 (last access: 9 April 2022), 2022.
Vicca, S., Zavalloni, C., Fu, Y., Voets, L., Dupré de Boulois, H.,
Declerck, S., Ceulemans, R., Nijs, I., and Janssens, I.A.: Arbuscular
mycorrhizal fungi may mitigate the influence of a joint rise of temperature
and atmospheric CO2 on soil respiration in grasslands, Int. J. Ecol.,
2009, ID 209768, 10 pp., https://doi.org/10.1155/2009/209768, 2009.
Vicca, S., Stocker, B., Reed, S. C., Wieder, W. R., Bahn, M., Fay, P. A.,
Janssens, I. A., Lambers, H., Peñuelas, J., Piao, S., Rebel, K.,
Sardans, J., Sigurdsson, B. D., Van Sundert, K., Wang, Y., Zaehle, S.,
and Ciais, P.: Using research networks to create the comprehensive datasets
needed to assess nutrient availability as a key determinant of terrestrial
carbon cycling, Environ. Res. Lett., 13, 125006,
https://doi.org/10.1088/1748-9326/aaeae7, 2018.
Vierheilig, H., Schweiger, P., and Brundrett, M.: An overview of methods for
the detection and observation of arbuscular mycorrhizal fungi in roots,
Physiol. Plantarum, 125, 393–404, https://doi.org/10.1111/j.1399-3054.2005.00564.x,
2005.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.: Terrestrial
phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus
interactions, Ecol. Appl., 20, 5–15, https://doi.org/10.1890/08-0127.1, 2010.
von Caemmerer, S. (Ed.): Biochemical models of leaf photosynthesis, CSIRO
Publishing, Melbourne, Australia, ISBN 0 643 06379 X, 2000.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and
phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7,
2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K.: Future
productivity and carbon storage limited by terrestrial nutrient
availability, Nat. Geosci., 8, 441–444, https://doi.org/10.1038/ngeo2413, 2015.
Wright, D. P., Scholes, J. D., Read, D. J., and Rolfe, S. A.: European and
African maize cultivars differ in their physiological and molecular
responses to mycorrhizal infection, New Phytol., 167, 881–896, https://doi.org/10.1111/j.1469-8137.2005.01472.x, 2005.
Zhang, K., Liu, H., Tao, P., and Chen, H.: Comparative proteomic analyses
provide new insights into low phosphorus stress responses in maize leaves,
Plos One, 9, e98215, https://doi.org/10.1371/journal.pone.0098215, 2014.
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P)...
Altmetrics
Final-revised paper
Preprint