Articles | Volume 19, issue 11
https://doi.org/10.5194/bg-19-2795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2795-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Guang Gao
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Tifeng Wang
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Jiazhen Sun
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Xin Zhao
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Lifang Wang
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Xianghui Guo
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
Co-Innovation Center of Jiangsu Marine Bio-industry Technology,
Jiangsu Ocean University, Lianyungang 222005, China
Related authors
Yuming Rao, Na Wang, He Li, Jiazhen Sun, Xiaowen Jiang, Di Zhang, Liming Qu, Qianqian Fu, Xuyang Wang, Cong Zhou, Zichao Deng, Yang Tian, Xiangqi Yi, Ruiping Huang, Guang Gao, Xin Lin, and Kunshan Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5218, https://doi.org/10.5194/egusphere-2025-5218, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In a mesocosm experiment conducted in the highly eutrophic coastal water of southern East China Sea, we found that the impacts of ocean acidification (OA) on phytoplankton diversity and primary production depend on status of eutrophication or nutrient availability, with OA likely to reduce the biodiversity and primary production in the phytoplankton community after the nutrients depletion. In future oceans, OA and nutrients depletion may synergistically reduce the biodiversity in coastal waters.
Yuming Rao, Na Wang, He Li, Jiazhen Sun, Xiaowen Jiang, Di Zhang, Liming Qu, Qianqian Fu, Xuyang Wang, Cong Zhou, Zichao Deng, Yang Tian, Xiangqi Yi, Ruiping Huang, Guang Gao, Xin Lin, and Kunshan Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5218, https://doi.org/10.5194/egusphere-2025-5218, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In a mesocosm experiment conducted in the highly eutrophic coastal water of southern East China Sea, we found that the impacts of ocean acidification (OA) on phytoplankton diversity and primary production depend on status of eutrophication or nutrient availability, with OA likely to reduce the biodiversity and primary production in the phytoplankton community after the nutrients depletion. In future oceans, OA and nutrients depletion may synergistically reduce the biodiversity in coastal waters.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020, https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Short summary
Our results show that ocean acidification, warming, increased light exposure and reduced nutrient availability significantly reduce the growth rate but increase particulate organic and inorganic carbon in cells in the coccolithophore Emiliania huxleyi, indicating biogeochemical consequences of future ocean changes on the calcifying microalga. Concurrent changes in nutrient concentrations and pCO2 levels predominantly affected E. huxleyi growth, photosynthetic carbon fixation and calcification.
Cited articles
Bach, L. T. and Taucher, J.: CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities, Ocean Sci., 15, 1159–1175, https://doi.org/10.5194/os-15-1159-2019, 2019.
Bao, N. and Gao, K.: Interactive effects of elevated CO2 concentration and light on the picophytoplankton Synechococcus, Front. Mar. Sci., 8, 1–7, 2021.
Boyd, P. W., Strzepek, R., Fu, F. X., and Hutchins, D. A.: Environmental
control of open-ocean phytoplankton groups: Now and in the future, Limnol.
Oceanogr., 55, 1353–1376, 2010.
Chen, C. T. A.: Rare northward flow in the Taiwan Strait in winter: A note,
Cont. Shelf Res., 23, 387–391, 2003.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean acidification on marine ec–systems and reliant human communities,
Annu. Rev. Environ. Resour., 45, 83-112, 2020.
Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z., and
Dai, M.: Climatology of nutrient distributions in the South China Sea based on a large data set derived from a new algorithm, Prog. Oceanogr., 195, 102586, https://doi.org/10.1016/j.pocean.2021.102586, 2021.
Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and Berman-Frank, I.: Impact of ocean acidification on the
structure of future phytoplankton communities, Nat. Clim. Change, 5, 1002–1006, 2015.
Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U.,
and Van de Waal, D. B.: Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community, Plos One, 12, 1–15, 2017.
Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO2 and iron availability on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247–2259, https://doi.org/10.5194/bg-12-2247-2015, 2015.
Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A., Smith, W. O., Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B., Long, M. C., Sohst, B., Lohan, M., and Hutchins, D. A.: Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton, Deep-Sea Res. Pt. I, 57, 368–383, 2010.
Gao, G., Jin, P., Liu, N., Li, F. T., Tong, S. Y., Hutchins, D. A., and Gao,
K. S.: The acclimation process of phytoplankton biomass, carbon fixation and
respiration to the combined effects of elevated temperature and pCO2 in the northern South China Sea, Mar. Pollut. Bull., 118, 213–220, 2017.
Gao, G., Xia, J., Yu, J., Fan, J., and Zeng, X.: Regulation of inorganic carbon acquisition in a red tide alga (Skeletonema costatum): the importance of phosphorus availability, Biogeosciences, 15, 4871–4882, https://doi.org/10.5194/bg-15-4871-2018, 2018a.
Gao, G., Xu, Z. G., Shi, Q., and Wu, H. Y.: Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii, Environ. Exp. Bot., 156, 96–105, 2018b.
Gao, G., Qu, L., Xu, T., Burgess, J. G., Li, X., and Xu, J.: Future
CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress, ICES J. Mar. Sci., 76, 2437–2445, 2019.
Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q.,
Wang, L., Zheng, Y., Jin, P., Cai, X. N., Hader, D. P., Li, W., Xu, K., Liu,
N. N., and Riebesell, U.: Rising CO2 and increased light exposure
synergistically reduce marine primary productivity, Nat. Clim. Change, 2,
519–523, 2012.
Gao, K. S., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A.: Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and
deoxygenation, Front. Mar. Sci., 6, 1–18, 2019.
Gattuso, J. P., Gao, K. S., Lee, K., Rost, B., and Schulz, K. G.: Approaches
and tools to manipulate the carbonate chemistry, in: Guide to best practices for ocean acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P., Publications Office of the European Union, Luxembourg, 41–52, https://oceanrep.geomar.de/id/eprint/10310 (last access: 28 May 2022), 2010.
Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L.,
Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner, H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R.,
Treyer, S., and Turley, C.: Contrasting futures for ocean and society from
different anthropogenic CO2 emissions scenarios, Science, 349, aac4722, https://doi.org/10.1126/science.aac472, 2015.
Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Hein, M., and Sand-Jensen, K.: CO2 increases oceanic primary
production, Nature, 388, 526–527, 1997.
Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales,
R. L., Baliga, N. S., Orellana, M. V., and Armbrust, E. V.: Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression, Nat. Clim. Change, 5, 761–765, 2015.
Holding, J. M., Duarte, C. M., Sanz-Martín, M., Mesa, E., Arrieta, J.
M., Chierici, M., Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux,
A., Delgado, A., Reigstad, M., Wassmann, P., and Agusti, S.: Temperature
dependence of CO2-enhanced primary production in the European Arctic Ocean, Nat. Clim. Change, 5, 1079–1082, 2015.
Hong, H. S., Chai, F., Zhang, C. Y., Huang, B. Q., Jiang, Y. W., and Hu, J. Y.: An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait, Cont. Shelf Res., 31, S3–S12, 2011.
Hong, H. Z., Shen, R., Zhang, F. T., Wen, Z. Z., Chang, S. W., Lin, W. F.,
Kranz, S. A., Luo, Y. W., Kao, S. J., Morel, F. M. M., and Shi, D. L.: The
complex effects of ocean acidification on the prominent N2-fixing
cyanobacterium Trichodesmium, Science, 356, 527–530, 2017.
Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency
of the CO2-concentrating mechanism of diatoms, P. Natl. Acad. Sci.
USA., 108, 3830–3837, 2011.
Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., and Rost, B.:
Compensation of ocean acidification effects in Arctic phytoplankton
assemblages, Nat. Clim. Change, 8, 529–533, 2018.
Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N.,
Munday, P. L., Parker, L. M., Raven, J. A., and McGraw, C. M.: Ocean
acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life, Mar. Freshwater Res., 71,
263–274, 2019.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W.,
Riebesell, U., and Gao, K. S.: Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels, Nat. Commun., 6, 1–6, 2015.
Jin, P., Gao, G., Liu, X., Li, F. T., Tong, S. Y., Ding, J. C., Zhong, Z.
H., Liu, N. N., and Gao, K. S.: Contrasting photophysiological characteristics of phytoplankton assemblages in the Northern South China Sea, Plos One, 11, 1–16, 2016.
Li, F., Wu, Y., Hutchins, D. A., Fu, F., and Gao, K.: Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations, Biogeosciences, 13, 6247–6259, https://doi.org/10.5194/bg-13-6247-2016, 2016.
Li, F. T., Beardall, J., and Gao, K. S.: Diatom performance in a future ocean: interactions between nitrogen limitation, temperature, and CO2-induced seawater acidification, ICES J. Mar. Sci., 75, 1451–1464, 2018.
Li, H., Xu, T., Ma, J., Li, F., and Xu, J.: Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature, Biogeosciences, 18, 1439–1449, https://doi.org/10.5194/bg-18-1439-2021, 2021.
Lu, Z., Gan, J., Dai, M., Zhao, X., and Hui, C. R.: Nutrient transport and
dynamics in the South China Sea: A modeling study, Prog. Oceanogr., 183,
102308, https://doi.org/10.1016/j.pocean.2020.102308, 2020.
Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W.,
Matear, R. J., Phillips, H. E., Trull, T. W., Tilbrook, B., and Lenton, A.:
Eddy-induced carbon transport across the Antarctic Circumpolar Current,
Global Biogeochem. Cy., 31, 1368–1386, 2017
Mostofa, K. M. G., Liu, C.-Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D., Arakaki, T., Yoshioka, T., Hayakawa, K., Konohira, E., Tanoue, E., Akhand, A., Chanda, A., Wang, B., and Sakugawa, H.: Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems, Biogeosciences, 13, 1767–1786, https://doi.org/10.5194/bg-13-1767-2016, 2016.
Pierrot, D., Wallace, D. W. R., and Lewis, E.: MS Excel program developed for
CO2 system calculations, ORNL/CDIAC-105a, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
Porra, R. J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b, Photosynth. Res., 73, 149–156, 2002.
Raven, J. A. and Beardall, J.: CO2 concentrating mechanisms and
environmental change, Aquat. Bot., 118, 24–37, 2014.
Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Algueró-Muñiz,
M., Alvarez-Fernandez, S., Arístegui, J., Bach, L. T., Boersma, M., Boxhammer, T., Guan, W. C., Haunost, M., Horn, H. G., Loscher, C. R., Ludwig, A., Spisla, C., Sswat, M., Stange, P., and Taucher, J.: Toxic algal bloom induced by ocean acidification disrupts the pelagic food web, Nat. Clim. Change, 8, 1082–1086, 2018.
Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric
CO2 promotes phytoplankton productivity, Ecol. Lett., 7, 446–451, 2004.
Shi, D. L., Hong, H. Z., Su, X., Liao, L. R., Chang, S. W., and Lin, W. F.:
The physiological response of marine diatoms to ocean acidification:
Differential roles of seawater pCO2 and pH, J. Phycol., 55, 521–533, 2019.
Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon
acquisition in coastal Pacific phytoplankton communities, Limnol. Oceanogr.,
45, 1485–1500, 2000.
Tremblay, J. E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. M.:
Bloom dynamics in early opening waters of the Arctic Ocean, Limnol. Oceanogr., 51, 900–912, 2006.
Wu, Y., Gao, K., and Riebesell, U.: CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum, Biogeosciences, 7, 2915–2923, https://doi.org/10.5194/bg-7-2915-2010, 2010.
Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. V.: Ocean acidification enhances the growth rate of larger diatoms, Limnol. Oceanogr., 59, 1027–1034, 2014.
Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: Climate-driven change in a Baltic Sea summer
microplanktonic community, Mar. Biol., 165, 1–15, 2018.
Xiao, W. P., Wang, L., Laws, E., Xie, Y. Y., Chen, J. X., Liu, X., Chen, B.
Z., and Huang, B. Q.: Realized niches explain spatial gradients in seasonal
abundance of phytoplankton groups in the South China Sea, Prog. Oceanogr., 162, 223–239, 2018.
Xie, S., Lin, F., Zhao, X., and Gao, G.: Enhanced lipid productivity coupled
with carbon and nitrogen removal of the diatom Skeletonema costatum cultured in the high CO2 level, Algal. Res., 61, 102589, https://doi.org/10.1016/j.algal.2021.102589, 2022.
Xu, J. K., Sun, J. Z., Beardall, J., and Gao, K. S.: Lower salinity leads to
improved physiological performance in the coccolithophorid Emiliania huxleyi, which partly ameliorates the effects of ocean acidification, Front. Mar. Sci., 7, 1–18, 2020.
Xu, Z., Gao, G., Xu, J., and Wu, H.: Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment, Biogeosciences, 14, 671–681, https://doi.org/10.5194/bg-14-671-2017, 2017.
Yang, G. Y. and Gao, K. S.: Physiological responses of the marine diatom
Thalassiosira pseudonana to increased pCO2 and seawater acidity, Mar. Environ. Res., 79, 142–151, 2012.
Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., and Liang,
C.: Effects of typhoons on surface seawater pCO2 and air-sea CO2 fluxes in the northern South China Sea, J. Geophys. Res.-Oceans, 125, e2020JC016258, https://doi.org/10.1029/2020JC016258, 2020.
Yuan, X., He, L., Yin, K., Pan, G., and Harrison, P. J.: Bacterial distribution and nutrient limitation in relation to different water masses
in the coastal and northwestern South China Sea in late summer, Cont. Shelf
Res., 31, 1214–1223, 2011.
Zhang, C., Zhang, X., Zeng, Y., Pan, W., and Lin, J.: Retrieval and validation of sea surface temperature in the Taiwan Strait using MODIS data, Acta Oceanol. Sin., 30, 153–160, 2008.
Zhang, C., Ren, Y., Cai, Y., Zeng, Y., and Zhang, X.: Study on local monitoring model for SST in Taiwan strait based on MODIS data, J. Trop.
Meteorol., 25, 73–81, 2009.
Zhong, Y. P., Liu, X., Xiao, W. P., Laws, E. A., Chen, J. X., Wang, L., Liu,
S. G., Zhang, F., and Huang, B. Q.: Phytoplankton community patterns in the
Taiwan Strait match the characteristics of their realized niches, Prog.
Oceanogr., 186, 1–15, 2020.
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
After conducting large-scale deck-incubation experiments, we found that seawater acidification...
Altmetrics
Final-revised paper
Preprint