Articles | Volume 19, issue 10
Biogeosciences, 19, 2729–2740, 2022
https://doi.org/10.5194/bg-19-2729-2022
Biogeosciences, 19, 2729–2740, 2022
https://doi.org/10.5194/bg-19-2729-2022
Research article
01 Jun 2022
Research article | 01 Jun 2022

Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks

Ramona J. Heim et al.

Related authors

Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022,https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Years of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Québec, Canada
Laura M. Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-156,https://doi.org/10.5194/bg-2022-156, 2022
Preprint under review for BG
Short summary
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022,https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Improving Models to Predict Holocellulose and Klason Lignin Contents for Peat Soil Organic Matter with Mid Infrared Spectra
Henning Teickner and Klaus-Holger Knorr
SOIL Discuss., https://doi.org/10.5194/soil-2022-27,https://doi.org/10.5194/soil-2022-27, 2022
Revised manuscript under review for SOIL
Short summary
Temporal patterns and potential drivers of CO2 emission from dry sediments of a large river
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-62,https://doi.org/10.5194/bg-2022-62, 2022
Revised manuscript under review for BG
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022,https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022,https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Updated estimation of forest biomass carbon pools in China, 1977–2018
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022,https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022,https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022,https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary

Cited articles

Aerts, R.: The freezer defrosting: global warming and litter decomposition rates in cold biomes, J. Ecol., 94, 713–724, 2006. a, b
Ågren, G. I., Bosatta, E., and Balesdent, J.: Isotope discrimination during decomposition of organic matter: a theoretical analysis, Soil Sci. Soc. Am. J., 60, 1121–1126, 1996. a, b
Asplund, J. and Wardle, D. A.: How lichens impact on terrestrial community and ecosystem properties, Biol. Rev., 92, 1720–1738, https://doi.org/10.1111/brv.12305, 2017. a
Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., and Elberling, B.: Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra, Glob. Change Biol., 24, 2660–2672, 2018. a
Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in nitrate: New reference materials for 18O : 17O : 16O measurements and observations on nitrate-water equilibration, Rapid Commun. Mass Sp., 17, 1835–1846, 2003. a
Download
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass. We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Altmetrics
Final-revised paper
Preprint