Articles | Volume 19, issue 15
https://doi.org/10.5194/bg-19-3663-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3663-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34010, Italy
Donata Canu
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34010, Italy
Paolo Lazzari
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34010, Italy
Cosimo Solidoro
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, 34010, Italy
Related authors
No articles found.
Guido Occhipinti, Davide Valenti, and Paolo Lazzari
EGUsphere, https://doi.org/10.5194/egusphere-2025-2994, https://doi.org/10.5194/egusphere-2025-2994, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Due to climate change shifts in ecosystem structure and function have been increasingly documented in marine ecosystems around the globe. We tested whether a marine biogeochemical model can predict shifts to alternative regimes in plankton and biogeochemical processes under environmental perturbations. Simulations show that perturbations can drive the system into new regimes, with responses that are either reversible or hysteretic, depending on the type and intensity of the disturbance.
Carlos Enmanuel Soto López, Fabio Anselmi, Mirna Gharbi Dit Kacem, and Paolo Lazzari
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-174, https://doi.org/10.5194/gmd-2024-174, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Our goal was to use an analytical expression to estimate the density of optical constituents, allowing us to have an interpretable formulation consistent with the laws of physics. We focused on a probabilistic approach, optimizing the model and retrieving quantities with their respective uncertainty. Considering future application to Big Data, we also explored a Neural Network based method, retrieving computationally efficient estimates, maintaining consistency with the analytical expression.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Simone Spada, Anna Teruzzi, Stefano Maset, Stefano Salon, Cosimo Solidoro, and Gianpiero Cossarini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-170, https://doi.org/10.5194/gmd-2023-170, 2023
Preprint under review for GMD
Short summary
Short summary
In geosciences, data assimilation (DA) combines modeled dynamics and observations to reduce simulation uncertainties. Uncertainties can be dynamically and effectively estimated in ensemble DA methods. With respect to current techniques, the novel GHOSH ensemble DA scheme is designed to improve accuracy by reaching a higher approximation order, without increasing computational costs, as demonstrated in idealized Lorenz96 tests and in realistic simulations of the Mediterranean Sea biogeochemistry
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, and Anna Zacharioudaki
Ocean Sci., 19, 1483–1516, https://doi.org/10.5194/os-19-1483-2023, https://doi.org/10.5194/os-19-1483-2023, 2023
Short summary
Short summary
The paper presents the Mediterranean Forecasting System evolution and performance developed in the framework of the Copernicus Marine Service.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Cited articles
Ahmed, A. M. A., Purwanto, P., and Sunoko, H. R.: Consequences of Mercury
Used by Artisanal and Small-Scale Gold Mining Processes a Case of River Nile
State Sudan, J. Ecol. Eng., 20, 106–115, 2019.
Alava, J. J., Cisneros-Montemayor, A. M., Sumaila, U. R., and Cheung, W. W.
L.: Projected amplification of food web bioaccumulation of MeHg and PCBs
under climate change in the Northeastern Pacific, Sci. Rep., 8, 1–12,
https://doi.org/10.1038/s41598-018-31824-5, 2018.
Amos, H. M., Sonke, J. E., Obrist, D., Robins, N., Hagan, N., Horowitz, H.
M., Mason, R. P., Witt, M., Hedgecock, I. M., Corbitt, E. S., and Sunderland,
E. M.: Observational and modelling constraints on global anthropogenic
enrichment of mercury, Environ. Sci. Technol., 49, 4036–4047,
https://doi.org/10.1021/es5058665, 2015.
An, J., Zhang, L., Lu, X., Pelletier, D. A., Pierce, E. M., Johs, A., Parks,
J. M., and Gu, B.: Mercury Uptake by Desulfovibrio desulfuricans ND132:
Passive or Active?, Environ. Sci. Technol., 53, 6264–6272,
https://doi.org/10.1021/acs.est.9b00047, 2019.
Andersson, M. E., Gårdfeldt, K., Wängberg, I., Sprovieri, F.,
Pirrone, N., and Lindqvist, O.: Reprint of “Seasonal and daily variation of
mercury evasion at coastal and off shore sites from the Mediterranean Sea”,
Mar. Chem., 107, 104–116, https://doi.org/10.1016/j.marchem.2007.06.020, 2007.
Baya, P. A., Gosselin, M., Lehnherr, I., St. Louis, V. L., and Hintelmann,
H.: Determination of monomethylmercury and dimethylmercury in the arctic
marine boundary layer, Environ. Sci. Technol., 49, 223–232, https://doi.org/10.1021/es502601z, 2015.
Blum, J. D., Popp, B. N., Drazen, J. C., Anela Choy, C., and Johnson, M. W.:
Methylmercury production below the mixed layer in the North Pacific Ocean,
Nat. Geosci., 6, 879–884, https://doi.org/10.1038/ngeo1918, 2013.
Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., and Swarr, G.: Mercury
in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional
sections, Deep-Sea Res. Pt. II, 116, 251–261,
https://doi.org/10.1016/j.dsr2.2014.07.004, 2015.
Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., Swarr, G. J., and
Agather, A. M.: Distribution of mercury species across a zonal section of
the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16), Mar. Chem.,
186, 156–166, https://doi.org/10.1016/j.marchem.2016.09.005, 2016.
Bowman, K. L., Lamborg, C. H., and Agather, A. M.: A global perspective on
mercury cycling in the ocean, Sci. Total Environ., 710, 136166,
https://doi.org/10.1016/j.scitotenv.2019.136166, 2020.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability
in algal biomass and primary production in the Mediterranean Sea, as derived
from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18,
1–17, https://doi.org/10.1029/2003GB002034, 2004.
Bricaud, A., Bosc, E., and Antoine, D.: Algal biomass and sea surface
temperature in the Mediterranean Basin Intercomparison of data from various
satellite sensors, and implications for primary production estimates, Remote
Sens. Environ., 81, 163–178, https://doi.org/10.1016/S0034-4257(01)00335-2,
2002.
Cael, B. B., Cavan, E. L., and Britten, G. L.: Reconciling the
Size-Dependence of Marine Particle Sinking Speed, Geophys. Res. Lett.,
48, 1–11, https://doi.org/10.1029/2020GL091771, 2021.
Canu, D. and Rosati, G.: Long-term scenarios of mercury budgeting and
exports for a Mediterranean hot spot (Marano-Grado Lagoon, Adriatic Sea),
Estuar. Coast. Shelf Sci., 198, 518–528, https://doi.org/10.1016/j.ecss.2016.12.005,
2017.
Canu, D., Ghermandi, A., Nunes, P. A. L. D., Lazzari, P., Cossarini, G., and
Solidoro, C.: Estimating the value of carbon sequestration ecosystem
services in the mediterranean sea: An ecological economics approach, Glob.
Environ. Change, 32, 87–95, https://doi.org/10.1016/j.gloenvcha.2015.02.008, 2015.
Canu, D. M., Rosati, G., and Solidoro, C.: Mercury Budget and Scenario
Analysis for the Marano-Grado Lagoon, Using Modelling and Observations,
Proc., 30, 19, https://doi.org/10.3390/proceedings2019030019, 2019.
Choe, K.-Y. and Gill, G. A.: Distribution of particulate, colloidal, and
dissolved mercury in San Francisco Bay estuary, 2. Monomethyl mercury,
Limnol. Oceanogr., 48, 1547–1556, https://doi.org/10.4319/lo.2003.48.4.1547, 2003.
Choe, K.-Y., Gill, G. A., and Lehman, R.: Distribution of particulate,
colloidal, and dissolved mercury in San Francisco Bay estuary, 1. Total
mercury, Limnol. Oceanogr., 48, 1535–1546,
https://doi.org/10.4319/lo.2003.48.4.1547, 2003.
Cinnirella, S., Bruno, D. E., Pirrone, N., Horvat, M., Živković, I.,
Evers, D. C., Johnson, S., and Sunderland, E. M.: Mercury concentrations in
biota in the Mediterranean Sea, a compilation of 40 years of surveys, Sci.
Data, 6, 205, https://doi.org/10.1038/s41597-019-0219-y, 2019.
Coale, K. H., Heim, W. A., Negrey, J., Weiss-Penzias, P., Fernandez, D.,
Olson, A., Chiswell, H., Byington, A., Bonnema, A., Martenuk, S., Newman,
A., Beebe, C., and Till, C.: The distribution and speciation of mercury in
the California current: Implications for mercury transport via fog to land,
Deep-Sea Res. Pt. II, 151, 77–88,
https://doi.org/10.1016/j.dsr2.2018.05.012, 2018.
Conaway, C. H., Black, F. J., Gault-Ringold, M., Pennington, J. T., Chavez,
F. P., and Flegal, A. R.: Dimethylmercury in coastal upwelling waters,
Monterey Bay, California, Environ. Sci. Technol., 43, 1305–1309,
https://doi.org/10.1021/es802705t, 2009.
Cossa, D. and Coquery, M.: The Mediterranean Mercury Anomaly, a Geochemical
or a Biologocal Issue, in: The Mediterranean Sea, edited by: Saliot, A.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 177–208, ISBN 978-3-540-31492-9, 2005.
Cossa, D., Averty, B., and Pirrone, N.: The origin of methylmercury in open
Mediterranean waters, Limnol. Oceanogr., 54, 837–844,
https://doi.org/10.4319/lo.2009.54.3.0837, 2009.
Cossa, D., Harmelin-Vivien, M., Mellon-Duval, C., Loizeau, V., Averty, B.,
Crochet, S., Chou, L., and Cadiou, J.-F.: Influences of bioavailability,
trophic position, and growth on methylmercury in hakes (Merluccius
merluccius) from Northwestern Mediterranean and Northeastern Atlantic,
Environ. Sci. Technol., 46, 4885–93, https://doi.org/10.1021/es204269w, 2012.
Cossa, D., Durrieu de Madron, X., Schäfer, J., Lanceleur, L.,
Guédron, S., Buscail, R., Thomas, B., Castelle, S., and Naudin, J.-J.:
The open sea as the main source of methylmercury in the water column of the
Gulf of Lions (Northwestern Mediterranean margin), Geochim. Cosmochim. Ac.,
199, 222–237, https://doi.org/10.1016/j.gca.2016.11.037, 2017.
Cossa, D., Knoery, J., Bănaru, D., Harmelin-Vivien, M., Sonke, J. E.,
Hedgecock, I. M., Bravo, A. G., Rosati, G., Canu, D., Horvat, M., Sprovieri,
F., Pirrone, N., and Heimbürger-Boavida, L.-E.: Mediterranean Mercury
Assessment 2022: An Updated Budget, Health Consequences, and Research
Perspectives, Environ. Sci. Technol., 56, 3840–3862,
https://doi.org/10.1021/acs.est.1c03044, 2022.
Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of
alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647–1658,
https://doi.org/10.5194/bg-12-1647-2015, 2015.
Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro,
C., Di Biagio, V., Amadio, C., Lazzari, P., Brosich, A., and Salon, S.:
High-Resolution Reanalysis of the Mediterranean Sea Biogeochemistry
(1999–2019), Front. Mar. Sci., 8, 1–21,
https://doi.org/10.3389/fmars.2021.741486, 2021.
Crise, A., Allen, J. I., Baretta, J., Crispi, G., Mosetti, R., and Solidoro,
C.: The Mediterranean pelagic ecosystem response to physical forcing, Prog.
Oceanogr., 44, 219–243, https://doi.org/10.1016/S0079-6611(99)00027-0,
1999.
Crispi, G., Mosetti, R., Solidoro, C., and Crise, A.: Nutrients cycling in
Mediterranean basins: The role of the biological pump in the trophic regime,
Ecol. Modell., 138, 101–114, https://doi.org/10.1016/S0304-3800(00)00396-3,
2001.
De Simone, F., Gencarelli, C. N., Hedgecock, I. M., and Pirrone, N.: Global
atmospheric cycle of mercury: a model study on the impact of oxidation
mechanisms, Environ. Sci. Pollut. Res., 21, 4110–4123,
https://doi.org/10.1007/s11356-013-2451-x, 2014.
Di Biagio, V., Cossarini, G., Salon, S., Lazzari, P., Querin, S., Sannino, G., and Solidoro, C.:
Temporal scales of variability in the Mediterranean Sea ecosystem: Insight from a coupled model,
J. Mar. Syst., 197, 103176,
https://doi.org/10.1016/j.jmarsys.2019.05.002, 2019.
Di Biagio, V., Cossarini, G., Salon, S., and Solidoro, C.: Extreme event
waves in marine ecosystems: An application to Mediterranean Sea surface
chlorophyll, Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, 2020.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
Fantozzi, L., Manca, G., Ammoscato, I., Pirrone, N., and Sprovieri, F.: The
cycling and sea-air exchange of mercury in the waters of the Eastern
Mediterranean during the 2010 MED-OCEANOR cruise campaign, Sci. Total
Environ., 448, 151–162, https://doi.org/10.1016/j.scitotenv.2012.09.062, 2013.
Ferrara, R., Ceccarini, C., Lanzillotta, E., Gårdfeldt, K., Sommar, J.,
Horvat, M., Logar, M., Fajon, V., and Kotnik, J.: Profiles of dissolved
gaseous mercury concentration in the Mediterranean seawater, Atmos.
Environ., 37, 85–92, https://doi.org/10.1016/S1352-2310(03)00248-6, 2003.
Gårdfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E.,
Munthe, J., Wängberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F.,
Pesenti, E., and Strömberg, D.: Evasion of mercury from coastal and open
waters of the Atlantic Ocean and the Mediterranean Sea, Atmos. Environ., 37,
73–84, https://doi.org/10.1016/S1352-2310(03)00238-3, 2003.
Gencarelli, C. N., De Simone, F., Hedgecock, I. M., Sprovieri, F., and
Pirrone, N.: Development and application of a regional-scale atmospheric
mercury model based on WRF/Chem: A Mediterranean area investigation,
Environ. Sci. Pollut. Res., 21, 4095–4109,
https://doi.org/10.1007/s11356-013-2162-3, 2014.
Gosnell, K. J. and Mason, R. P.: Mercury and methylmercury incidence and
bioaccumulation in plankton from the central Pacific Ocean, Mar. Chem., 177,
772–780, https://doi.org/10.1016/j.marchem.2015.07.005, 2015.
Gosnell, K. J., Balcom, P. H., Tobias, C. R., Gilhooly, W. P., and Mason, R.
P.: Spatial and temporal trophic transfer dynamics of mercury and
methylmercury into zooplankton and phytoplankton of Long Island Sound,
Limnol. Oceanogr., 62, 1122–1138, https://doi.org/10.1002/lno.10490, 2017.
Hammerschmidt, C. R., Finiguerra, M. B., Weller, R. L., and Fitzgerald, W.
F.: Methylmercury Accumulation in Plankton on the Continental Margin of the
Northwest Atlantic Ocean, Environ. Sci. Technol., 47, 3671–3677, 2013.
Harding, G., Dalziel, J., and Vass, P.: Bioaccumulation of methylmercury
within the marine food web of the outer Bay of Fundy, Gulf of Maine, PLoS
One, 13, 1–30, https://doi.org/10.1371/journal.pone.0197220, 2018.
Harmelin-Vivien, M., Cossa, D., Crochet, S., Bănaru, D., Letourneur, Y., and Mellon-Duval, C.: Difference of mercury bioaccumulation in red mullets
from the north-western Mediterranean and Black seas, Mar. Pollut. Bull.,
58, 679–685, https://doi.org/10.1016/j.marpolbul.2009.01.004, 2009.
Heimbürger, L.-E., Cossa, D., Marty, J.-C., Migon, C., Averty, B.,
Dufour, A., and Ras, J.: Methylmercury distributions in relation to the
presence of nano- and picophytoplankton in an oceanic water column (Ligurian
Sea, North-western Mediterranean), Geochim. Cosmochim. Ac., 74,
5549–5559, https://doi.org/10.1016/j.gca.2010.06.036, 2010.
Hines, M. E., Horvat, M., Faganeli, J., Bonzongo, J. C. J., Barkay, T.,
Major, E. B., Scott, K. J., Bailey, E. A., Warwick, J. J., and Lyons, W. B.:
Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine
into the Gulf of Trieste, Environ. Res., 83, 129–139,
https://doi.org/10.1006/enrs.2000.4052, 2000.
Horvat, M., Covelli, S., Faganeli, J., Logar, M., Mandić, V., Rajar, R.,
Širca, A., and Žagar, D.: Mercury in contaminated coastal
environments; a case study: The Gulf of Trieste, Sci. Total Environ.,
237/238, 43–56, https://doi.org/10.1016/S0048-9697(99)00123-0, 1999.
Horvat, M., Kotnik, J., Logar, M., Fajon, V., Zvonarić, T., and Pirrone,
N.: Speciation of mercury in surface and deep-sea waters in the
Mediterranean Sea, Atmos. Environ., 37, 93–108,
https://doi.org/10.1016/S1352-2310(03)00249-8, 2003.
Horvat, M., Degenek, N., Lipej, L., Snoj Tratnik, J., and Faganeli, J.:
Trophic transfer and accumulation of mercury in ray species in coastal
waters affected by historic mercury mining (Gulf of Trieste, northern
Adriatic Sea), Environ. Sci. Pollut. Res., 21, 4163–4176,
https://doi.org/10.1007/s11356-013-2262-0, 2014.
Jiskra, M., Heimbürger-Boavida, L.-E., Desgranges, M.-M., Petrova, M.
V., Dufour, A., Ferreira-Araujo, B., Masbou, J., Chmeleff, J., Thyssen, M.,
Point, D., and Sonke, J. E.: Mercury stable isotopes constrain atmospheric
sources to the ocean, Nature, 597, 678–682,
https://doi.org/10.1038/s41586-021-03859-8, 2021.
Jonsson, S., Mazrui, N. M., and Mason, R. P.: Dimethylmercury Formation
Mediated by Inorganic and Organic Reduced Sulfur Surfaces, Sci. Rep.,
6, 27958, https://doi.org/10.1038/srep27958, 2016.
Jørgensen, S. E., Friis, M. B., Henriksen, J., Jørgensen, L. A., and
Mejer, H. F.: Handbook of Envirnmental Data and Ecological Parameters,
edited by: Jørgensen, S. E., Pergamon Press, International Society for
Ecological Modelling, ebook ISBN: 9781483188782, 1979.
Kotnik, J., Horvat, M., Tessier, E., Ogrinc, N., Monperrus, M., Amouroux,
D., Fajon, V., Gibičar, D., Žižek, S., Sprovieri, F., and
Pirrone, N.: Mercury speciation in surface and deep waters of the
Mediterranean Sea, Mar. Chem., 107, 13–30,
https://doi.org/10.1016/j.marchem.2007.02.012, 2007.
Kotnik, J., Horvat, M., Ogrinc, N., Fajon, V., Žagar, D., Cossa, D.,
Sprovieri, F., and Pirrone, N.: Mercury speciation in the Adriatic Sea, Mar.
Pollut. Bull., 96, 136–148, https://doi.org/10.1016/j.marpolbul.2015.05.037,
2015.
Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson,
K. M., Ohnemus, D. C., Lam, P. J., Heimbürger, L.-E., Rijkenberg, M. J.
A., and Saito, M. A.: A global ocean inventory of anthropogenic mercury based
on water column measurements, Nature, 512, 65–68,
https://doi.org/10.1038/nature13563, 2014.
Lamborg, C. H., Hammerschmidt, C. R., and Bowman, K. L.: An examination of
the role of particles in oceanic mercury cycling, Philos. T. R. Soc. A, 374, 20150297, https://doi.org/10.1098/rsta.2015.0297,
2016.
Lanzillotta, E., Ceccarini, C., and Ferrara, R.: Photo-induced formation of
dissolved gaseous mercury in coastal and offshore seawater of the
Mediterranean basin, Sci. Total Environ., 300, 179–187,
https://doi.org/10.1016/S0048-9697(02)00223-1, 2002.
Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella,
S., Tonani, M., and Crise, A.: Pre-operational short-term forecasts for
Mediterranean Sea biogeochemistry, Ocean Sci., 6, 25–39,
https://doi.org/10.5194/os-6-25-2010, 2010.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger,
K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of
plankton chlorophyll and primary production in the Mediterranean Sea: A
modelling approach, Biogeosciences, 9, 217–233,
https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli,
M., Oddo, P., and Vichi, M.: The impacts of climate change and environmental
management policies on the trophic regimes in the Mediterranean Sea:
Scenario analyses, J. Mar. Syst., 135, 137–149,
https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.: Spatial variability of
phosphate and nitrate in the Mediterranean Sea: A modelling approach, Deep-Sea
Res. Pt. I, 108, 39–52,
https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Lazzari, P., Álvarez, E., Terzić, E., Cossarini, G., Chernov, I.,
D'ortenzio, F., and Organelli, E.: Cdom spatiotemporal variability in the
mediterranean sea: A modelling study, J. Mar. Sci. Eng., 9, 1–18,
https://doi.org/10.3390/jmse9020176, 2021.
Lee, C. and Fisher, N. S.: Methylmercury uptake by diverse marine
phytoplankton, Limnol. Oceanogr., 61, 1626–1639, https://doi.org/10.1002/lno.10318,
2016.
Lee, C., Lee, C., and Fisher, N. S.: Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter, Mar. Chem., 1–10, https://doi.org/10.1016/j.marchem.2017.09.005, 2017.
Lehnherr, I., St. Louis, V. L., Hintelmann, H., and Kirk, J. L.: Methylation
of inorganic mercury in polar marine waters, Nat. Geosci., 4,
298–302, https://doi.org/10.1038/ngeo1134, 2011.
Liu, M., Zhang, Q., Maavara, T., Liu, S., Wang, X., and Raymond, P. A.:
Rivers as the largest source of mercury to coastal oceans worldwide, Nat.
Geosci., 14, 672–677, https://doi.org/10.1038/s41561-021-00793-2, 2021.
Luo, H., Cheng, Q., and Pan, X.: Photochemical behaviors of mercury (Hg)
species in aquatic systems: A systematic review on reaction process,
mechanism, and influencing factor, Sci. Total Environ., 720, 137540,
https://doi.org/10.1016/j.scitotenv.2020.137540, 2020.
Mahlmann, D. M., Jahnke, J., and Loosen, P.: Rapid determination of the dry
weight of single, living cyanobacterial cells using the Mach-Zehnder
double-beam interference microscope, Eur. J. Phycol., 43, 355–364,
https://doi.org/10.1080/09670260802168625, 2008.
Margirier, F., Testor, P., Heslop, E., Mallil, K., Bosse, A., Houpert, L.,
Mortier, L., Bouin, M. N., Coppola, L., D'Ortenzio, F., Durrieu de Madron,
X., Mourre, B., Prieur, L., Raimbault, P., and Taillandier, V.: Abrupt
warming and salinification of intermediate waters interplays with decline of
deep convection in the Northwestern Mediterranean Sea, Sci. Rep., 10,
1–11, https://doi.org/10.1038/s41598-020-77859-5, 2020.
Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg,
C. H., Soerensen, A. L., and Sunderland, E. M.: Mercury biogeochemical
cycling in the ocean and policy implications, Environ. Res., 119, 101–117,
https://doi.org/10.1016/j.envres.2012.03.013, 2012.
McGeer, J. C., Brix, K. V., Skeaff, J. M., Deforest, D. K., Brigham, S. I.,
Adams, W. J., and Green, A.: Inverse relationship between bioconcentration
factor and exposure concentration for metals: Implications for hazard
assessment of metals in the aquatic environment, Environ. Toxicol. Chem.,
22, 1017–1037, https://doi.org/10.1897/1551-5028(2003)022<1017:IRBBFA>2.0.CO;2, 2003.
Melaku Canu, D., Rosati, G., Solidoro, C., Heimbürger, L.-E., and
Acquavita, A.: A comprehensive assessment of the mercury budget in the
Marano–Grado Lagoon (Adriatic Sea) using a combined observational modeling
approach, Mar. Chem., 177, 742–752, https://doi.org/10.1016/j.marchem.2015.10.013,
2015.
Mihanović, H., Vilibić, I., Šepić, J., Matić, F.,
Ljubešić, Z., Mauri, E., Gerin, R., Notarstefano, G., and Poulain, P.
M.: Observation, Preconditioning and Recurrence of Exceptionally High
Salinities in the Adriatic Sea, Front. Mar. Sci., 8, 1–22,
https://doi.org/10.3389/fmars.2021.672210, 2021.
Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., and
Donard, O. F. X.: Mercury methylation, demethylation and reduction rates in
coastal and marine surface waters of the Mediterranean Sea, Mar. Chem.,
107, 49–63, https://doi.org/10.1016/j.marchem.2007.01.018, 2007.
Motta, L. C., Blum, J. D., Johnson, M. W., Umhau, B. P., Popp, B. N.,
Washburn, S. J., Drazen, J. C., Benitez-Nelson, C. R., Hannides, C. C. S.,
Close, H. G., and Lamborg, C. H.: Mercury Cycling in the North Pacific
Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios, Global
Biogeochem. Cy., 33, 777–794, https://doi.org/10.1029/2018GB006057, 2019.
Munson, K. M., Lamborg, C., Swarr, G. J., and Saito, M. A.: Mercury species
concentrations and fluxes in the Central Tropical Pacific Ocean, Global
Biogeochem. Cy., 29, 656–676,
2015.
Munson, K. M., Lamborg, C. H., Boiteau, R. M., and Saito, M. A.: Dynamic
mercury methylation and demethylation in oligotrophic marine water,
Biogeosciences, 15, 6451–6460, https://doi.org/10.5194/bg-15-6451-2018, 2018.
Nerentorp Mastromonaco, M. G., Gårdfeldt, K., and Wängberg, I.:
Seasonal and spatial evasion of mercury from the western Mediterranean Sea,
Mar. Chem., 193, 34–43, https://doi.org/10.1016/j.marchem.2017.02.003, 2017.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10.1029/1999GB900091, 2000.
Ortiz, V. L., Mason, R. P., and Evan Ward, J.: An examination of the factors
influencing mercury and methylmercury particulate distributions, methylation
and demethylation rates in laboratory-generated marine snow, Mar. Chem.,
177, 753–762, https://doi.org/10.1016/j.marchem.2015.07.006, 2015.
Palanques, A., Guillén, J., Puig, P., and Grimalt, J. O.: Effects of
flushing flows on the transport of mercury-polluted particulate matter from
the Flix Reservoir to the Ebro Estuary, J. Environ. Manage., 260, 1–11,
https://doi.org/10.1016/j.jenvman.2019.110028, 2020.
Panagos, P., Jiskra, M., Borrelli, P., Liakos, L., and Ballabio, C.: Mercury
in European topsoils: Anthropogenic sources, stocks and fluxes, Environ.
Res., 201, 111556, https://doi.org/10.1016/j.envres.2021.111556, 2021.
Pinardi, N. and Masetti, E.: Variability of the large scale general
circulation of the Mediterranean Sea from observations and modelling: A
review, Palaeogeogr. Palaeocl., 158, 153–173,
https://doi.org/10.1016/S0031-0182(00)00048-1, 2000.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo,
P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce,
A.: Mediterranean Sea large-scale low-frequency ocean variability and water
mass formation rates from 1987 to 2007: A retrospective analysis, Prog.
Oceanogr., 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003,
2015.
Pinardi, N., Cessi, P., Borile, F., and Wolfe, C. L. P.: The Mediterranean sea overturning circulation, J. Phys. Oceanogr., 49, 1699–1721, https://doi.org/10.1175/JPO-D-18-0254.1, 2019.
Ramondenc, S., Lombard, F., Santinelli, C., Stemmann, L., Gorsky, G., and
Guidi, L.: An initial carbon export assessment in the Mediterranean Sea
based on drifting sediment traps and the Underwater Vision Profiler data
sets, Deep-Sea Res. Pt. I, 117, 107–119,
https://doi.org/10.1016/j.dsr.2016.08.015, 2016.
Rimondi, V., Costagliola, P., Lattanzi, P., Morelli, G., Cara, G., Cencetti,
C., Fagotti, C., Fredduzzi, A., Marchetti, G., Sconocchia, A., and
Torricelli, S.: A 200 km-long mercury contamination of the Paglia and Tiber
floodplain: Monitoring results and implications for environmental
management, Environ. Pollut., 255, 113191, https://doi.org/10.1016/j.envpol.2019.113191,
2019.
Rosati, G., Heimbürger, L. E., Melaku Canu, D., Lagane, C., Laffont, L.,
Rijkenberg, M. J. A., Gerringa, L. J. A., Solidoro, C., Gencarelli, C. N.,
Hedgecock, I. M., De Baar, H. J. W., and Sonke, J. E.: Mercury in the Black
Sea: new insights from measurements and numerical modeling, Global
Biogeochem. Cy., 32, 1–22, https://doi.org/10.1002/2017GB005700, 2018.
Rosati, G., Solidoro, C., and Canu, D.: Mercury dynamics in a changing
coastal area over industrial and postindustrial phases: Lessons from the
Venice Lagoon, Sci. Total Environ., 743, 1–15,
https://doi.org/10.1016/j.scitotenv.2020.140586, 2020.
Rosati, G., Canu, D., Lazzari, P., and Solidoro, C.: OGSTM-BFM-Hg model code,
Zenodo [code], https://doi.org/10.5281/zenodo.5851442, 2022a.
Rosati, G., Laurent, C., Aveytua-Alcazar, L., Solidoro, C., and Canu, D.: Investigating Hg cycling and bioaccumulation in a temperate macro-tidal lagoon impacted by legacy pollution, the Venice Lagoon case study, in: Proceedings of the 15th International Conference on Mercury as a Global Pollutant, ICMGP, Online conference, 2022b.
Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P., Teruzzi, A.,
Solidoro, C., and Crise, A.: Novel metrics based on biogeochemical argo data
to improve the model uncertainty evaluation of the cmems mediterranean
marine ecosystem forecasts, Ocean Sci., 15, 997–1022,
https://doi.org/10.5194/os-15-997-2019, 2019.
Schaefer, J. K. and Morel, F. M. M.: High methylation rates of mercury bound
to cysteine by Geobacter sulfurreducens, Nat. Geosci., 2, 123–126, 2009.
Schartup, A. T., Ndu, U., Balcom, P. H., Mason, R. P., and Sunderland, E. M.:
Contrasting effects of marine and terrestrially derived dissolved organic
matter on mercury speciation and bioavailability in seawater, Environ. Sci.
Technol., 49, 5965–5972, https://doi.org/10.1021/es506274x, 2015.
Schartup, A. T., Qureshi, A., Dassuncao, C., Thackray, C. P., Harding, G., and Sunderland, E. M.: A Model for Methylmercury Uptake and Trophic Transfer
by Marine Plankton, Environ. Sci. Technol., 52, 654–662,
https://doi.org/10.1021/acs.est.7b03821, 2018.
Schlitzer, R.: Ocean Data View, http://odv.awi.de (last access: 26 July 2022),
2014.
Sonke, J. E., Heimbürger, L. E., and Dommergue, A.: Mercury
biogeochemistry: Paradigm shifts, outstanding issues and research needs,
Comptes Rendus-Geosci., 345, 213–224,
https://doi.org/10.1016/j.crte.2013.05.002, 2013.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., and
Landing, W. M.: Mercury sources, distribution, and bioavailability in the
North Pacific Ocean: Insights from data and models, Global Biogeochem.
Cy., 23, 1–14, https://doi.org/10.1029/2008GB003425, 2009.
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S.,
D'Ortenzio, F., and Conan, P.: Merging bio-optical data from
Biogeochemical-Argo floats and models in marine biogeochemistry,
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, 2019.
Tseng, C. M., Ang, S. J., Chen, Y. S., Shiao, J. C., Lamborg, C. H., He, X., and Reinfelder, J. R.: Bluefin tuna reveal global patterns of mercury
pollution and bioavailability in the world's oceans, P. Natl. Acad. Sci.
USA, 118, 1–6, https://doi.org/10.1073/pnas.2111205118, 2021.
UNEP: Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland,
http://www.chem.unep.ch/MERCURY/ (last access: 25 July 2022),
2019.
Vichi, M., Lovato, T., Lazzari, P., Cossarini, G., Gutierrez Mlot, E.,
Mattia, G., Masina, S., McKiver, W., Pinardi, N., Solidoro, C., Tedesco, L., and Zavatelli, M.: The Biogeochemical Flux Model (BFM): Equation Description and User Manual, BFM version 5.2. BFM Report series N. 1, Release 1.2, June 2020, Bologna, Italy, http://bfm-community.eu, 1–104, 2015.
Vignati, D. A. L., Burdino, E., Congiu, A. M., Cicala, F., Pardos, M.,
Nieddu, G. F., and Ugazio, G.: Quality evaluation of sediments from 24
tributaries of the Po River, Italy, Water. Air. Soil Pollut., 190,
129–141, https://doi.org/10.1007/s11270-007-9586-7, 2008.
Walsh, J. P. and Nittrouer, C. A.: Understanding fine-grained river-sediment dispersal on continental margins, Mar. Geol., 263, 34–45, https://doi.org/10.1016/j.margeo.2009.03.016, 2009.
Wang, K., Munson, K. M., Armstrong, D. A., Macdonald, R. W., and Wang, F.:
Determining seawater mercury methylation and demethylation rates by the
seawater incubation approach: A critique, Mar. Chem., 219, 103753,
https://doi.org/10.1016/j.marchem.2020.103753, 2020.
Wu, P., Zakem, E. J., Dutkiewicz, S., and Zhang, Y.: Biomagnification of
Methylmercury in a Marine Plankton Ecosystem, Environ. Sci. Technol., 54,
5446–5455, https://doi.org/10.1021/acs.est.9b06075, 2020.
Wu, P., Dutkiewicz, S., Monier, E., and Zhang, Y.: Bottom-Heavy Trophic
Pyramids Impair Methylmercury Biomagnification in the Marine Plankton
Ecosystems, Environ. Sci. Technol., 55, 15476–15483,
https://doi.org/10.1021/acs.est.1c04083, 2021.
Žagar, D., Petkovšek, G., Rajar, R., Sirnik, N., Horvat, M.,
Voudouri, A., Kallos, G., and Četina, M.: Modelling of mercury transport
and transformations in the water compartment of the Mediterranean Sea, Mar.
Chem., 107, 64–88, https://doi.org/10.1016/j.marchem.2007.02.007, 2007.
Žagar, D., Sirnik, N., Četina, M., Horvat, M., Kotnik, J., Ogrinc,
N., Hedgecock, I. M., Cinnirella, S., Pirrone, Nicola, De Simone, F., and
Gencarelli, C. N.: Mercury in the Mediterranean, Part 2: Processes and mass
balance, Environ. Sci. Pollut. Res., 21, 4081–4094,
https://doi.org/10.1007/s11356-013-2055-5, 2014.
Zhang, C., Dang, H., Azam, F., Benner, R., Legendre, L., Passow, U.,
Polimene, L., Robinson, C., Suttle, C. A., and Jiao, N.: Evolving paradigms
in biological carbon cycling in the ocean, Natl. Sci. Rev., 5, 481–499,
https://doi.org/10.1093/nsr/nwy074, 2018.
Zhang, L., Wu, S., Zhao, L., Lu, X., Pierce, E. M., and Gu, B.: Mercury
Sorption and Desorption on Organo-Mineral Particulates as a Source for
Microbial Methylation, Environ. Sci. Technol., 53, 2426–2433,
https://doi.org/10.1021/acs.est.8b06020, 2019.
Zhang, Y., Jaeglé, L., and Thompson, L.: Natural biogeochemical cycle of
mercury in a global three-dimensional ocean tracer model, Global Biogeochem.
Cy., 28, 553–570, https://doi.org/10.1002/2014GB004814, 2014a.
Zhang, Y., Jaeglé, L., Thompson, L. A., and Streets, D. G.: Six centuries
of changing oceanic mercury, Global Biogeochem. Cy., 28, 1251–1261,
https://doi.org/10.1002/2014GB004939, 2014b.
Zhang, Y., Soerensen, A. L., Schartup, A. T., and Sunderland, E. M.: A global
model for methylmercury formation and uptake at the base of marine food
webs, Global Biogeochem. Cy., 34, 1–21, https://doi.org/10.1029/2019GB006348, 2020.
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for...
Altmetrics
Final-revised paper
Preprint