Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3225-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pioneer biocrust communities prevent soil erosion in temperate forests after disturbances
Corinna Gall
CORRESPONDING AUTHOR
Soil Science and Geomorphology, Department of Geosciences, University
of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Martin Nebel
Nees Institute for Biodiversity of Plants, University of Bonn,
Meckenheimer Allee 170, 53115 Bonn, Germany
Dietmar Quandt
Nees Institute for Biodiversity of Plants, University of Bonn,
Meckenheimer Allee 170, 53115 Bonn, Germany
Thomas Scholten
Soil Science and Geomorphology, Department of Geosciences, University
of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Steffen Seitz
Soil Science and Geomorphology, Department of Geosciences, University
of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Related authors
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025, https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary
Short summary
Soil erosion is a major issue in vineyards due to often steep slopes and fallow interlines. While cover crops are typically used for erosion control, moss restoration has not yet been explored. In this study, moss restoration reduced surface runoff by 71.4 % and sediment discharge by 75.8 % compared with bare soil, similar to cover crops. Mosses could serve as ground cover where mowing is impractical, potentially reducing herbicide use in viticulture, although further research is needed.
Hadi Shokati, Kay D. Seufferheld, Peter Fiener, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3146, https://doi.org/10.5194/egusphere-2025-3146, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Floods threaten lives and property and require rapid mapping. We compared two artificial intelligence approaches on aerial imagery: a fine‑tuned Segment Anything Model (SAM) guided by point or bounding box prompts, and a U‑Net network with ResNet‑50 and ResNet‑101 backbones. The point‑based SAM was the most accurate with precise boundaries. Faster and more reliable flood maps help rescue teams, insurers, and planners to act quickly.
Kerstin Rau, Katharina Eggensperger, Frank Schneider, Michael Blaschek, Philipp Hennig, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-166, https://doi.org/10.5194/egusphere-2025-166, 2025
Short summary
Short summary
Uneven data collection can make it hard to predict soil properties accurately in new areas. We developed a method to show where predictions are reliable and where more data is needed. By training a model in one region and applying it to another, we found that our approach effectively recognized river patterns but was biased toward overrepresented soil types. This tool can guide smarter data collection, helping improve predictions and make better use of resources for soil management.
Fedor Scholz, Manuel Traub, Christiane Zarfl, Thomas Scholten, and Martin V. Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-4119, https://doi.org/10.5194/egusphere-2024-4119, 2025
Short summary
Short summary
We present a neural network model that estimates river discharge based on gridded elevation, precipitation, and solar radiation. Some instances of our model produce more accurate forecasts than the European Flood Awareness System (EFAS) when simulating discharge with lead times of over 100 days on the Neckar river network in Germany. It consists of multiple components that are designed to model distinct sub-processes. We show that this makes the model behave in a more physically realistic way.
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025, https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary
Short summary
Soil erosion is a major issue in vineyards due to often steep slopes and fallow interlines. While cover crops are typically used for erosion control, moss restoration has not yet been explored. In this study, moss restoration reduced surface runoff by 71.4 % and sediment discharge by 75.8 % compared with bare soil, similar to cover crops. Mosses could serve as ground cover where mowing is impractical, potentially reducing herbicide use in viticulture, although further research is needed.
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Ayumi Katayama, Kazuki Nanko, Seonghun Jeong, Tomonori Kume, Yoshinori Shinohara, and Steffen Seitz
Earth Surf. Dynam., 11, 1275–1282, https://doi.org/10.5194/esurf-11-1275-2023, https://doi.org/10.5194/esurf-11-1275-2023, 2023
Short summary
Short summary
Even under forests, soil is eroded by rainfall. This is particularly true when human impact damages vegetation layers. We found that the erosion risk can be greatly increased by structural drip points at branches forming large drops under the tree canopy in the foliated and non-foliated seasons. Our measurements with sand-filled splash cups in Japanese beech forests showed drop energies up to 50 times greater than under freefall precipitation, indicating locally severe sediment detachment.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Cited articles
Ad-hoc-AG Boden: Bodenkundliche Kartieranleitung, 5. verbesserte und
erweiterte Auflage, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, ISBN 978-3-510-95920-4, 2005.
Alatalo, J. M., Jägerbrand, A. K., Erfanian, M. B., Chen, S., Sun,
S.-Q., and Molau, U.: Bryophyte cover and richness decline after 18 years of
experimental warming in alpine Sweden, AoB Plants, 12, 1–12, https://doi.org/10.1093/aobpla/plaa061, 2020.
Arnold, W.: Der Wald im Naturpark Schönbuch, in: Das
landschaftsökologische Forschungsprojekt Naturpark Schönbuch:
Wasser- und Stoffhaushalt, Bio-, Geo- und Forstwirtschaftliche Studien in
Südwestdeutschland, edited by: Einsele, G., VCH Verlagsgesellschaft,
Weinheim, ISBN 3-527-27122-8, 1986.
Atherton, I., Bosanquet, S., and Lawley, M. (Eds.): Mosses and Liverworts of Britian and Ireland – A field guide, British Bryological Society, Plymouth, ISBN: 978-0-956-13101-0, 2010.
Baharuddin, K., Mokhtaruddin, A. M., and Muhamad, M. N.: Surface runoff and
soil loss from a skid trail and a logging road in a tropical forest, J. Trop. For. Sci., 7, 558–569, 1995.
Belnap, J. and Büdel, B.: Biological Soil Crusts as Soil Stabilizers,
in: Biological soil crusts: An organizing principle in drylands, edited by:
Weber, B., Büdel, B., and Belnap, J., Springer International Publishing,
Cham, 305–320, https://doi.org/10.1007/978-3-319-30214-0_16, 2016.
Belnap, J., Kaltenecker, J. H., Rosentreter, R., Williams, J., Leonard, S.,
and Eldridge, D. (Eds.): Biological soil crusts: Ecology and management, US Department of the Interior – Bureau of Land Management and United States Geological Survey, https://ia802600.us.archive.org/16/items/biologicalsoilcr00beln/biologicalsoilcr00beln.pdf (last access: 6 July 2022), 2001.
Belnap, J., Büdel, B., and Lange, O. L.: Biological Soil Crusts:
Characteristics and Distribution, in: Biological Soil Crusts: Structure,
Function, and Management, edited by: Belnap, J. and Lange, O. L., Springer
Berlin Heidelberg, Berlin, Heidelberg, 3–30, https://doi.org/10.1007/978-3-642-56475-8_1, 2003.
Bergamini, A., Pauli, D., Peintinger, M., and Schmid, B.: Relationships
between productivity, number of shoots and number of species in bryophytes
and vascular plants, J. Ecol., 89, 920–929, https://doi.org/10.1111/j.1365-2745.2001.00613.x, 2001.
Bibus, E.: Die Bedeutung periglazialer Deckschichten für Bodenprofil,
Standort und junge Reliefentwicklung im Schönbuch bei Tübingen, in:
Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch:
Wasser- und Stoffhaushalt, Bio-, Geo- und Forstwirtschaftliche Studien in
Südwestdeutschland, edited by: Einsele, G., VCH Verlagsgesellschaft,
Weinheim, ISBN 3-527-27122-8, 1986.
Blake, G. R. and Hartge, K. H.: Bulk density, in: Methods of Soil Analysis,
Part 1: Physical and Mineralogical Methods, 2nd Edn., edited by: Arnold, K.,
American Society of Agronomy, Inc. and Soil Science Society of America,
Inc., Madison, 363–375, https://doi.org/10.2136/sssabookser5.1.2ed.c13, 1986.
Blanco, H. and Lal, R.: Principles of Soil Conservation and Management,
Springer, New York, ISBN 978-1-4020-8708-0, 2008.
Bowman, A. and Azzalini, A.: sm: Smoothing methods for nonparametric
regression and density estimation (R package version 2.2-5.7), CRAN [code], http://www.stats.gla.ac.uk/~adrian/sm
(last access: 6 July 2022), 2021.
Braun-Blanquet, J. (Ed.): Pflanzensoziologie. Grundzüge der Vegetationskunde,
Springer Verlag, Wien, https://doi.org/10.1007/978-3-7091-8110-2, 1964.
Bu, C., Wu, S., Han, F., Yang, Y., and Meng, J.: The combined effects of
moss-dominated biocrusts and vegetation on erosion and soil moisture and
implications for disturbance on the Loess Plateau, China, PLOS ONE, 10,
e0127394, https://doi.org/10.1371/journal.pone.0127394, 2015.
Buckley, D. S., Crow, T. R., Nauertz, E. A., and Schulz, K. E.: Influence of
skid trails and haul roads on understory plant richness and composition in
managed forest landscapes in Upper Michigan, USA, Forest Ecol.
Manage., 175, 509–520, 2003.
Casermeiro, M. A., Molina, J. A., de la Cruz Caravaca, M. T., Hernando
Costa, J., Hernando Massanet, M. I., and Moreno, P. S.: Influence of scrubs
on runoff and sediment loss in soils of Mediterranean climate, Catena, 57,
91–107, https://doi.org/10.1016/S0341-8162(03)00160-7, 2004.
Chmura, D. and Sierka, E.: The invasibility of deciduous forest communities
after disturbance: A case study of Carex brizoides and Impatiens parviflora
invasion, Forest Ecol. Manage., 242, 487–495, https://doi.org/10.1016/j.foreco.2007.01.083, 2007.
Corbin, J. D. and Thiet, R. K.: Temperate biocrusts: Mesic counterparts to
their better-known dryland cousins, Front. Ecol.
Environ., 18, 456–464, https://doi.org/10.1002/fee.2234,
2020.
DeArmond, D., Ferraz, J., and Higuchi, N.: Natural recovery of skid trails.
A review, Can. J. Forest Res., 51, 948–961, https://doi.org/10.1139/cjfr-2020-0419, 2021.
Dekker, L. W., Ritsema, C. J., Oostindie, K., Moore, D., and Wesseling, J.
G.: Methods for determining soil water repellency on field-moist samples,
Water Resour. Res., 45, 1–6, https://doi.org/10.1029/2008WR007070, 2009.
Demir, M., Makineci, E., and Yilmaz, E.: Investigation of timber harvesting
impacts on herbaceous cover, forest floor and surface soil properties on
skid road in an oak (Quercus petrea L.) stand, Build. Environ., 42,
1194–1199, https://doi.org/10.1016/j.buildenv.2005.11.008,
2007.
Düll, R.: Zeigerwerte von Laub- und Lebermoosen, in: Zeigerwerte von
Pflanzen in Mitteleuropa: (Scripta Geobotanica, 18), edited by: Ellenberg,
H., Verlag Erich Goltze KG, Göttingen, 175–214, ISBN 3-88452-518-2, 1991.
DWD Climate Data Center: Jahresmittel der Stationsmessungen der
Lufttemperatur in 2 m Höhe in ∘C und Jahressumme der
Niederschlagshöhe für Deutschland (Version v21.3), DWD Climate Data Center [data set], https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/annual/kl/historical/
(last access: 6 July 2022), 2021a.
DWD Climate Data Center: Grids of return periods of heavy precipitation
(design precipitation) over Germany (KOSTRA-DWD) (version 2010R), DWD Climate Data Center [data set], https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/asc/
(last access: 6 July 2022),
2021b.
DWD Climate Data Center: Annual regional averages of air temperature (annual
mean) in ∘C (2 m above ground) (v19.3), DWD Climate Data Center [data set], https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/air_temperature_mean/regional_averages_tm_year.txt
(last access: 6 July 2022), 2021c.
DWD Climate Data Center: Annual regional averages of precipitation height
(annual sum) in mm (v19.3), DWD Climate Data Center [data set], https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/annual/precipitation/regional_averages_rr_year.txt
(last access: 6 July 2022), 2021d.
Eberhardt, E., Schad, P., Lehmann, C., and Harhoff, R.: WRB Tool for German
Soil Data (Version 2.0 (09.01.2019)), Bundesanstalt für
Geowissenschaften und Rohstoffe (BGR) [code], https://www.bgr.bund.de/EN/Themen/Boden/Projekte/Informationsgrundlagen_laufend/Uebersetzungsschluessel_en/UeSchluessel_AblSchluessel_en/AblS_KA5_WRB_LicenseTerms.html;jsessionid=6DDB24B66DEB03A844947F1AE57354F5.1_cid292?nn=1548376
(last access: 6 July 2022), 2019.
Einsele, G. and Agster, G.: Überblick zur Geologie und Morphologie des
Schönbuchs, in: Das landschaftsökologische Forschungsprojekt
Naturpark Schönbuch : Wasser- und Stoffhaushalt, Bio-, Geo- und
Forstwirtschaftliche Studien in Südwestdeutschland, edited by: Einsele,
G., VCH Verlagsgesellschaft, Weinheim, ISBN 3-527-27122-8, 1986.
Eldridge, D. J., Reed, S., Travers, S. K., Bowker, M. A., Maestre, F. T.,
Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B.,
Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S.,
Huber-Sannwald, E., Malam Issa, O., and Zhao, Y.: The pervasive and
multifaceted influence of biocrusts on water in the world's drylands, Glob.
Change Biol., 26, 6003–6014, https://doi.org/10.1111/gcb.15232, 2020.
Elumeeva, T. G., Soudzilovskaia, N. A., During, H. J., and Cornelissen, J.
H.: The importance of colony structure versus shoot morphology for the water
balance of 22 subarctic bryophyte species, J. Veg. Sci.,
22, 152–164, https://doi.org/10.1111/j.1654-1103.2010.01237.x,
2011.
Filibeck, G., Sperandii, M. G., Bazzichetto, M., Mancini, L. D., Rossini,
F., and Cancellieri, L.: Exploring the drivers of vascular plant richness at
very fine spatial scale in sub-Mediterranean limestone grasslands (Central
Apennines, Italy), Biodivers. Conserv., 28, 1–25, https://doi.org/10.1007/s10531-019-01788-7, 2019.
Fojcik, B., Wierzgoń, M., and Chmura, D.: Response of bryophytes to
disturbances in managed forests. A case study from a Polish forest,
Cryptogamie, Bryologie, 40, 105–118, https://doi.org/10.5252/cryptogamie-bryologie2019v40a10, 2019.
Foltz, R. B., Copeland, N. S., and Elliot, W. J.: Reopening abandoned forest
roads in northern Idaho, USA: Quantification of runoff, sediment
concentration, infiltration, and interrill erosion parameters, J.
Environ. Manage., 90, 2542–2550, https://doi.org/10.1016/j.jenvman.2009.01.014, 2009.
Gall, C., Nebel, M., Sauer, M., Scholten, T., and Seitz, S.: Soil erosion
and pioneer vegetation in temperate forests, figshare [data set], https://doi.org/10.6084/m9.figshare.17206835.v3, 2021.
Glaser, K., Baumann, K., Leinweber, P., Mikhailyuk, T., and Karsten, U.: Algal richness in BSCs in forests under different management intensity with some implications for P cycling, Biogeosciences, 15, 4181–4192, https://doi.org/10.5194/bg-15-4181-2018, 2018.
Glime, J. M.: Volume 1: Physiological Ecology, in: Bryophyte Ecology, edited
by: Glime, J. M., Michigan Technological University, Michigan, https://digitalcommons.mtu.edu/oabooks/4 (last access: 6 July 2022), 2021.
Goebes, P., Bruelheide, H., Härdtle, W., Kröber, W., Kühn, P.,
Li, Y., Seitz, S., von Oheimb, G., and Scholten, T.: Species-specific effects
on throughfall kinetic energy in subtropical forest plantations are related
to leaf traits and tree architecture, PLoS ONE, 10, e0128084, https://doi.org/10.1371/journal.pone.0128084, 2015.
Hydbom, S., Ödman, A. M., Olsson, P. A., and Cronberg, N.: The effects
of pH and disturbance on the bryophyte flora in calcareous sandy grasslands,
Nord. J. Bot., 30, 446–452, https://doi.org/10.1111/j.1756-1051.2012.01463.x, 2012.
Ingerpuu, N., Liira, J., and Pärtel, M.: Vascular plants facilitated
bryophytes in a grassland experiment, Plant Ecol., 180, 69–75, https://doi.org/10.1007/s11258-005-2508-0, 2005.
Iserloh, T., Ries, J., Arnáez, J., Boix-Fayos, C., Butzen, V.,
Cerdà, A., Echeverría, M., Fernández-Gálvez, J., Fister,
W., and Geißler, C.: European small portable rainfall simulators: A
comparison of rainfall characteristics, Catena, 110, 100–112, https://doi.org/10.1016/j.catena.2013.05.013, 2013.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014,
update 2015 International soil classification system for naming soils and
creating legends for soil maps, World Soil Resources Reports No. 106 FAO,
Rome, ISBN 978-92-5-108369-7, 2015.
Jäger, E. J. (Eds.): Rothmaler – Exkursionsflora von Deutschland, Band 4: Kritischer Band, Spektrum Akademischer Verlag, München, ISBN 978-3-8274-1496-0, 2005.
Jagodziński, A. M., Wierzcholska, S., Dyderski, M. K., Horodecki, P.,
Rusińska, A., Gdula, A. K., and Kasprowicz, M.: Tree species effects on
bryophyte guilds on a reclaimed post-mining site, Ecol. Eng.,
110, 117–127, https://doi.org/10.1016/j.ecoleng.2017.10.015,
2018.
Jordán-López, A., Martínez-Zavala, L., and Bellinfante, N.:
Impact of different parts of unpaved forest roads on runoff and sediment
yield in a Mediterranean area, Sci. Total Environ., 407,
937–944, https://doi.org/10.1016/j.scitotenv.2008.09.047, 2009.
Jourgholami, M., Labelle, E. R., and Feghhi, J.: Response of runoff and
sediment on skid trails of varying gradient and traffic intensity over a
two-year period, Forests, 8, 472, https://doi.org/10.3390/f8120472, 2017.
Karthik, R., Wickham, H., Richards, C., and Bagget, A.: wesanderson: A Wes
Anderson palette generator (R package version 0.3.6), CRAN [code], https://CRAN.R-project.org/package=wesanderson
(last access: 6 July 2022), 2018.
Kastridis, A.: Impact of forest roads on hydrological processes, Forests,
11, 1201, https://doi.org/10.3390/f11111201, 2020.
Klaus, V. H., Hölzel, N., Boch, S., Müller, J., Socher, S. A.,
Prati, D., Fischer, M., and Kleinebecker, T.: Direct and indirect
associations between plant species richness and productivity in grasslands:
Regional differences preclude simple generalization of
productivity-biodiversity relationships, Preslia, 85, 97–112, 2013.
Kurth, J. K., Albrecht, M., Karsten, U., Glaser, K., Schloter, M., and
Schulz, S.: Correlation of the abundance of bacteria catalyzing phosphorus
and nitrogen turnover in biological soil crusts of temperate forests of
Germany, Biol. Fert. Soils, 57, 179–192, https://doi.org/10.1007/s00374-020-01515-3, 2021.
Li, G., Wan, L., Cui, M., Wu, B., and Zhou, J.: Influence of canopy
interception and rainfall kinetic energy on soil erosion under forests,
Forests, 10, 509, https://doi.org/10.3390/f10060509, 2019.
Li, X., Niu, J., and Xie, B.: The effect of leaf litter cover on surface
runoff and soil erosion in northern China, PLOS ONE, 9, e107789, https://doi.org/10.1371/journal.pone.0107789, 2014.
Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X., and Fu, B.: The effects of
vegetation on runoff and soil loss: Multidimensional structure analysis and
scale characteristics, J. Geogr. Sci., 28, 59–78,
https://doi.org/10.1007/s11442-018-1459-z, 2018.
Löbel, S., Dengler, J., and Hobohm, C.: Species richness of vascular
plants, bryophytes and lichens in dry grasslands: The effects of
environment, landscape structure and competition, Folia Geobot., 41,
377–393, https://doi.org/10.1007/BF02806555, 2006.
Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G.,
and Ionita, I.: Effects of land use on annual runoff and soil loss in Europe
and the Mediterranean: A meta-analysis of plot data, Prog. Phys.
Geogr., 36, 599–653, https://doi.org/10.1177/0309133312451303, 2012.
Mägdefrau, K. and Wutz, A. (Eds.): Die Wasserkapazität der Moos- und
Flechtendecke des Waldes, Veröffentlichung des Botanischen Instituts der
Forstl. Forschungsanstalt München, https://doi.org/10.1007/BF01815956, 1951.
Malvar, M. C., Silva, F. C., Prats, S. A., Vieira, D. C. S., Coelho, C. O.
A., and Keizer, J. J.: Short-term effects of post-fire salvage logging on
runoff and soil erosion, Forest Ecol. Manag., 400, 555–567,
https://doi.org/10.1016/j.foreco.2017.06.031, 2017.
Márialigeti, S., Németh, B., Tinya, F., and Ódor, P.: The
effects of stand structure on ground-floor bryophyte assemblages in
temperate mixed forests, Biodivers. Conserv., 18, 2223, https://doi.org/10.1007/s10531-009-9586-6, 2009.
Martínez-Zavala, L., Jordán López, A., and Bellinfante, N.:
Seasonal variability of runoff and soil loss on forest road backslopes under
simulated rainfall, Catena, 74, 73–79, https://doi.org/10.1016/j.catena.2008.03.006, 2008.
McEachran, Z. P., Slesak, R. A., and Karwan, D. L.: From skid trails to
landscapes: Vegetation is the dominant factor influencing erosion after
forest harvest in a low relief glaciated landscape, Forest Ecol.
Manag., 430, 299–311, https://doi.org/10.1016/j.foreco.2018.08.021, 2018.
Mercier, P., Aas, G., and Dengler, J.: Effects of skid trails on understory
vegetation in forests: a case study from Northern Bavaria (Germany), Forest
Ecol. Manag., 453, 117579, https://doi.org/10.1016/j.foreco.2019.117579, 2019.
Mitchell, R. L., Cuadros, J., Duckett, J. G., Pressel, S., Mavris, C.,
Sykes, D., Najorka, J., Edgecombe, G. D., and Kenrick, P.: Mineral
weathering and soil development in the earliest land plant ecosystems,
Geology, 44, 1007–1010, https://doi.org/10.1130/G38449.1, 2016.
Miyata, S., Kosugi, K., Gomi, T., and Mizuyama, T.: Effects of forest floor
coverage on overland flow and soil erosion on hillslopes in Japanese cypress
plantation forests, Water Resour. Res., 45, 1–17, https://doi.org/10.1029/2008WR007270, 2009.
Morgan, R. P. C. (Ed.): Soil Erosion and Conservation, 3rd Edn., Blackwell Publishing,
Oxford, ISBN 1-40511-781-8, 2005.
Moser, M.: Ascomyceten: (Schlauchpilze) in: Kleine Kryptogamenflora, Band 2: Pilze, edited by: Gams, H., Fischer, Stuttgart, 1963.
Müller, J., Heinze, J., Joshi, J., Boch, S., Klaus, V. H., Fischer, M.,
and Prati, D.: Influence of experimental soil disturbances on the diversity
of plants in agricultural grasslands, J. Plant Ecol., 7, 509–517,
https://doi.org/10.1093/jpe/rtt062, 2013.
Nebel, M., Philippi, G., Ahrens, M., Ingo, H., Michael, S., and Georg, S.:
Die Moose Baden-Württembergs, Band 1: Bryophytina I, Andreaeales bis
Funariales, edited by: Nebel, M. and Philippi, G., Eugen Ulmer Verlag, Stuttgart, ISBN 3-80013-527-2, 2000.
Nebel, M., Philippi, G., Ahrens, M., Sauer, M., Schäfer-Verwimp, A., and
Schoepe, G.: Die Moose Baden-Württembergs, Band 2: Bryophytina II,
Schistostegales bis Hypnobryales, edited by: Nebel, M. and Philippi, G., Eugen Ulmer Verlag, Stuttgart, 1–529, ISBN 3-80013-530-2, 2001.
Nebel, M., Philippi, G., Ahrens, M., Hölzer, A., Holz, I., Sauer, M.,
and Schoepe, G.: Die Moose Baden-Württembergs, Band 3: Bryophyta:
Sphagnopsida, Marchantiophyta, Anthocerotophyta, edited by: Nebel, M. and Philippi, G., Eugen Ulmer Verlag,
Stuttgart, ISBN 3-80013-278-8, 2005.
Neuwirth, E.: RColorBrewer: ColorBrewer Palettes (R package version 1.1-3), CRAN
[code], https://CRAN.R-project.org/package=RColorBrewer,
last access: 6 July 2022.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package (R package version 2.5-7), CRAN [code], https://CRAN.R-project.org/package=vegan
(last access: 6 July 2022), 2020.
Oldén, A., Raatikainen, K. J., Tervonen, K., and Halme, P.: Grazing and
soil pH are biodiversity drivers of vascular plants and bryophytes in boreal
wood-pastures, Agr. Ecosyst. Environ., 222, 171–184,
https://doi.org/10.1016/j.agee.2016.02.018, 2016.
Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D.,
Hermans, K., Jobbagy, E., Kurz, W., Li, D., Sonwa, D. J., and Stringer, L.: Land
degradation, in: Climate Change and Land: An IPCC special report on climate
change, desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by:
Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner,
H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R.,
Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J.,
Portugal Pereira, J., Vyas, P., Huntley, E., Kissik, K., Belkameci, M., and
Malley, J., in press, 2019.
Pan, C., Shangguan, Z., and Lei, T.: Influences of grass and moss on runoff
and sediment yield on sloped loess surfaces under simulated rainfall,
Hydrol. Process., 20, 3815–3824, https://doi.org/10.1002/hyp.6158, 2006.
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., and
Montanarella, L.: Estimating the soil erosion cover-management factor at the
European scale, Land Use Policy, 48, 38–50, https://doi.org/10.1016/j.landusepol.2015.05.021, 2015a.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger,
K., Montanarella, L., and Alewell, C.: The new assessment of soil loss by
water erosion in Europe, Environ. Sci. Policy., 54, 438–447,
https://doi.org/10.1016/j.envsci.2015.08.012, 2015b.
Parsakhoo, A., Lotfalian, M., Kavian, A., Hosseini, S., and Demir, M.: The
effects of Rubus hyrcanus L. and Philonotis marchica (Hedw.) Brid. on soil
loss prevention from cutslopes of a forest road, Journal of Forest Science,
58, 337–344, https://doi.org/10.17221/9/2012-JFS, 2012.
Prats, S. A., Wagenbrenner, J. W., Martins, M. A. S., Malvar, M. C., and
Keizer, J. J.: Mid-term and scaling effects of forest residue mulching on
post-fire runoff and soil erosion, Sci. Total Environ., 573,
1242–1254, https://doi.org/10.1016/j.scitotenv.2016.04.064,
2016.
Proctor, M. C. F., Nagy, Z., Csintalan, Z., and Takács, Z.:
Water-content components in bryophytes: Analysis of pressure-volume
relationships, J. Exp. Bot., 49, 1845–1854, https://doi.org/10.1093/jxb/49.328.1845, 1998.
Prosdocimi, M., Tarolli, P., and Cerdà, A.: Mulching practices for
reducing soil water erosion: A review, Earth-Sci. Rev., 161, 191–203,
https://doi.org/10.1016/j.earscirev.2016.08.006, 2016.
QGIS Development Team: QGIS Geographic Information System. Open Source
Geospatial Foundation Project (3.16.13-Hannover) [code], https://qgis.org/de/
(last access: 6 July 2022), 2020.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing [code], https://www.r-project.org/
(last access: 6 July 2022), 2021.
Riveras-Muñoz, N., Seitz, S., Witzgall, K., Rodríguez, V., Kühn, P., Mueller, C. W., Oses, R., Seguel, O., Wagner, D., and Scholten, T.: Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range, SOIL Discuss. [preprint], https://doi.org/10.5194/soil-2021-141, in review, 2022.
Rodrigo-Comino, J., Novara, A., Gyasi-Agyei, Y., Terol, E., and Cerdà,
A.: Effects of parent material on soil erosion within Mediterranean new
vineyard plantations, Eng. Geol., 246, 255–261, https://doi.org/10.1016/j.enggeo.2018.10.006, 2018.
Rola, K., Plášek, V., Rożek, K., and Zubek, S.: Effect of tree
species identity and related habitat parameters on understorey bryophytes –
interrelationships between bryophyte, soil and tree factors in a 50-year-old
experimental forest, Plant Soil, 466, 613–630, https://doi.org/10.1007/s11104-021-05074-w, 2021.
Safari, A., Kavian, A., Parsakhoo, A., Saleh, I., and Jordán, A.: Impact
of different parts of skid trails on runoff and soil erosion in the
Hyrcanian forest (northern Iran), Geoderma, 263, 161–167, https://doi.org/10.1016/j.geoderma.2015.09.010, 2016.
Scholten, T. and Seitz, S.: Soil erosion and land degradation, Soil Syst., 3, 68, https://doi.org/10.3390/soilsystems3040068, 2019.
Sedia, E. G. and Ehrenfeld, J. G.: Lichens and mosses promote alternate
stable plant communities in the New Jersey Pinelands, Oikos, 100, 447–458,
https://doi.org/10.1034/j.1600-0706.2003.12058.x, 2003.
Seitz, S.: Mechanisms of soil erosion in subtropical chinese forests –
Effects of species diversity, species identity, functional traits and soil
fauna on sediment discharge, Universitätsbibliothek Tübingen,
https://doi.org/10.15496/publikation-8010, 2015.
Seitz, S., Goebes, P., Zumstein, P., Assmann, T., Kühn, P., Niklaus, P.
A., Schuldt, A., and Scholten, T.: The influence of leaf litter diversity
and soil fauna on initial soil erosion in subtropical forests, Earth Surf.
Proc. Land., 40, 1439–1447, https://doi.org/10.1002/esp.3726, 2015.
Seitz, S., Goebes, P., Song, Z., Bruelheide, H., Härdtle, W., Kühn, P., Li, Y., and Scholten, T.: Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests, SOIL, 2, 49–61, https://doi.org/10.5194/soil-2-49-2016, 2016.
Seitz, S., Nebel, M., Goebes, P., Käppeler, K., Schmidt, K., Shi, X., Song, Z., Webber, C. L., Weber, B., and Scholten, T.: Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest, Biogeosciences, 14, 5775–5788, https://doi.org/10.5194/bg-14-5775-2017, 2017.
Seitz, S., Goebes, P., Puerta, V. L., Pereira, E. I. P., Wittwer, R., Six,
J., van der Heijden, M. G., and Scholten, T.: Conservation tillage and
organic farming reduce soil erosion, Agron. Sustain. Dev.,
39, 1–10, https://doi.org/10.1007/s13593-018-0545-z, 2019.
Seppelt, R. D., Downing, A. J., Deane-Coe, K. K., Zhang, Y., and Zhang, J.:
Bryophytes Within Biological Soil Crusts, in: Biological Soil Crusts: An
Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and
Belnap, J., Springer International Publishing, Cham, 101–120, https://doi.org/10.1007/978-3-319-30214-0_6, 2016.
Sheridan, G. J. and Noske, P. J.: Catchment-scale contribution of forest
roads to stream exports of sediment, phosphorus and nitrogen, Hydrol.
Process., 21, 3107–3122, https://doi.org/10.1002/hyp.6531,
2007.
Shinohara, Y., Misumi, Y., Kubota, T., and Nanko, K.: Characteristics of
soil erosion in a moso-bamboo forest of western Japan: Comparison with a
broadleaved forest and a coniferous forest, Catena, 172, 451–460, https://doi.org/10.1016/j.catena.2018.09.011, 2019.
Silva, F. C., Vieira, D. C., van der Spek, E., and Keizer, J. J.: Effect of
moss crusts on mitigation of post-fire soil erosion, Ecol. Eng.,
128, 9–17, https://doi.org/10.1016/j.ecoleng.2018.12.024, 2019.
Szyja, M., Büdel, B., and Colesie, C.: Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas, Biogeosciences, 15, 1919–1931, https://doi.org/10.5194/bg-15-1919-2018, 2018.
Thielen, S. M., Gall, C., Ebner, M., Nebel, M., Scholten, T., and Seitz, S.:
Water's path from moss to soil: A multi-methodological study on water
absorption and evaporation of soil-moss combinations, J. Hydrol. Hydromech., 69, 421–435, https://doi.org/10.2478/johh-2021-0021, 2021.
Tyler, T., Bengtsson, F., Dahlberg, C. J., Lönnell, N., Hallingbäck,
T., and Reitalu, T.: Determinants of bryophyte species composition and
diversity on the Great Alvar of Öland, Sweden, J. Bryol., 40,
12–30, https://doi.org/10.1080/03736687.2017.1412387, 2018.
van Bavel, C. H. M.: Mean Weight-Diameter of Soil Aggregates as a Statistical Index of Aggregation, Soil Sci. Soc. Am. J., 14, 20–23, https://doi.org/10.2136/sssaj1950.036159950014000C0005x, 1950.
Varela, Z., Real, C., Branquinho, C., do Paço, T. A., and Cruz de
Carvalho, R.: Optimising artificial moss growth for environmental studies in
the Mediterranean area, Plants, 10, 2523, https://doi.org/10.3390/plants10112523, 2021.
Vinson, J. A., Barrett, S. M., Aust, W. M., and Bolding, M. C.: Evaluation
of bladed skid trail closure methods in the ridge and valley region, Forest
Sci., 63, 432–440, https://doi.org/10.5849/FS.2016-030R1,
2017.
Wang, L., Zhang, G., Zhu, P., and Wang, X.: Comparison of the effects of
litter covering and incorporation on infiltration and soil erosion under
simulated rainfall, Hydrol. Process., 34, 2911–2922, https://doi.org/10.1002/hyp.13779, 2020.
Wang, Z. and Bader, M. Y.: Associations between shoot-level water relations
and photosynthetic responses to water and light in 12 moss species, AoB
Plants, 10, ply034, https://doi.org/10.1093/aobpla/ply034,
2018.
Weber, B., Büdel, B., and Belnap, J. (Eds.): Biological Soil Crusts: An
Organizing Principle in Drylands, Ecological studies, Vol. 226, Springer,
Dordrecht, https://doi.org/10.1007/978-3-319-30214-0, 2016.
Weber, B., Belnap, J., Büdel, B., Antoninka, A. J., Barger, N. N.,
Chaudhary, V. B., Darrouzet-Nardi, A., Eldridge, D. J., Faist, A. M.,
Ferrenberg, S., Havrilla, C. A., Huber-Sannwald, E., Malam Issa, O.,
Maestre, F. T., Reed, S. C., Rodriguez-Caballero, E., Tucker, C., Young, K.
E., Zhang, Y., Zhao, Y., Zhou, X., and Bowker, M. A.: What is a biocrust? A
refined, contemporary definition for a broadening research community,
Biol. Rev., https://doi.org/10.1111/brv.12862, online first, 2022.
Wei, L., Villemey, A., Hulin, F., Bilger, I., Yann, D., Chevalier, R.,
Archaux, F., and Gosselin, F.: Plant diversity on skid trails in oak high
forests: A matter of disturbance, micro-environmental conditions or forest
age?, Forest Ecol. Manag., 338, 20–31, https://doi.org/10.1016/j.foreco.2014.11.018, 2015.
Wemple, B. C., Browning, T., Ziegler, A. D., Celi, J., Chun, K. P.,
Jaramillo, F., Leite, N. K., Ramchunder, S. J., Negishi, J. N., Palomeque,
X., and Sawyer, D.: Ecohydrological disturbances associated with roads:
Current knowledge, research needs, and management concerns with reference to
the tropics, Ecohydrology, 11, e1881, https://doi.org/10.1002/eco.1881, 2018.
Wiśniewski, P. and Märker, M.: The role of soil-protecting forests
in reducing soil erosion in young glacial landscapes of Northern-Central
Poland, Geoderma, 337, 1227–1235, https://doi.org/10.1016/j.geoderma.2018.11.035, 2019.
Wood, S.: mgcv: Mixed GAM computation vehicle with automatic smoothness
estimation (R package version 1.8-33), CRAN [code], https://cran.r-project.org/web/packages/mgcv/
(last access: 6 July 2022), 2020.
Wu, G.-L., Zhang, M.-Q., Liu, Y., and López-Vicente, M.: Litter cover
promotes biocrust decomposition and surface soil functions in sandy
ecosystem, Geoderma, 374, 114429, https://doi.org/10.1016/j.geoderma.2020.114429, 2020.
Xiao, B., Zhao, Y., Wang, Q., and Li, C.: Development of artificial
moss-dominated biological soil crusts and their effects on runoff and soil
water content in a semi-arid environment, J. Arid Environ., 117,
75–83, https://doi.org/10.1016/j.jaridenv.2015.02.017, 2015.
Zemke, J. J.: Runoff and soil erosion assessment on forest roads using a
small scale rainfall simulator, Hydrology, 3, 25, https://doi.org/10.3390/hydrology3030025, 2016.
Zemke, J. J., Enderling, M., Klein, A., and Skubski, M.: The influence of
soil compaction on runoff formation. A case study focusing on skid trails at
forested andosol sites, Geosciences, 9, 204, https://doi.org/10.3390/geosciences9050204, 2019.
Zuazo Durán, V. H. and Rodríguez Pleguezuelo, C. R.: Soil-erosion
and runoff prevention by plant covers: A review, in: Sustainable
Agriculture, edited by: Lichtfouse, E., Navarrete, M., Debaeke, P.,
Véronique, S., and Alberola, C., Springer Netherlands, Dordrecht,
785–811, https://doi.org/10.1051/agro:2007062, 2009.
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
Soil erosion is one of the most serious environmental challenges of our time, which also applies...
Altmetrics
Final-revised paper
Preprint