Articles | Volume 19, issue 12
https://doi.org/10.5194/bg-19-3051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages
Department of Renewable Resources, University of Alberta,
Edmonton, AB T6G 2H1, Canada
Department of Ecology and Genetics/Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
Maria A. Cavaco
CORRESPONDING AUTHOR
Department of Earth and Atmospheric
Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
Maya P. Bhatia
Department of Earth and Atmospheric
Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
Cristian Estop-Aragonés
Ecohydrology and Biogeochemistry Group,
Institute of Landscape Ecology, University of Münster, Münster, 48149, Germany
Klaus-Holger Knorr
Ecohydrology and Biogeochemistry Group,
Institute of Landscape Ecology, University of Münster, Münster, 48149, Germany
David Olefeldt
Department of Renewable Resources, University of Alberta,
Edmonton, AB T6G 2H1, Canada
Related authors
Liam Heffernan, Dolly N. Kothawala, and Lars J. Tranvik
The Cryosphere, 18, 1443–1465, https://doi.org/10.5194/tc-18-1443-2024, https://doi.org/10.5194/tc-18-1443-2024, 2024
Short summary
Short summary
The northern permafrost region stores half the world's soil carbon. As the region warms, permafrost thaws and releases dissolved organic carbon, which leads to decomposition of this carbon pool or export into aquatic ecosystems. In this study we developed a new database of 2276 dissolved organic carbon concentrations in eight different ecosystems from 111 studies published over 22 years. This study highlights that coastal areas may play an important role in future high-latitude carbon cycling.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Earth Syst. Dynam., 16, 891–914, https://doi.org/10.5194/esd-16-891-2025, https://doi.org/10.5194/esd-16-891-2025, 2025
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Hayley F. Drapeau, Suzanne E. Tank, Maria A. Cavaco, Jessica A. Serbu, Vincent L. St. Louis, and Maya P. Bhatia
Biogeosciences, 22, 1369–1391, https://doi.org/10.5194/bg-22-1369-2025, https://doi.org/10.5194/bg-22-1369-2025, 2025
Short summary
Short summary
From glacial headwaters to 100 km downstream, we found clear organic matter gradients in Canadian Rocky Mountain rivers. In contrast, microbial communities exhibited overall cohesion, indicating that species dispersal may be an over-riding control on community dynamics in these connected rivers. Identification of glacial-specific microbes suggests that glaciers seed headwater microbial assemblages; these findings show the importance of glacial waters and microbiomes in changing mountain systems.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Liam Heffernan, Dolly N. Kothawala, and Lars J. Tranvik
The Cryosphere, 18, 1443–1465, https://doi.org/10.5194/tc-18-1443-2024, https://doi.org/10.5194/tc-18-1443-2024, 2024
Short summary
Short summary
The northern permafrost region stores half the world's soil carbon. As the region warms, permafrost thaws and releases dissolved organic carbon, which leads to decomposition of this carbon pool or export into aquatic ecosystems. In this study we developed a new database of 2276 dissolved organic carbon concentrations in eight different ecosystems from 111 studies published over 22 years. This study highlights that coastal areas may play an important role in future high-latitude carbon cycling.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Leandra Stephanie Emilia Praetzel, Nora Plenter, Sabrina Schilling, Marcel Schmiedeskamp, Gabriele Broll, and Klaus-Holger Knorr
Biogeosciences, 17, 5057–5078, https://doi.org/10.5194/bg-17-5057-2020, https://doi.org/10.5194/bg-17-5057-2020, 2020
Short summary
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020, https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
Cited articles
Adamczyk, M., Perez-Mon, C., Gunz, S., and Frey, B.: Strong shifts in microbial
community structure are associated with increased litter input rather than
temperature in High Arctic soils, Soil Biol. Biochem., 151, 1–14,
https://doi.org/10.1016/j.soilbio.2020.108054, 2020.
Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N. Klaus, V.H., Kleinebecker, T., Morris, E.K., Oelmann, Y., Prati, D., Renner, S.C., Rillig, M.C., Schaefer, M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Solly, E., Sorkau, E., Steckel, J. Steffen-Dewenter, I., Stempfhuber, B., Tschapka, M., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., and Fischer M.: Land use intensification alters ecosystem multifunctionality via
loss of biodiversity and changes to functional composition, Ecol. Lett.,
18, 834–843,
https://doi.org/10.1111/ele.12469, 2015.
Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E., and Quinton, W. L.:
Forests on thawing permafrost: fragmentation, edge effects, and net forest
loss, Glob. Change Biol., 20, 824–834, https://doi.org/10.1111/gcb.12349, 2014.
Bartram, A. K., Lynch, M. D., Stearns, J. C., Moreno-Hegelsieb, G., and Neufeld, J. D.: Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads, Appl. Environ. Microbiol., 77, 3846–3852, https://doi.org/10.1128/AEM.02772-10, 2011.
Bauer, I. E., Gignac, L. D., and Vitt, D. H.: Development of a peatland complex
in boreal western Canada: Lateral site expansion and local variability in
vegetation succession and long-term peat accumulation, Can. J.
Bot., 81, 833–847, https://doi.org/10.1139/b03-076, 2003.
Beilman, D. W.: Plant community and diversity change due to localized
permafrost dynamics in bogs of western Canada, Can. J. Bot.,
79, 983–993, https://doi.org/10.1139/cjb-79-8-983, 2001.
Bellisario, L. M., Bubier, J. L., Moore, T. R., and Chanton, J. P.: Controls on
CH4 emissions from a northern peatland, Global Biogeochem. Cy., 13,
81–91, https://doi.org/10.1029/1998GB900021, 1999.
Berghuis, B. A., Yu, F. B., Schulz, F., Blainey, P. C., Woyke, T., and Quake, S. R.:
Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota
reveals the shared ancestry of all methanogens, P. Natl. Acad. Sci. USA., 116, 5037–5044,
https://doi.org/10.1073/pnas.1815631116, 2019.
Blodau, C., Basiliko, N., and Moore, T. R.: Carbon turnover in peatland mesocosms
exposed to different water table levels, Biogeochemistry, 67, 331–351,
https://doi.org/10.1023/B:BIOG.0000015788.30164.e2,
2004.
Boon, E., Meehan, C. J., Whidden, C., Wong, D. H., Langille, M. G., and Beiko,
R. G.: Interactions in the microbiome: communities of organisms and
communities of genes, FEMS Microbiol. Rev., 38, 90–118, https://doi.org/10.1111/1574-6976.12035, 2014.
Boylen, E., Rideout, J. R., Dillon, M. R., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 37, 852–857, https://doi.org/10.1038/s41587-019-0209-9, 2019.
Bragazza, L., Bardgett, R. D., Mitchell, E. A. D., and Buttler, A.: Linking soil
microbial communities to vascular plant abundance along a climate gradient,
New Phytol., 205, 1175–1182, https://doi.org/10.1111/nph.13116, 2015.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: Biogeochemical, microbial, and modeling
perspectives from local to global scales, Glob. Change Biol., 19,
1325–1346, https://doi.org/10.1111/gcb.12131, 2013.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground ice conditions, USGS Numbered
Series, 1, 45,
https://doi.org/10.1016/j.jallcom.2010.03.054, 1997.
Burd, K., Estop-Aragonés, C., Tank, S. E., and Olefeldt, D.: Lability of
dissolved
organic carbon from boreal peatlands: interactions between permafrost thaw,
wildfire,
and season, Can. J. Soil Sci., 13, 1–13,
https://doi.org/10.1139/cjss-2019-0154, 2020.
Burger, M., Berger, S., Spangenberg, I., and Blodau, C.: Summer fluxes of methane
and carbon dioxide from a pond and floating mat in a continental Canadian
peatland, Biogeosciences, 13, 3777–3791, https://doi.org/10.5194/bg-13-3777-2016, 2016.
Cai, L., Alexeev, V. A., Arp, C. D., Jones, B. M., Liljedahl, A., and Gädeke, A.: Dynamical Downscaling Data for Studying Climatic Impacts on Hydrology, Permafrost, and Ecosystems in Arctic Alaska, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2016-31, 2016.
Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., McGill, S. K., and Dougherty, M. K.: High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution, Nucl. Acid. Res., 47, 1–12, https://doi.org/10.1093/nar/gkz569, 2019.
Camill, P.: Peat accumulation and succession following permafrost thaw in the
Boreal
peatlands of Manitoba, Canada, Ecoscience, 6, 592–602,
https://doi.org/10.1080/11956860.1999.11682561, 1999.
Carrigg, C., Rice, O., Kavanagh, S., Collins, G., and O'Flaherty, V.: DNA
extraction method affects microbial community profiles from soils and
sediment, Appl. Microbiol. Biotechnol., 77, 955–964, https://doi.org/10.1007/s00253-007-1219-y, 2007.
Carroll, P. and Crill, P.: Carbon balance of a temperate poor fen, Global
Biogeochem. Cy., 11, 349–356, https://doi.org/10.1029/97GB01365, 1997.
Carson, M. A., Bräuer, S., and Basiliko, N.: Enrichment of peat yields novel
methanogens: approaches for obtaining uncultured organisms in the age of
rapid sequencing, FEMS Microbiol. Ecol., 95, 1–11, https://doi.org/10.1093/femsec/fiz001, 2019.
Cavaco, M.:
Northern Alberta Permafrost microbial diversity along peat and porewater cores, NCBI [data set], https://www.ncbi.nlm.nih.gov/bioproject/PRJNA660023, last access: 28 August 2020.
Chanton, J., Chaser, L., Glasser, P., and Siegel, D.: Carbon and Hydrogen Isotopic
Effects in Microbial, Methane from Terrestrial Environments, Stable Isotopes
and
Biosphere – Atmosphere Interactions, Elsevier Inc., 85–105, https://doi.org/10.1016/B978-012088447-6/50006-4, 2005.
Chanton, J. P., Glaser, P. H., Chasar, L. S. Burdige, D. J., Hines, M. E., Siegel, D. I., Tremblay, L. B., and Cooper, W. T.: Radiocarbon evidence for the importance of surface vegetation
on
fermentation and methanogenesis in contrasting types of boreal peatlands,
Global
Biogeochem. Cy., 22, 1–11, https://doi.org/10.1029/2008GB003274, 2008.
Climate-Data.org: Retrieved January 21, 2019,
https://en.climate-data.org/north-america/canada/alberta/meander-river-11380/ (last access: 21 January 2019),
2019.
Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J.
S.: Radiocarbon and stable carbon isotopic evidence for transport and
transformation of dissolved organic carbon, dissolved inorganic carbon, and
CH4 in a northern Minnesota peatland, Global Biogeochem. Cy., 14,
1095–1108, https://doi.org/10.1029/1999GB001221, 2000.
Chasmer, L. and Hopkinson, C.: Threshold loss of discontinuous permafrost and
landscape evolution, Glob. Change Biol., 23, 2672–2686, https://doi.org/10.1111/gcb.13537, 2017.
Cooper, M. D. A., Estop-Aragones, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokeli, S. V., Wolfe, S. A., Lewkowicz, A. G., WIlliams, M., and Hartley, I. P.: Limited contribution of permafrost
carbon to methane release from thawing peatlands, Nat. Clim. Change, 7,
507–511, https://doi.org/10.1038/nclimate3328, 2017.
Comte, J., Monier, A., Crevecoeur, S., Lovejoy,C., and Vincent, W. F.: Microbial
biogeography of permafrost thaw ponds across the changing northern
landscape, Ecography, 39, 609–618, https://doi.org/10.1111/ecog.01667, 2015.
Connon, R. F., Quinton, W. L., Craig, J. R., and Hayashi, M.: Changing hydrologic
connectivity due to permafrost thaw in the lower Liard River valley, NWT,
Canada, Hydrol. Process., 28, 4163–4178, https://doi.org/10.1002/hyp.10206, 2014.
Conrad, R.: Contribution of hydrogen to methane production and control of
hydrogen
concentrations in methanogenic soils and sediments, FEMS Microbiol.
Ecol., 28, 193–202, https://doi.org/10.1016/S0168-6496(98)00086-5, 1999.
Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H.,
and Chanton, J. P.: Partitioning pathways of CO2 production in peatlands with
stable carbon
isotopes, Biogeochemistry, 114, 327–340, https://doi.org/10.1007/s10533-012-9813-1, 2013.
Criquet, S., Farnet, A. M., Tagger, S., and Le Petit, J.: Annual variations of
phenoloxidase activities in an evergreen oak litter: Influence of certain
biotic and abiotic
factors, Soil Biol. Biochem., 32, 1505–1513,
https://doi.org/10.1016/S0038-0717(00)00027-4, 2000.
Dunn, C., Jones, T. G, Girard, A., and Freeman, C.: Methodologies for
Extracellular enzyme assays from wetland soils, Wetlands, 34, 9–17,
https://doi.org/10.1007/s13157-013-0475-0, 2014.
Ebrahimi, A. and Or, D.: Mechanistic modeling of microbial interactions at pore
to profile scale resolve methane emission dynamics from permafrost soil,
J.
Geophys. Res.-Biogeo., 122, 1216–1238, https://doi.org/10.1002/2016JG003674, 2017.
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and Harden, J.
W.: Differential response of carbon fluxes to climate in three peatland
ecosystems that vary in the presence and stability of permafrost, J.
Geophys. Res.-Biogeo., 119, 1576–1595, https://doi.org/10.1002/2014JG002683, 2014.
Feng, J., Wang, C., Lei, J., Yang, Y., Yan, Q., Zhou, X., Tao, X., Ning, D., Yuan, M. M., Qin, Y., Zhou Shi, J., Guo, X., He, Z., Van Nostrand, J. D., Wu, L., Bracho-Garillo, R. G., Penton, C. R., Cole, J. R., Konstantinidis, K. T., Luo, Y., Schuur, E. A. G., Tiedje, J. M., and Zhou, J.: Warming-induced
permafrost thaw exarcerbates tundra soil carbon decomposition mediated by
microbial community, Microbiome, 8, 1–12, https://doi.org/10.1186/s40168-019-0778-3, 2020.
Fisher, R. E., France, J. L., Lowry, D., Lanoisellé, M., Brownlow, R., Pyle, J. A., Cain, M., Warwick, N., Skiba, U. M., Drewer, J., Dinsmore, K. J., Leeson, S. R., Bauguitte, S. J. B., Wellpott, A., O'Shea, S. J., Allen, G., Gallagher, M. W., Pitt, J., Percival, C. J., Bower, K., George, C., Hayman, G. D., Aalto, T., Lohila, A., Aurela, M., Laurila, T., Crill, P. M., McCalley, C. K., and Nisbet, E. G.: Measurement of the 13C isotopic signature of methane
emissions from northern European wetlands, Global Biogeochem. Cy., 31,
605–623, https://doi.org/10.1002/2016GB005504, 2017.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, Thousand Oaks CA: Sage, Second Edition, 123–173,
https://doi.org/10.1016/j.stomax.2010.07.001, 2011.
Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and
Hartmann, M.: Microbial diversity in European alpine permafrost and active
layers, FEMS Microbiol. Ecol., 92, 1–16,
https://doi.org/10.1093/femsec/fiw018, 2016.
Fritze, H., Penttilä, T., Mäkiranta, P., Laiho, R., Tuomivirta, T., Forsman, J., Kumpula, J., Juottonen, H., and Peltoniemi, K.: Exploring the mechanisms by which reindeer droppings
induce fen peat methane production, Soil Biol. Biochem., 160, 1–7,
https://doi.org/10.1016/j.soilbio.2021.108318, 2021.
Galand, P. E., Fritze, H., Conrad, R., and Yrjälä, K.: Pathways for
methanogenesis and diversity of methanogenic archaea in three boreal
peatland ecosystems, Appl. Environ. Microbiol., 71, 2195–2198,
https://doi.org/10.1128/AEM.71.4.2195-2198.2005, 2005.
Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan,
M. D.,
and Olefeldt, D.: Wildfire as a major driver of recent permafrost thaw in boreal
peatlands, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-05457-1, 2018.
Grant, R. F.: Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen
within a hydrologically diverse Arctic landscape: 2. Modeled impacts of
climate change, J. Geophys. Res.-Biogeo., 120,
1388–1406, https://doi.org/10.1002/2014JG002889, 2015.
Hädrich, A., Heuer, V. B., Herrmann, M., Hinrichs, K. W., and Küsel, K.:
Origin and fate of acetate in an acidic fen, FEMS Microbiol.
Ecol., 81, 339–354, https://doi.org/10.1111/j.1574-6941.2012.01352.x, 2012.
Hamberger, A., Horn, M. A., Dumont, M. G., Murrell, J. C., and Drake H. L.:
Anaerobic consumers of monosaccharides in a moderately acidic fen, Appl.
Environ. Microbiol., 74, 3112–3120, https://doi.org/10.1128/AEM.00193-08, 2008.
Hansen, A. M., Kraus, T. E. C., Pellerin, B. A., Fleck, J. A., Downing, B.
D., and Bergamaschi, B. A.: Optical properties of dissolved organic matter (DOM):
Effects of biological and photolytic degradation, Limnol. Oceanogr.,
61, 1015–1032, https://doi.org/10.1002/lno.10270, 2016.
Heffernan, L.: High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages, Scholars Portal Dataverse, V1 [data set], https://doi.org/10.5683/SP3/5TSH9V, 2021.
Heffernan, L., Estop-Aragonés, C., Knorr, K.-H., Talbot, J., and Olefeldt,
D.: Long-term impacts of permafrost thaw on carbon storage in peatlands: deep
losses offset by
surficial accumulation, J. Geophys. Res.-Biogeo., 125,
e2019JG005501, https://doi.org/10.1029/2019JG005501, 2020.
Heffernan, L., Jassey, V. E. J., Frederickson, M., Mackenzie, M. D., and Olefeldt,
D.: Constraints on potential enzyme activities in thermokarst bogs:
Implications for the carbon balance of peatlands following thaw, Glob.
Change Biol., 27, 4711–4726, https://doi.org/10.1111/gcb.15758, 2021.
Heginbottom, J. A., Dubreuil, M. H., and Harker, P. T.: Canada, Permafrost,
National Atlas of Canada, 5th Edn., 1:7 500 000, Plate 2.1 (MCR 4177), https://open.canada.ca/data/en/dataset/d1e2048b-ccff-5852-aaa5-b861bd55c367 (last access: 15 November 2018), 1995.
Helbig, M., Pappas, C., and Sonnentag, O.: Permafrost thaw and wildfire: Equally
important drivers of boreal tree cover changes in the Taiga Plains, Canada,
Geophys.
Res. Lett., 43, 1598–1606, https://doi.org/10.1002/2015GL067193, 2016.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper,
K.: Absorption spectral slopes and slope rations as indicators of molecular
weight, source, and photobleaching of chromophoric dissolved organic matter,
Limnol. Oceanogr., 53, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R., Rich, V. I., and Chanton, J. P.: Changes in peat chemistry associated with permafrost
thaw
increase greenhouse gas production, P. Natl. Acad.
Sci. USA,
111, 5819–5824, https://doi.org/10.1073/pnas.1314641111, 2014.
Hoffman, G. E. and Schadt, E. E.: variancePartition: interpreting drivers of
variance in complex gene expression studies, BMC Bioinformatics, 17, 1–13,
https://doi.org.10.1186/s12859-016-1323-z, 2016.
Holm, S., Walz, J., Horn, F., Yang, S., Grigoriev, M. N., Wagner, D., Knoblauch, C., and Liebner, S.:
Methanogenic response to long-term permafrost thaw is determined by
paleoenvironment, FEMS Microbiol. Ecol., 96, 1–13,
https://doi.org/10.1093/femsec/fiaa021, 2020.
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J., Hanson, P. J., Keller, J. K., and Bridgham, S. D.: Massive peatland carbon banks vulnerable to rising
temperatures, Nat. Commun., 11, 1–7,
https://doi.org/10.1038/s41467-020-16311-8, 2020.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Spatial distribution of
microbial methane production pathways in temperate zone wetland soils:
Stable carbon
and hydrogen isotope evidence, Geochim. Cosmochim. Ac., 61, 745–753,
https://doi.org/10.1016/S0016-7037(96)00368-7, 1997.
Hornibrook, E. R. C., Longstaffe, F. J., and Fyfe, W. S.: Evolution of stable
carbon
isotope compositions for methane and carbon dioxide in freshwater wetlands
and other
anaerobic environments, Geochim. Cosmochim. Ac., 64, 1013–1027,
https://doi.org/10.1016/S0016-7037(99)00321-X, 2000.
Hough, M., McClure, A., Bolduc, B., Dorrepaal, E., Saleska, S.,
Klepac-Ceraj, V., and Rich, V.: Biotic and environmental drivers of plant
microbiomes across a permafrost thaw gradient, Front. Microbiol., 11,
1–18, https://doi.org/10.3389/fmicb.2020.00796, 2020.
Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., Goll, D. S., Guenet, B., Makowski, D., De Graaf, I., Leifeld, J., Kwon, M. J., Hu, J., and Qu, L.: Tradeoff
of CO2 and CH4 emissions from global peatlands under water-table drawdown,
Nat. Clim. Change, 11, 618–622,
https://doi.org/10.1038/s41558-021-01059-w, 2021.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland carbon
and nitrogen are vulnerable to permafrost thaw, P. Natl.
Acad. Sci. USA, 117, 20438–20446,
https://doi.org/10.1073/pnas.19163 87117, 2020.
Jassey, V. E. J., Chiapusio, G., Gilbert, D., Toussaint, M. L., and Binet, P.:
Phenoloxidase and peroxidase activities in Sphagnum-dominated peatland in a
warming climate, Soil Biol. Biochem., 46, 49–52,
https://doi.org/10.1016/j.soilbio.2011.11.011, 2012.
Johnston, C. E., Ewing, S. A., Harden, J. W., Varner, R. K., Wickland, K. P., Koch, J. C., Fuller, C. C., Manies, K., and Jorgenson, M. T.: Effect of permafrost thaw on CO2 and CH4 exchange in
a
western Alaska peatland chronosequence, Environ. Res. Lett.,
9, 1–12, https://doi.org/10.1088/1748-9326/9/8/085004, 2014.
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat,
C., and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw
in boreal
peatlands, Glob. Change Biol., 23, 1109–1127,
https://doi.org/10.1111/gcb.13403, 2017.
Juottonen, H., Kieman, M., Fritze, H., Hamberg, L., Laine, A. M., Merilä, P., Peltoniemi, K., Putkinen, A., and Tuittila, E. S.: Integrating Decomposers, Methane-Cycling Microbes and
Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land
Uplift Region, Ecosystems, https://doi.org/10.1007/s10021-021-00713-w, 2021.
Kammann, C., Grünhage, L., and Jäger, H. J.: A new sampling technique to
monitor concentrations of CH4, N2O and CO2 in air at well-defined depths in
soils with varied water potential, Europ. J. Soil Sci., 52,
297–303, https://doi.org/10.1046/j.1365-2389.2001.00380.x, 2001.
Kassambara, A. and Mundt, F.: Package “factoextra”, R Topics Documented, https://cran.r-project.org/package=factoextra, 2017.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots. R package
version
0.2, R package version 0.1.8, https://CRAN.R-project.org/package=ggpubr, 2018.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric
carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 332–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Kendall, M. M. and Boone, D. R.: Cultivation of methanogens from shallow marine
sediments at Hydrate Ridge, Oregon. Archaea, 2, 31–38,
https://doi.org/10.1155/2006/710190, 2016.
Keuper, F., van Bodegom, P. M., Dorrepaal, E., Weedon, J. T., van Hal, J., van
Logtestijn, R. S. P., and Aerts, R.: A frozen feast: thawing permafrost increases
plant-available nitrogen in subarctic peatlands, Glob. Change
Biol., 18, 1998–2007, https://doi.org/10.1111/j.1365-2486.2012.02663.x, 2012.
Keuper, F., Dorrepaal, E., van Bodegom, P. M., van Logtesijn, R., Venhuizen,
G., van Hal, J., and Aerts, R.: Experimentally increased nutrient availability at
the permafrost thaw front selectively enhances biomass production of
deep-rooting subarctic peatland species, Glob. Change Biol., 23,
4257–4266, https://doi.org/10.1111/gcb.13804, 2017.
Kirkwood, J. A. H., Roy-Léveillée, P., Mykytczuk, N., Packalen, M.,
McLaughlin, J., Laframboise, A., and Basiliko, N.: Soil Microbial Community
Response to Permafrost Degradation in Palsa Fields of the Hudson Bay
Lowlands: Implications for Greenhouse Gas Production in a Warming Climate,
Global Biogeochem. Cy., 35, e2021GB006954, https://doi.org/10.1029/2021GB006954, 2021.
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E. M.:
Methane production as key to the greenhouse gas budget of thawing
permafrost, Nat. Clim. Change, 8, 309–312, https://doi.org/10.1038/s41558-018-0095-z, 2018.
Knorr, K. H., Lischeid, G., and Blodau, C.: Dynamics of redox processes in a
minerotrophic fen exposed to a water table manipulation, Geoderma, 153,
379–392,
https://doi.org/10.1016/j.geoderma.2009.08.023, 2009.
Kotiaho, M., Fritze, H., Merilä, P., Tuomivirta, T., Väliranta, M., Korhola, A., Karofeld, E., and Tuittila, E. S.: Actinobacteria community
structure in the peat profile of boreal bogs follows a variation in the
microtopographical gradient similar to vegetation, Plant Soil, 369, 103–114,
https://doi.org/10.1007/s11104-012-1546-3, 2013.
Kotsyurbenko, O. R., Friedrich, M. W., Simankova, M. V., Nozhevnikova, A.
N., Golyshin,
P. N., Timmis, K. N., and Conrad, R.: Shift from acetoclastic to H2-dependent
methanogenesis in a West Siberian peat bog at low pH values and isolation of
an
acidophilic Methanobacterium strain, Appl. Environ. Microbiol.,
73,
2344–2348, https://doi.org/10.1128/AEM.02413-06, 2007.
Kotsyurbenko, O. R.: Trophic interactions in the methanogenic microbial
community of low-temperature terrestrial ecosystems, FEMS Microbiol.
Ecol., 53, 3–13, https://doi.org/10.1016/j.femsec.2004.12.009, 2005.
Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter Anthony, K., McGuire, A. D., and Olefeldt, D.: BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems, Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, 2021.
Kuhry, P.: Vegetation cover and radiocarbon dates of palsa and peat
plateaus in the Hudson Bay Lowlands, PANGAEA,
https://doi.org/10.1594/PANGAEA.812224, Supplement to: Kuhry, P. (2008):
Palsa and peat plateau development in the Hudson Bay Lowlands, Canada:
timing, pathways and causes, Boreas, 37, 316–327, https://doi.org/10.1111/j.1502-3885.2007.00022.x, 2008.
Kujala, K., Seppälä, M., and Holappa, T.: Physical properties of peat and
palsa formation, Cold Reg. Sci. Technol., 52, 408–414,
https://doi.org/10.1016/j.coldregions.2007.08.002, 2008.
Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M., and Chanton, J. P.: The
rate of
permafrost carbon release under aerobic and anaerobic conditions and its
potential
effects on climate, Glob. Change Biol., 18, 515–527,
https://doi.org/10.1111/j.1365-2486.2011.02519.x, 2012.
Leroy, F., Gogo, S., Guimbaud, C., Bernard-Jannin, L., Hu, Z.,
and Laggoun-Défarge, F.: Vegetation composition controls temperature
sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands,
Soil Biol. Biochem., 107, 164–167, https://doi.org/10.1016/j.soilbio.2017.01.005, 2017.
Liebner, S., Ganzert, L., Kiss, A., Yang, S., Wagner, D., and Svenning, M. M.:
Shifts in methanogenic community composition and methane fluxes along the
degradation of
discontinuous permafrost, Front. Microbiol., 6, 1–10,
https://doi.org/10.3389/fmicb.2015.00356, 2015.
Lin, Y., Liu, D., Yuan, J., Ye, G., and Ding, W.: Methanogenic community was
stable in two contrasting freshwater marshes exposed to elevated atmospheric
CO2, Front. Microbiol., 8, 1–12, https://doi.org/10.3389/fmicb.2017.00932, 2017.
Luláková, P., Perez-Mon, C., Šantrůčková, H.,
Ruethi, J., and Frey, B.: High-alpine permafrost and active-layer soil microbiomes
differ in their response to elevated
temperatures, Front. Microbiol., 10, 1–16,
https://doi.org/10.3389/fmicb.2019.00668, 2019.
Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., and Neufeld,
J. D.: PANDAseq: PAired-eND Assembler for Illumina sequences, Bioinformatics, 13, 1–7, 2012.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E. H., Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W., and Saleska, S. R: Methane dynamics regulated by microbial community
response to
permafrost thaw, Nature, 514, 478–481, https://doi.org/10.1038/nature13798,
2014.
McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z.,
Probst, A., Andersen, G. L., Knight, R., and Hugenholtz, P.: An improved
Greengenes taxonomy with exzplicit ranks for ecological and evolutionary
analyses of bacteria and archaea, ISME J., 6, 610–618,
https://doi.org/10.1038/ismej.2011.139, 2012.
McNicol, G., Knox, S. H., Guilderson, T. P., Baldocchi, D. D., and Silver, W. L.:
Where old meets new: An ecosystem study of methanogenesis in a reflooded
agricultural peatland, Glob. Change Biol., 26, 772–785, https://doi.org/10.1111/gcb.14916, 2019.
Monteux, S., Weedon, J. T., Blume-Werry, G., Gavazov, K., Jassey, V. E. J., Johansson, M., Keuper, F., Olid, C., and Dorrepaal, E.: Long-term in situ permafrost thaw effects on bacterial
communities and potential aerobic respiration, ISME J., 12, 2129–2141,
https://doi.org/10.1038/s41396-018-0176-z, 2018.
Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., and Helfrich, S.:
Surface Air Temperature, in: Arctic Report Card 2018, retrieved at:
https://www.arctic.noaa.gov/Report-Card, 2018.
Nielsen, C. S., Hasselquist, N. J., Nilsson, M. B., Öquist, M., Järveoja,
J., and Peichl, M.: A Novel Approach for High-Frequency in-situ Quantification of
Methane Oxidation in Peatlands, Soil Syst., 3, 1–11, https://doi.org/10.3390/soilsystems3010004, 2019.
Oksanen, J., Blanchet, F. G., Kindt, R., Oksanen, M. J., and Suggests, M.:
Package
“vegan”, Community Ecology Package Version, https://cran.r-project.org/package=vegan, 2013.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., Mcguire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes,
Nat. Commun., 7, 1–11, https://doi.org/10.1038/ncomms13043, 2016.
Olefeldt, D., Euskirchen, E. S., Harden, J., Kane, E., McGuire, A. D.,
Waldrop, M. P., and Turetsky, M. R.: A decade of boreal rich fen greenhouse
gas fluxes in response to natural and experimental water table variability,
Glob. Change Biol., 23, 2428–2440, https://doi.org/10.1111/gcb.13612,
2017.
Olefeldt, D., Heffernan, L., Jones, M. C., Sannel, A. B. K., Treat, C. C.,
and Turetsky, M. R.: Permafrost thaw in northern peatlands: rapid changes in
ecosystem and landscape functions, Ecosystem Collapse and Climate Change, Springer, Cham, Vol. 241,
27–67, 2021.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: assessing
small subunit rRNA primers for marine microbiomes with mock communities,
time
series and global field samples, Environ. Microbiol., 18, 1403–1414,
https://doi.org/10.1111/1462-2920.13023, 2016.
Pelletier, N., Talbot, J., Olefeldt, D., Turetsky, M., Blodau, C.,
Sonnentag, O., and Quinton, W. L.: Influence of Holocene permafrost aggradation
and thaw on the paleoecology and carbon storage of a peatland complex in
northwestern Canada, Holocene, 27, 1391–1405, https://doi.org/10.1177/0959683617693899, 2017.
Perryman, C. R., McCalley, C. K., Malhotra, A., Fahnestock, M. F., Kashi, N. N., Bryce, J. G., Giesler, R., and Varner, R. K.: Thaw Transitions and Redox Conditions Drive Methane
Oxidation in a Permafrost Peatland, J. Geophys. Res.-Biogeo.,
125, 1–15, https://doi.org/10.1029/2019JG005526, 2020.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.: nlme: Linear and
Nonlinear Mixed Effects Models, R package version 3.1-131,
https://doi.org/10.1016/j.tibs.2011.05.003, 2017.
Popp, T. J., Chanton, J. P., Whiting, G. J., and Grant, N.: Methane stable
isotope distribution at a Carex dominated fen in north central Alberta,
Global Biogeochem. Cy., 13, 1063–1077, https://doi.org/10.1029/1999GB900060,
1999.
Preuss, I., Knoblauch, C., Gebert, J., and Pfeiffer, E. M.: Improved
quantification of microbial CH4 oxidation efficiency in arctic wetland soils
using carbon isotope fractionation, Biogeosciences, 10, 2539–2552, https://doi.org/10.5194/bg-10-2539-2013, 2013.
Quince, C., Lanzen, A., Davenport, R. J., and Turnbaugh, P. J.: Removing Noise
From Pyrosequenced Amplicons, BMC Bioinformatics, 12, 1–18, https://doi.org/10.1186/1471-2105-12-38, 2011.
R Core Team: R: A language and environment for statistical computing,
Vienna,
Austria, 2014, R Foundation
for
Statistical Computing, https://doi.org/10.1007/978-3-540-74686-7, 2015.
Robroek, B. J. M., Jassey, V. E. J., Kox, M. A. R., Berendsen, R. L., Mills, R. T. E., Cécillon, L., Puissant, J., Meima-Franke, M., Bakker, P. A. H. M., and Bodelier, P. L. E: Peatland vascular plant functional types
affect methane dynamics by altering microbial community structure, J.
Ecol., 103, 925–934, https://doi.org/10.1111/1365-2745.12413, 2015.
Robroek, B. J. M., Martí, M., Svensson, B. H., Dumont, M. G., Veraart,
A. J., and Jassey, V. E. J.: Rewiring of peatland plant–microbe networks
outpaces species turnover, Oikos, 130, 339–353,
https://doi.org/10.1111/oik.07635, 2021.
Schädel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R., Capek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., O'Donnell, J. A., Chowdhury, T. R., Šantrucková, H., Shaver, G., Sloan, V. L., Treat, C. C., Turetsky, M. R., Waldro, M. P., and Wickland, K. P.: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils, Nat. Clim. Change, 6, 950–953, https://doi.org/10.1038/nclimate3054, 2016.
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and timing of
permafrost carbon release in response to climate warming, Tellus B, 63, 165–180,
https://doi.org/10.1111/j.1600-0889.2011.00527.x, 2011.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E: Climate change and the permafrost carbon feedback, Nature,
520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Simon, E., Canarini, A., Martin, V., Séneca, J., Böckle, T., Reinthaler, D., Pötsch, E. M., Piepho, H. P., Bahn, M., Wanek, W., and Richter, A.:
Microbial growth and carbon use efficiency show seasonal responses in a
multifactorial climate change experiment, Commun. Biol., 3, 1–10,
https://doi.org/10.1038/s42003-020-01317-1, 2020.
Strack, M., Waddington, J. M., and Tuittila, E. S.: Effect of water table
drawdown on northern peatland methane dynamics: Implications for climate
change, Global Biogeochem. Cy., 18, 1–13,
https://doi.org/10.1029/2003GB002209, 2004.
Stams, A. J. M., Teusink, B., and Sousa, D. Z.: Ecophysiology of Acetoclastic
Methanogens, in: Biogenesis of Hydrocarbons, edited by: Stams, A. and Sousa, D.,
Handbook of Hydrocarbon and Lipid Microbiology, Springer, Cham,
https://doi.org/10.1007/978-3-319-78108-2_21, 2019.
Ström, L., Ekberg, A., Mastepanov, M., and Røjle
Christensen, T.: The effect of vascular plants on carbon turnover and methane
emissions from a tundra wetland, Glob. Change Biol., 9, 1185–1192,
https://doi.org/10.1046/j.1365-2486.2003.00655.x, 2003.
Ström, L., Ekberg, A., Mastepanov, M., and Røjle
Christensen, T.: Presence of Eriophorum scheuchzeri enhances substrate
availability and methane emission in an Arctic wetland, Soil Biol.
Biochem., 45, 61–70, https://doi.org/10.1016/j.soilbio.2011.09.005, 2012.
Ström, L., Falk, J. M., Skov, K., Jackowizc-Korczynski, M., Mastepanov, M.,
Christensen, T., Lund, M., and Schmidt, N. M.: Controls of spatial and temporal
variabilirt in CH4 flux in a high arctic fen over three years,
Biogeochemistry, 125, 21–35, https://doi.org/10.1007/s10533-015-0109-0, 2015.
Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J., and Scott, K. D.: The
disappearance of relict permafrost in boreal north America: Effects on
peatland carbon
storage and fluxes, Glob. Change Biol., 13, 1922–1934,
https://doi.org/10.1111/j.1365-2486.2007.01381.x, 2007.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw,
Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0,
2020.
Tuittila, E. S., Komulainen, V. M., Vasander, H., Nykanen, H., Martikainen,
P. J., and Laine, J.: Methane dynamics of a restored cut-away peatland, Glob.
Change Biol., 6, 569–581,
https://doi.org/10.1046/j.1365-2486.2000.00341.x, 2000.
Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B. J., Hugenholtz, P., and Tyson, G. W.: Methylotrophic methanogenesis
discovered in the archaeal phylum Verstraetearchaeota, Nat. Microbiol.,
1, 1–9, https://doi.org/10.1038/nmicrobiol.2016.170, 2016.
Vishnivetskaya, T. A., Buongiorno, J., Bird, J., Krivushin, K., Spirina,
E. V., Oshurkova, V., Shcherbakova, V. A., Wilson, G., Lloyd, K. G., and Rivkina,
E. M.: Methanogens in the Antarctic Dry Valley permafrost, FEMS Microbiol.
Ecol., 94, 1–14, https://doi.org/10.1093/femsec/fiy109, 2018.
Vitt, D. H., Halsey, L. A., and Zoltai, S. C.: The Bog Landforms of Continental
Western Canada in Relation to Climate and Permafrost Patterns, Arct.
Alp. Res.,
26, 1–13, https://doi.org/10.2307/1551870, 1994.
Vitt, D. H., Halsey, L. A., Bauer, I. E., and Campbell, C.: Spatial and temporal
trends in carbon storage of peatlands of continental western Canada through
the Holocene,
Can. J. Earth Sci., 37, 683–693,
https://doi.org/10.1139/e99-097, 2000.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of
the chemical composition and reactivity of dissolved organic carbon,
Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in marine
and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope
evidence,
Geochim. Cosmochim. Ac., 50, 693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation
and oxidation of methane, Chem. Geol., 161, 291–314,
https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, J. Stat. Softw., 35, 216, https://doi.org/10.18637/jss.v035.b01, 2009.
Wickland, K. P., Striegl, R. G., Neff, J. C., and Sachs, T.: Effects of
permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce
lowland, J.
Geophys. Res.-Biogeo., 111, 1–13,
https://doi.org/10.1029/2005JG000099, 2006.
Wüst, P. K., Horn, M. A,. and Drake, H. L.: Trophic links between fermenters
and methanogens in a moderately acidic fen soil, Environ. Microbiol.,
11, 1395–1409, https://doi.org/10.1111/j.1462-2920.2009.01867.x, 2009.
Ye, R., Jin, Q., Bohannan, B., Keller, J. K., McAllister, S. A., and Bridgham,
S. D.: pH controls over anaerobic carbon mineralization, the efficiency of
methane production, and methanogenic pathways in peatlands across an
ombrotrophic-minerotrophic gradient, Soil Biol. Biochem., 54,
36–47, https://doi.org/10.1016/j.soilbio.2012.05.015, 2012.
Zhang, C. J., Zhang, C. J., Pan, J., Liu, Y., Duan, C. H., Duan, C. H., and Li, M.: Genomic and transcriptomic insights into
methanogenesis potential of novel methanogens from mangrove sediments,
Microbiome, 8, 1–12, https://doi.org/10.1186/s40168-020-00876-z,
2020.
Zoltai, S. C.: Palsas and Peat Plateaus in Central Manitoba and Saskatchewan,
Can. J. Forest Res., 2, 291–302,
https://doi.org/10.1139/x72-046, 1972.
Zoltai, S. C.: Cyclic Development of Permafrost in the Peatlands of
Northwestern
Alberta, Canada, Arct. Alp. Res., 25, 240–246,
https://doi.org/10.2307/1551820, 1993.
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for...
Altmetrics
Final-revised paper
Preprint