Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3337-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3337-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Baltic Nest Institute, Baltic Sea Centre, Stockholm University,
Stockholm, 10691, Sweden
Oleg Pavlovitch Savchuk
Baltic Nest Institute, Baltic Sea Centre, Stockholm University,
Stockholm, 10691, Sweden
Bo Gustav Gustafsson
Baltic Nest Institute, Baltic Sea Centre, Stockholm University,
Stockholm, 10691, Sweden
Tvärminne Zoological Station, University of Helsinki, Hanko,
10900, Finland
Related authors
No articles found.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Oleg P. Savchuk, Alexey V. Isaev, and Nikolay N. Filatov
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-249, https://doi.org/10.5194/bg-2021-249, 2021
Manuscript not accepted for further review
Short summary
Short summary
Empirical information on the nutrient cycles in the second largest European Lake Onego is almost lacking. We covered the deficit by realistic simulation of the lake’s ecosystem dynamics during 1985–2015 with the 3D ecohydrodynamic model. Important results include: a) 3D dynamics of major nutrient variables and fluxes; b) quantification of the spring phytoplankton bloom, previously overlooked; c) coherent nutrient budgets. The model is a useful tool for forecasting with different scenarios.
Cited articles
Aller, R. C.: Carbonate dissolution in nearshore terrigenous muds: The role
of physical and biological reworking, J. Geol., 90, 79–95,
https://doi.org/10.1086/628652, 1982.
Aller, R. C.: Benthic fauna and biogeochemical processes in marine
sediments: the role of burrow structures, in: Nitrogen Cycling in Coastal
Marine Environments, edited by: Blackburn, T. H. and Sorensen, J.,
John Wiley & Sons., 301–338, ISBN 978-0471914044, 1988.
Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K.,
Fleming-Lehtinen, V., Gustafsson, B. G., Josefson, A. B., Norkko, A.,
Villnäs, A., and Murray, C.: Long-term temporal and spatial trends in
eutrophication status of the Baltic Sea, Biol. Rev., 92, 135–149,
https://doi.org/10.1111/brv.12221, 2017.
Ankar, S.: The soft bottom ecosystems of the northern Baltic Proper with
special reference to the macrofauna, Contrib. from Askö Lab., 19, 1–62,
1977.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and
Voss, M.: Efficiency of the coastal filter: Nitrogen and phosphorus removal
in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238,
https://doi.org/10.1002/lno.10644, 2017.
Belkin, I. M.: Rapid warming of Large Marine Ecosystems, Prog. Oceanogr.,
81, 207–213, https://doi.org/10.1016/j.pocean.2009.04.011, 2009.
Berezina, N. A., Maximov, A. A., and Vladimirova, O. M.: Influence of benthic
invertebrates on phosphorus flux at the sediment-water interface in the
easternmost Baltic Sea, Mar. Ecol. Prog. Ser., 608, 33–43,
https://doi.org/10.3354/meps12824, 2019.
Blackford, J. C.: An analysis of benthic biological dynamics in a North Sea
ecosystem model, J. Sea Res., 38, 213–230,
https://doi.org/10.1016/S1385-1101(97)00044-0, 1997.
Bonsdorff, E.: Zoobenthic diversity-gradients in the Baltic Sea: Continuous
post-glacial succession in a stressed ecosystem, J. Exp. Mar. Bio. Ecol.,
330, 383–391, https://doi.org/10.1016/j.jembe.2005.12.041, 2006.
Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P.,
Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M.,
Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H.,
McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., and Pörtner,
H. O.: Experimental strategies to assess the biological ramifications of
multiple drivers of global ocean change – A review, Glob. Change Biol.,
24, 2239–2261, https://doi.org/10.1111/gcb.14102, 2018.
Brey, T.: Population dynamics in benthic invertebrates, A virtual handbook,
Version 01.2.,
http://www.thomas-brey.de/science/virtualhandbook (last access: 5 October 2021), 2001.
Carman, R. and Cederwall, H.: Sediments and Macrofauna in the Baltic Sea –
Characteristics, Nutrient Contents and Distribution, in: A Systems Analysis
of the Baltic Sea, Vol. 148, edited by: Wulff, F. V., Rahm, L., and Larsson, P.,
Springer-Verlag, Berlin Heidelberg, 289–327, https://doi.org/10.1007/978-3-662-04453-7_11, 2001.
Carman, R., Aigars, J., and Larsen, B.: Carbon and nutrient geochemistry of
the surface sediments of the Gulf of Riga, Baltic Sea, Mar. Geol.,
134, 57–76, https://doi.org/10.1016/0025-3227(96)00033-3, 1996.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P. Natl. Acad.
Sci. USA, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014a.
Carstensen, J., Conley, D. J., Bonsdorff, E., Gustafsson, B. G., Hietanen,
S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D.
C., Slomp, C. P., Timmermann, K., and Voss, M.: Hypoxia in the Baltic Sea:
Biogeochemical cycles, benthic fauna, and management, Ambio, 43, 26–36,
https://doi.org/10.1007/s13280-013-0474-7, 2014b.
Cederwall, H. and Jermakovs, V.: Growth and production of three
macrozoobenthic species in the Gulf of Riga, including comparisons with
other areas, Hydrobiologia, 393, 201–210, https://doi.org/10.1023/A:1003548622112,
1999.
Cederwall, H., Jermakovs, V., and Lagzdins, G.: Long-term changes in the
soft-bottom macrofauna of the Gulf of Riga, ICES J. Mar. Sci., 56,
41–48, 1999.
Cloern, J. E., Abreu, P. C., Carstensen, J., Chauvaud, L., Elmgren, R.,
Grall, J., Greening, H., Johansson, J. O. R., Kahru, M., Sherwood, E. T.,
Xu, J., and Yin, K.: Human activities and climate variability drive
fast-paced change across the world's estuarine–coastal ecosystems, Glob.
Change Biol., 22, 513–529, https://doi.org/10.1111/gcb.13059, 2016.
Costanza, R., D'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O'Neill, R. V, Paruelo, J., Raskin, R. G., Sutton,
P., and van den Belt, M.: The value of the world's ecosystem services and
natural capital, Nature, 387, 253–260, https://doi.org/10.1038/387253a0, 1997.
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J.,
Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value
of ecosystem services, Glob. Environ. Change, 26, 152–158,
https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014.
Cozzoli, F., Shokri, M., da Conceição, T. G., Herman, P. M. J., Hu,
Z., Soissons, L. M., Van Dalen, J., Ysebaert, T., and Bouma, T. J.: Modelling
spatial and temporal patterns in bioturbator effects on sediment
resuspension: A biophysical metabolic approach, Sci. Total Environ., 792,
148215, https://doi.org/10.1016/j.scitotenv.2021.148215, 2021.
Ebenhöh, W., Kohlmeier, C., and Radford, P. J.: The benthic biological
submodel in the European Regional Seas Ecosystem Model, Neth. J. Sea Res.,
33, 423–452, https://doi.org/10.1016/0077-7579(95)90056-X, 1995.
Eglite, E., Lavrinoviès, A., Müller-Karulis, B., Aigars, J., and
Poikane, R.: Nutrient turnover at the hypoxic boundary: Flux measurements
and model representation for the bottom water environment of the Gulf of
Riga, Baltic Sea, Oceanologia, 56, 711–735, https://doi.org/10.5697/oc.56-4.711,
2014.
Ehrnsten, E., Norkko, A., Timmermann, K., and Gustafsson, B. G.:
Benthic-pelagic coupling in coastal seas – Modelling macrofaunal biomass
and carbon processing in response to organic matter supply, J. Mar. Syst.,
196, 36–47, https://doi.org/10.1016/j.jmarsys.2019.04.003, 2019a.
Ehrnsten, E., Bauer, B., and Gustafsson, B. G.: Combined effects of
environmental drivers on marine trophic groups – A systematic model
comparison, Front. Mar. Sci., 6, 492, https://doi.org/10.3389/fmars.2019.00492, 2019b.
Ehrnsten, E., Norkko, A., Müller-Karulis, B., Gustafsson, E., and
Gustafsson, B. G.: The meagre future of benthic fauna in a coastal sea –
benthic responses to recovery from eutrophication in a changing climate,
Glob. Change Biol., 26, 2235–2250, https://doi.org/10.1111/gcb.15014, 2020a.
Ehrnsten, E., Sun, X., Humborg, C., Norkko, A., Savchuk, O. P., Slomp, C.
P., Timmermann, K., and Gustafsson, B. G.: Understanding Environmental
Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon
and Nutrient Fluxes, Front. Mar. Sci., 7, 450, https://doi.org/10.3389/fmars.2020.00450,
2020b.
Eilola, K., Gustafsson, B. G., Kuznetsov, I., Meier, H. E. M., Neumann, T.,
and Savchuk, O. P.: Evaluation of biogeochemical cycles in an ensemble of
three state-of-the-art numerical models of the Baltic Sea, J. Mar. Syst.,
88, 267–284, https://doi.org/10.1016/j.jmarsys.2011.05.004, 2011.
Ekeroth, N., Blomqvist, S., and Hall, P. O. J.: Nutrient fluxes from reduced
Baltic Sea sediment: Effects of oxygenation and macrobenthos, Mar. Ecol.
Prog. Ser., 544, 77–92, https://doi.org/10.3354/meps11592, 2016.
Elmgren, R.: Trophic dynamics in the enclosed, brackish Baltic Sea, Rapp.
Proces-verbaux des Réunions. Cons. Int. pour l'Éxploration la Mer.,
183, 152–169, 1984.
Gaumiga, R. and Lagzdins, G.: Macrozoobenthos, in: Ecosystem of the Gulf of
Riga between 1920 and 1990, edited by: H. Ojaveer, Estonian
Academy Publishers, 196–211, ISBN 10 9985500652,
ISBN 13 978-9985500651, 1995.
Gilbert, F., Aller, R. C., and Hulth, S.: The influence of macrofaunal burrow
spacing and diffusive scaling on sedimentary nitrification and
denitrification: An experimental simulation and model approach, J. Mar.
Res., 61, 101–125, https://doi.org/10.1357/002224003321586426, 2003.
Gogina, M., Nygård, H., Blomqvist, M., Daunys, D., Josefson, A. B.,
Kotta, J., Maximov, A., Warzocha, J., Yermakov, V., Gräwe, U., and
Zettler, M. L.: The Baltic Sea scale inventory of benthic faunal
communities, ICES J. Mar. Sci., 73, 1196–1213,
https://doi.org/10.1093/icesjms/fsv265, 2016.
Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., and
Zettler, M. L.: Towards benthic ecosystem functioning maps: Quantifying
bioturbation potential in the German part of the Baltic Sea, Ecol. Indic.,
73, 574–588, https://doi.org/10.1016/j.ecolind.2016.10.025, 2017.
Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T.,
Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V.,
Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M.,
Nordström, M. C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R.,
Blenckner, T., Niiranen, S., and Winder, M.: The importance of
benthic-pelagic coupling for marine ecosystem functioning in a changing
world, Glob. Change Biol., 23, 2179–2196, https://doi.org/10.1111/gcb.13642, 2017.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the development of Baltic Sea eutrophication
1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
Gustafsson, E., Deutsch, B., Gustafsson, B. G., Humborg, C., and Mörth,
C. M.: Carbon cycling in the Baltic Sea – The fate of allochthonous organic
carbon and its impact on air-sea CO2 exchange, J. Mar. Syst., 129, 289–302,
https://doi.org/10.1016/j.jmarsys.2013.07.005, 2014.
Gustafsson, E., Mörth, C. M., Humborg, C., and Gustafsson, B. G.:
Modelling the 13C and 12C isotopes of inorganic and organic carbon in the
Baltic Sea, J. Mar. Syst., 148, 122–130, https://doi.org/10.1016/j.jmarsys.2015.02.008,
2015.
Gustafsson, E., Savchuk, O. P., Gustafsson, B. G., and Müller-Karulis,
B.: Key processes in the coupled carbon, nitrogen, and phosphorus cycling of
the Baltic Sea, Biogeochemistry, 134, 301–317,
https://doi.org/10.1007/s10533-017-0361-6, 2017.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V, Micheli, F.,
D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R.,
Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R.,
Spalding, M., Steneck, R., and Watson, R.: A global map of human impact on
marine ecosystems, Science, 319, 948–952,
https://doi.org/10.1126/science.1149345, 2008.
Hedberg, P., Albert, S., Nascimento, F. J. A., and Winder, M.: Effects of
changing phytoplankton species composition on carbon and nitrogen uptake in
benthic invertebrates, Limnol. Oceanogr., 66, 469–480, https://doi.org/10.1002/lno.11617,
2020.
HELCOM: HELCOM thematic assessment of eutrophication 2011–2016, Baltic Sea Environment Proceedings No. 156, 83 pp., 2018.
Henriksen, K., Ramussen, M. B., and Jensen, A.: Effect of bioturbation on
microbial nitrogen transformations in the sediment and fluxes of ammonium
and nitrate to the overlaying water, Ecol. Bull., 35, 193–205, 1983.
Herman, P. M. J., Middelburg, J. J., van de Koppel, J., and Heip, C. H. R.:
Ecology of Estuarine Macrobenthos, in: Advances in Ecological Research, Vol.
29, edited by: Nedwell, D. B. and Raffaelli, D. G., 195–240, Academic
Press, https://doi.org/10.1016/S0065-2504(08)60194-4, 1999.
Isaev, A. V., Eremina, T. R., Ryabchenko, V. A., and Savchuk, O. P.: Model
estimates of the impact of bioirrigation activity of Marenzelleria spp. on
the Gulf of Finland ecosystem in a changing climate, J. Mar. Syst., 171,
81–88, https://doi.org/10.1016/j.jmarsys.2016.08.005, 2017.
Järvekülg, A. A.: Zoobenthos, in: The Baltica Project. The Problems
of Research and Mathematical Modelling of the Baltic Sea Ecosystem, Issue 1:
The Ecosystem and its Components, edited by: Davidan, I. N., Savchuk, O.
P., and Sustavov, Y. V., Hydrometeoizdat, Leningrad, 184–191,
1983 (in Russian).
Jordan, T. E., Cornwell, J. C., Boynton, W. R., and Anderson, J. T.: Changes
in phosphorus biogeochemistry along an estuarine salinity gradient: The iron
conveyer belt, Limnol. Oceanogr., 53, 172–184,
https://doi.org/10.4319/lo.2008.53.1.0172, 2008.
Josefson, A. B. and Rasmussen, B.: Nutrient retention by benthic macrofaunal
biomass of Danish estuaries: importance of nutrient load and residence time,
Estuar. Coast. Shelf Sci., 50, 205–216, https://doi.org/10.1006/ecss.1999.0562,
2000.
Josefson, A. B., Forbes, T. L., and Rosenberg, R.: Fate of phytodetritus in
marine sediments: functional importance of macrofaunal community, Mar. Ecol.
Prog. Ser., 230, 71–85, 2002.
Kahma, T. I., Karlson, A. M. L., Sun, X., Mörth, C. M., Humborg, C.,
Norkko, A., and Rodil, I. F.: Macroalgae fuels coastal soft-sediment
macrofauna: A triple-isotope approach across spatial scales, Mar. Environ.
Res., 162, 105163, https://doi.org/10.1016/j.marenvres.2020.105163, 2020.
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected
accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11,
3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014.
Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., and Savchuk, O.:
Cyanobacterial blooms in the Baltic Sea: Correlations with environmental
factors, Harmful Algae, 92, 101739,
https://doi.org/10.1016/j.hal.2019.101739, 2020.
Kortsch, S., Frelat, R., Pecuchet, L., Olivier, P., Putnis, I., Bonsdorff,
E., Ojaveer, H., Jurgensone, I., Strâíe, S., Rubene, G., Krûze,
Ç., and Nordström, M. C.: Disentangling temporal food web dynamics
facilitates understanding of ecosystem functioning, J. Anim. Ecol., 90,
1205–1216, https://doi.org/10.1111/1365-2656.13447, 2021.
Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K.,
and Ojaveer, H.: Gulf of Riga and Pärnu Bay, in: Ecology of Baltic
Coastal Waters, edited by:Schiewer, U., Springer Berlin
Heidelberg, Berlin, Heidelberg, 217–243, ISBN 978-3-540-73524-3, 2008.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana,
C. O., and Banta, G. T.: What is bioturbation? The need for a precise
definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446,
285–302, https://doi.org/10.3354/meps09506, 2012.
Kumblad, L. and Bradshaw, C.: Element composition of biota, water and
sediment in the Forsmark area, Baltic Sea, SKB Technical report TR-08-09,
available at: https://skb.se/upload/publications/pdf/TR-08-09.pdf (last access: 16 November 2017),
2008.
Kuparinen, J., Leppänen, J.-M., Sarvala, J., Sundberg, A., and Virtanen,
A.: Production and utilization of organic matter outside Tvärminne,
southwest coast of Finland, Rapp. Proces-verbaux des Réunions. Cons.
Int. pour l'Éxploration la Mer., 183, 180–192, 1984.
Lehtonen, K. K.: Geographical variability in the bioenergetic
characteristics of Monoporeia/Pontoporeia spp. populations from the northern
Baltic Sea, and their potential contribution to benthic nitrogen
mineralization, Mar. Biol., 123, 555–564, https://doi.org/10.1007/BF00349234, 1995.
Lehtonen, K. K.: Ecophysiology of the benthic amphipod Monoporeia affinis in
an open-sea area of the northern Baltic Sea: Seasonal variations in body
composition, with bioenergetic considerations, Mar. Ecol. Prog. Ser.,
143, 87–98, https://doi.org/10.3354/meps143087, 1996.
Lessin, G., Artioli, Y., Almroth-Rosell, E., Blackford, J. C., Dale, A. W.,
Glud, R. N., Middelburg, J. J., Pastres, R., Queirós, A. M., Rabouille,
C., Regnier, P., Soetaert, K., Solidoro, C., Stephens, N., and Yakushev, E.:
Modelling marine sediment biogeochemistry: Current knowledge gaps,
challenges, and some methodological advice for advancement, Front. Mar.
Sci., 5, 1–8, https://doi.org/10.3389/fmars.2018.00019, 2018.
Levins, R.: The strategy of model building in population biology, Am. Sci.,
54, 421–431, 1966.
Lohrer, A. M., Thrush, S. F., and Gibbs, M. M.: Bioturbators enhance
ecosystem function through complex biogeochemical interactions, Nature,
431, 1092–1095, https://doi.org/10.1038/nature03042, 2004.
Mäkelin, S. and Villnäs, A.: Food sources drive temporal variation
in elemental stoichiometry of benthic consumers, Limnol. Oceanogr., 67, 784–799,
https://doi.org/10.1002/lno.12034, 2022.
McCrackin, M. L., Muller-Karulis, B., Gustafsson, B. G., Howarth, R. W.,
Humborg, C., Svanbäck, A., and Swaney, D. P.: A Century of Legacy
Phosphorus Dynamics in a Large Drainage Basin, Global Biogeochem. Cy.,
32, 1107–1122, https://doi.org/10.1029/2018GB005914, 2018.
Meier, H. E. M., Müller-Karulis, B., Andersson, H. C., Dieterich, C.,
Eilola, K., Gustafsson, B. G., Höglund, A., Hordoir, R., Kuznetsov, I.,
Neumann, T., Ranjbar, Z., Savchuk, O. P., and Schimanke, S.: Impact of
climate change on ecological quality indicators and biogeochemical fluxes in
the Baltic Sea: A multi-model ensemble study, Ambio, 41, 558–573,
https://doi.org/10.1007/s13280-012-0320-3, 2012.
Meier, H. E. M., Edman, M. K., Eilola, K. J., Placke, M., Neumann, T.,
Andersson, H. C., Brunnabend, S.-E., Dieterich, C., Frauen, C., Friedland,
R., Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch,
M., Kuznetsov, I., Müller-Karulis, B., Omstedt, A., Ryabchenko, V.,
Saraiva, S., and Savchuk, O. P.: Assessment of Eutrophication Abatement
Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations, Front.
Mar. Sci., 5, 440, https://doi.org/10.3389/fmars.2018.00440, 2018.
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., and Stora,
G.: The functional group approach to bioturbation: The effects of
biodiffusers and gallery-diffusers of the Macoma balthica community on
sediment oxygen uptake, J. Exp. Mar. Bio. Ecol., 326, 77–88,
https://doi.org/10.1016/j.jembe.2005.05.016, 2005.
Middelburg, J. J.: Reviews and syntheses: to the bottom of carbon processing
at the seafloor, Biogeosciences, 15, 413–427,
https://doi.org/10.5194/bg-15-413-2018, 2018.
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J.,
Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties
in a large ensemble of climate change simulations, Nature, 430,
768–772, https://doi.org/10.1038/nature02771, 2004.
Nixon, S. W.: Remineralization and Nutrient Cycling in Coastal Marine
Ecosystems, in: Estuaries and Nutrients, edited by: Neilson, B. J. and
Cronin, L. E., Humana Press, Totowa, NJ, 111–138, ISBN 978-1-4612-5826-1, 1981.
Norkko, A., Villnäs, A., Norkko, J., Valanko, S., and Pilditch, C.: Size
matters: implications of the loss of large individuals for ecosystem
function, Sci. Rep., 3, 2646, https://doi.org/10.1038/srep02646, 2013.
Norkko, J., Reed, D. C., Timmermann, K., Norkko, A., Gustafsson, B. G.,
Bonsdorff, E., Slomp, C. P., Carstensen, J., and Conley, D. J.: A welcome can
of worms? Hypoxia mitigation by an invasive species, Glob. Change Biol.,
18, 422–434, https://doi.org/10.1111/j.1365-2486.2011.02513.x, 2012.
Norkko, J., Gammal, J., Hewitt, J. E., Josefson, A. B., Carstensen, J., and
Norkko, A.: Seafloor Ecosystem Function Relationships: In Situ Patterns of
Change Across Gradients of Increasing Hypoxic Stress, Ecosystems, 18,
1424–1439, https://doi.org/10.1007/s10021-015-9909-2, 2015.
Nyström Sandman, A., Näslund, J., Gren, I.-M., and Norling, K.:
Effects of an invasive polychaete on benthic phosphorus cycling at sea basin
scale: An ecosystem disservice, Ambio, 47, 884–892,
https://doi.org/10.1007/s13280-018-1050-y, 2018.
Ramesh, R., Chen, Z., Cummins, V., Day, J., D'Elia, C., Dennison, B.,
Forbes, D. L., Glaeser, B., Glaser, M., Glavovic, B., Kremer, H., Lange, M.,
Larsen, J. N., Le Tissier, M., Newton, A., Pelling, M., Purvaja, R., and
Wolanski, E.: Land-ocean interactions in the coastal zone: Past, present
and future, Anthropocene, 12, 85–98,
https://doi.org/10.1016/j.ancene.2016.01.005, 2015.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V, Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/ngeo1830, 2013a.
Regnier, P., Arndt, S., Goossens, N., Volta, C., Laruelle, G. G., Lauerwald,
R., and Hartmann, J.: Modelling estuarine biogeochemical dynamics: From the
local to the global scale, Aquat. Geochem., 19, 591–626,
https://doi.org/10.1007/s10498-013-9218-3, 2013b.
Remane, A.: Die Brackwasserfauna, Verh. Dtsch. Zool. Ges., 36, 34–74, 1934.
Renz, J. R. and Forster, S.: Effects of bioirrigation by the three sibling
species of Marenzelleria spp. on solute fluxes and porewater nutrient
profiles, Mar. Ecol. Prog. Ser., 505, 145–159, https://doi.org/10.3354/meps10756, 2014.
Rhoads, D. C.: Organism-sediment relations on the muddy sea floor, Oceanogr.
Mar. Biol. An Annu. Rev., 12, 263–300, 1974.
Rodil, I. F., Attard, K. M., Norkko, J., Glud, R. N., and Norkko, A.:
Estimating respiration rates and secondary production of macrobenthic
communities across coastal habitats with contrasting structural
biodiversity, Ecosystems, 23, 630–647, https://doi.org/10.1007/s10021-019-00427-0, 2019.
Savchuk, O. and Wulff, F.: A Model of the Biogeochemical Cycles of Nitrogen
and Phosphorus in the Baltic, in: A Systems Analysis of the Baltic Sea,
Ecological Studies, vol 148, edited by: Wulff, F. W., Rahm, L. A., and
Larsson, P., 373–415, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-662-04453-7_14, 2001.
Savchuk, O. P.: Nutrient biogeochemical cycles in the Gulf of Riga: scaling
up field studies with a mathematical model, J. Mar. Syst., 32, 253–280,
https://doi.org/10.1016/S0924-7963(02)00039-8, 2002.
Savchuk, O. P.: Large-scale nutrient dynamics in the Baltic Sea, 1970–2016,
Front. Mar. Sci., 5, 95, https://doi.org/10.3389/fmars.2018.00095, 2018.
Savchuk, O. P. and Wulff, F.: Long-term modeling of large-scale nutrient
cycles in the entire Baltic Sea, Hydrobiologia, 629, 209–224,
https://doi.org/10.1007/s10750-009-9775-z, 2009.
Savchuk, O. P., Gustafsson, B. G., and Müller-Karulis, B.: BALTSEM – a
marine model for desicion support within the Baltic Sea Region, BNI
Technical report No. 7, Baltic Nest Institute (BNI),
ISBN 978-91-86655-06-8, 2012.
Seidl, R.: To model or not to model, that is no longer the question for
ecologists, Ecosystems, 20, 222–228, https://doi.org/10.1007/s10021-016-0068-x,
2017.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: Ecological and geochemical significance, Limnol. Oceanogr.,
33, 702–724, https://doi.org/10.4319/lo.1988.33.4part2.0702, 1988.
Snelgrove, P. V. R., Thrush, S. F., Wall, D. H., and Norkko, A.: Real world
biodiversity-ecosystem functioning: A seafloor perspective, Trends Ecol.
Evol., 29, 398–405, https://doi.org/10.1016/j.tree.2014.05.002, 2014.
Snelgrove, P. V. R., Soetaert, K., Solan, M., Thrush, S., Wei, C.-L.,
Danovaro, R., Fulweiler, R. W., Kitazato, H., Ingole, B., Norkko, A.,
Parkes, R. J., and Volkenborn, N.: Global carbon cycling on a heterogeneous
seafloor, Trends Ecol. Evol., 33, 96–105,
https://doi.org/10.1016/j.tree.2017.11.004, 2018.
Snoeijs-Leijonmalm, P., Schubert, H., and Radziejewska, T. (Eds.): Biological
Oceanography of the Baltic Sea, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-0668-2_4, 2017.
Soerensen, A. L., Schartup, A. T., Gustafsson, E., Gustafsson, B. G.,
Undeman, E., and Björn, E.: Eutrophication Increases Phytoplankton
Methylmercury Concentrations in a Coastal Sea – A Baltic Sea Case Study,
Environ. Sci. Technol., 50, 11787–11796, https://doi.org/10.1021/acs.est.6b02717,
2016.
Soetaert, K. and Middelburg, J. J.: Modeling eutrophication and
oligotrophication of shallow-water marine systems: The importance of
sediments under stratified and well-mixed conditions, Hydrobiologia, 629,
239–254, https://doi.org/10.1007/s10750-009-9777-x, 2009.
Spillman, C. M., Hamilton, D. P., Hipsey, M. R., and Imberger, J.: A
spatially resolved model of seasonal variations in phytoplankton and clam
(Tapes philippinarum) biomass in Barbamarco Lagoon, Italy, Estuar. Coast.
Shelf Sci., 79, 187–203, https://doi.org/10.1016/j.ecss.2008.03.020, 2008.
Sterner, R. W. and Elser, J. J.: Ecological Stoichiometry, Princeton
University Press, ISBN 978-0691074917, 2002.
Stief, P.: Stimulation of microbial nitrogen cycling in aquatic ecosystems
by benthic macrofauna: Mechanisms and environmental implications,
Biogeosciences, 10, 7829–7846, https://doi.org/10.5194/bg-10-7829-2013, 2013.
Stigebrandt, A. and Gustafsson, B. G.: Response of the Baltic Sea to climate
change – Theory and observations, J. Sea Res., 49, 243–256,
https://doi.org/10.1016/S1385-1101(03)00021-2, 2003.
Stoicescu, S.-T., Laanemets, J., Liblik, T., Skudra, M., Samlas, O., Lips, I., and Lips, U.: Causes of the extensive hypoxia in the Gulf of Riga in 2018, Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022, 2022.
Tamelander, T., Spilling, K., and Winder, M.: Organic matter export to the
seafloor in the Baltic Sea: Drivers of change and future projections, Ambio,
46, 842–851, https://doi.org/10.1007/s13280-017-0930-x, 2017.
Teal, L. R., Bulling, M. T., Parker, E. R., and Solan, M.: Global patterns of
bioturbation intensity and mixed depth of marine soft sediments, Aquat.
Biol., 2, 207–218, https://doi.org/10.3354/ab00052, 2008.
Timmermann, K., Norkko, J., Janas, U., Norkko, A., Gustafsson, B. G., and
Bonsdorff, E.: Modelling macrofaunal biomass in relation to hypoxia and
nutrient loading, J. Mar. Syst., 105–108, 60–69,
https://doi.org/10.1016/j.jmarsys.2012.06.001, 2012.
Undeman, E., Gustafsson, B. G., Humborg, C., and McLachlan, M. S.:
Application of a novel modeling tool with multistressor functionality to
support management of organic contaminants in the Baltic Sea, Ambio, 44,
498–506, https://doi.org/10.1007/s13280-015-0668-2, 2015.
Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H.,
Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and
Wulff, F.: Internal ecosystem feedbacks enhance nitrogen-fixing
cyanobacteria blooms and complicate management in the Baltic Sea, Ambio,
36, 186–194, https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2, 2007.
Van Helmond, N. A. G. M., Robertson, E. K., Conley, D. J., Hermans, M.,
Humborg, C., Joëlle Kubeneck, L., Lenstra, W. K., and Slomp, C. P.:
Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm
archipelago, Baltic Sea, Biogeosciences, 17, 2745–2766,
https://doi.org/10.5194/bg-17-2745-2020, 2020.
Volkenborn, N., Meile, C., Polerecky, L., Pilditch, C. A., Norkko, A.,
Norkko, J., Hewitt, J. E., Thrush, S. F., Wethey, D. S., and Woodin, S. A.:
Intermittent bioirrigation and oxygen dynamics in permeable sediments: An
experimental and modeling study of three tellinid bivalves, J. Mar. Res.,
70, 794–823, https://doi.org/10.1357/002224012806770955, 2012.
Witek, S.: Biological Production and its Utilisation within a Marine
Ecosystem in the Western Gdansk Basin, Sea Fisheries Institute,
Gdynia, Poland, 1995 (in Polish).
Zdun, A., Stoñ-Egiert, J., Ficek, D., and Ostrowska, M.: Seasonal and
Spatial Changes of Primary Production in the Baltic Sea (Europe) Based on in
situ Measurements in the Period of 1993–2018, Front. Mar. Sci., 7, 604532,
https://doi.org/10.3389/fmars.2020.604532, 2021.
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
We studied the effects of benthic fauna, animals living on or in the seafloor, on the...
Altmetrics
Final-revised paper
Preprint