Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4589-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4589-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean
Le Zhang
Department of Oceanography and Coastal Sciences, Louisiana State
University, Baton Rouge, LA 70803, USA
Department of Oceanography and Coastal Sciences, Louisiana State
University, Baton Rouge, LA 70803, USA
Center for Computation and Technology, Louisiana State University,
Baton Rouge, LA 70803, USA
Coastal Studies Institute, Louisiana State University, Baton Rouge, LA
70803, USA
Related authors
No articles found.
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
Cited articles
Adkins, J. F., Naviaux, J. D., Subhas, A. V., Dong, S., and Berelson, W. M.:
The Dissolution Rate of CaCO3 in the Ocean, Ann. Rev. Mar. Sci., 13, 57–80,
https://doi.org/10.1146/annurev-marine-041720-092514, 2021.
Aké-Castillo, J. A. and Vázquez, G.: Phytoplankton variation and its
relation to nutrients and allochthonous organic matter in a coastal lagoon
on the Gulf of Mexico, Estuar. Coast. Shelf Sci., 78, 705–714,
https://doi.org/10.1016/j.ecss.2008.02.012, 2008.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P.,
Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean
components of the global carbon cycle in the CMIP5 earth system models, J.
Clim., 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Arora, V. K. and Boer, G. J.: Effects of simulated climate change on the
hydrology of major river basins, J. Geophys. Res.-Atmos., 106, 3335–3348,
https://doi.org/10.1029/2000JD900620, 2001.
Babaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R.,
Rajasekar, A., and Ongoma, V.: Evaluation of the Performance of CMIP6 Models
in Reproducing Rainfall Patterns over North Africa, Atmosphere, 12, 475,
https://doi.org/10.3390/atmos12040475, 2021.
Bakker, D. C. E., Pfeil, B., Smith, K., Harasawa, S., Landa, C. S., Nakaoka,
S., Nojiri, Y., Metzl, N., O'Brien, K. M., Olsen, A., Schuster, U.,
Tilbrook, B., Wanninkhof, R., Alin, S. R., Barbero, L., Bates, N., Bianchi,
A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Castle, R. D., Chen,
L., Chierici, M., Cosca, C. E., Currie, K. I., Evans, W., Featherstone, C.,
Feely, R. A., Fransson, A., Greenwood, N., Gregor, L., Hankin, S.,
Hardman-Mountford, N., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P.,
Hunt, C. W., Johannessen, T., Jones, S. D., Keeling, R. F., Kitidis, V.,
Kozyr, A., Krasakopoulou, E., Kuwata, A., Lauvset, S. K., Lo Monaco, C.,
Manke, A. B., Mathis, J. T., Merlivat, L., Monteiro, P. M. S., Munro, D. R.,
Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pierrot, D.,
Robbins, L. L., Sabine, C. L., Saito, S., Salisbury, J. E., Schneider, B.,
Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F.,
Sutherland, S. C., Sutton, A. J., Sweeney, C., Tadokoro, K., Takahashi, T.,
Telszewski, M., van Heuven, S. M. A. C., Vandemark, D., Wada, C., Ward, B.,
and Watson, A. J.: Partial pressure (or fugacity) of carbon dioxide,
salinity and other variables collected from Surface underway observations
using Carbon dioxide (CO2) gas analyzer and other instruments from unknown
platforms in the world-wide oceans from 1968-11-16 to 2014-12-31 (NCEI
Accession 0161129), NOAA Natl. Centers Environ. Information Dataset,
https://doi.org/10.3334/cdiac/otg.socat_v4_grid, 2017.
Barbero, L., Pierrot, D., Wanninkhof, R., Baringer, M. O., Byrne, R. H.,
Langdon, C., Zhang, J.-Z., and Stauffer, B. A.: Dissolved inorganic carbon,
total alkalinity, nutrients, and other variables collected from CTD profile,
discrete bottle, and surface underway observations using CTD, Niskin bottle,
flow-through pump, and other instruments from NOAA Ship Ronald H. Brown in
the Gulf of Mexico, Southeastern coast of the United States, and Mexican and
Cuban coasts during the third Gulf of Mexico and East Coast Carbon
(GOMECC-3) Cruise from 2017-07-18 to 2017-08-20 (NCEI Accession 0188978),
NOAA Natl. Centers Environ. Information Dataset,
https//doi.org/10.25921/yy5k-dw60, 2019.
Bentsen, M., Oliviè, D. J. L., Seland, Ø., Toniazzo, T., Gjermundsen,
A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A.,
Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang,
Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output
prepared for CMIP6 CMIP historical, Version 20191108, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.8040, 2019.
Bethke, I., Wang, Y., Counillon, F., Kimmritz, M., Fransner, F., Samuelsen,
A., Langehaug, H. R., Chiu, P.-G., Bentsen, M., Guo, C., Tjiputra, J.,
Kirkevåg, A., Oliviè, D. J. L., Seland, Ø., Fan, Y., Lawrence,
P., Eldevik, T., and Keenlyside, N.: NCC NorCPM1 model output prepared for
CMIP6 CMIP historical. Version 20200724, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.10894, 2019.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J. Geophys. Res.-Ocean., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999.
Boscolo-Galazzo, Flavia, K. A., Crichton, A. R., Mawbey, E. M., Wade, B. S.,
and Pearson, P. N.: Temperature controls carbon cycling and biological
evolution in the ocean twilight zone, Science, 371, 1148–1152,
https://doi.org/10.1126/science.abb6643, 2021.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., and Migno, F.: IPSL IPSL-CM6A-LR model
output prepared for CMIP6 CMIP historical. Version 20180803, Earth Syst.
Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.5195, 2018.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Balkanski, Y., Checa-Garcia, R., Hauglustaine, D.,
Bekki, S., and Marchand, M.: IPSL IPSL-CM6A-LR-INCA model output prepared
for CMIP6 CMIP historical. Version 20210216, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.13601, 2021.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov,
A. V., Reagan, J. R., Weathers, K. A. Baranova, O. K., Paver, C. R., Seidov,
D., and Smolyar, I. V.: World Ocean Atlas 2018, [woa18_all_ o16_01.nc], Natl. Centers Environ.
Information Dataset, https://www.ncei.noaa.gov/archive/accession/NCEI-W (last access: 15 January 2022), 2018.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A.,
Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M.,
Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly
climatology of total alkalinity: a neural network approach, Earth Syst. Sci.
Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A.,
Takahashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and Kozyr,
A.: A global monthly climatology of oceanic total dissolved inorganic carbon
(DIC): a neural network approach (NCEI Accession 0222469), NOAA Natl.
Centers Environ. Inf., https://doi.org/10.25921/ndgj-jp24, 2020a.
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A.,
Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M.,
Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly
climatology of total alkalinity (AT): a neural network approach (NCEI
Accession 0222470), NOAA Natl. Centers Environ. Inf.,
https://doi.org/10.25921/5p69-y471, 2020b.
Buchan, J., Hirschi, J. J.-M., Blaker, A. T., and Sinha, B.: North Atlantic
SST anomalies and the cold North European weather events of winter 2009/10
and December 2010, Mon. Weather Rev., 142, 922–932,
https://doi.org/10.1175/MWR-D-13-00104.1, 2014.
Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D. A.: Metrics that
matter for assessing the ocean biological carbon pump, P. Natl. Acad.
Sci. USA, 117, 9679–9687, https://doi.org/10.1073/pnas.1918114117, 2020.
Burton, E. A. and Walter, L. M.: Relative precipitation rates of aragonite
and Mg calcite from seawater: Temperature or carbonate ion control?,
Geology, 15, 111–114, https://doi.org/10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2, 1987.
Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R.,
Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K. S., and Sarmiento, J.
L.: Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition
of Biogeochemical Float Observations, Global Biogeochem. Cy., 33,
1370–1388, https://doi.org/10.1029/2019GB006176, 2019.
Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz,
S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo,
X., Gundersen, K., Dai, M., and Gong, G. C.: Acidification of subsurface
coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770,
https://doi.org/10.1038/ngeo1297, 2011.
Cervantes-Díaz, G. Y., Hernández-Ayón, J. M., Zirino, A.,
Herzka, S. Z., Camacho-Ibar, V., Norzagaray, O., Barbero, L., Montes, I.,
Sudre, J., and Delgado, J. A.: Understanding upper water mass dynamics in
the Gulf of Mexico by linking physical and biogeochemical features, J. Mar.
Syst., 225, 103647, https://doi.org/10.1016/j.jmarsys.2021.103647, 2022.
Chakraborty, S. and Lohrenz, S. E.: Phytoplankton community structure in the
river-influenced continental margin of the northern Gulf of Mexico, Mar.
Ecol. Prog. Ser., 521, 31–47, https://doi.org/10.3354/meps11107, 2015.
Chassignet, E. P., Smith, L. T., Halliwell, G. R., and Bleck, R.: North
Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact
of the vertical coordinate choice, reference pressure, and thermobaricity,
J. Phys. Oceanogr., 33, 2504–2526,
https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2, 2003.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R.,
Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM
(HYbrid Coordinate Ocean Model) data assimilative system, J. Mar. Syst., 65,
60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Chen, S., Hu, C., Barnes, B. B., Wanninkhof, R., Cai, W. J., Barbero, L.,
and Pierrot, D.: A machine learning approach to estimate surface ocean pCO2
from satellite measurements, Remote Sens. Environ., 228, 203–226,
https://doi.org/10.1016/j.rse.2019.04.019, 2019.
Chen, X., Lohrenz, S. E., and Wiesenburg, D. A.: Distribution and
controlling mechanisms of primary production on the Louisiana–Texas
continental shelf, J. Mar. Syst., 25, 179–207,
https://doi.org/10.1016/S0924-7963(00)00014-2, 2000.
Coble, P. G., Robbins, L. L., Daly, K. L., Cai, W.-J., Fennel, K., and Lorenz, S. E., A Preliminary Carbon Budget for the Gulf of Mexico, Marine Science Faculty Publications, Ocean Carbon and Biogeochemistry Newsletter, volume. 3, 1–4, 820,
https://digitalcommons.usf.edu/msc_facpub/820 (last access: 5 November 2021), 2010.
Czerny, J., Schulz, K. G., Ludwig, A., and Riebesell, U.: Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting, Biogeosciences, 10, 1379–1390, https://doi.org/10.5194/bg-10-1379-2013, 2013.
Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K., and Prein, A. F.: A new
mechanism for warm-season precipitation response to global warming based on
convection-permitting simulations, Clim. Dynam., 55, 343–368,
https://doi.org/10.1007/s00382-017-3787-6, 2020.
Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP
historical. Version 20191120, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.11297, 2019a.
Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP
historical. Version 20191120, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.11298, 2019b.
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP
historical, Version 20190917, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.10071, 2019c.
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP historical,
Version 20191105, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.7627, 2019d.
Davis, C. E., Blackbird, S., Wolff, G., Woodward, M., and Mahaffey, C.:
Seasonal organic matter dynamics in a temperate shelf sea, Prog. Oceanogr.,
177, 101925, https://doi.org/10.1016/j.pocean.2018.02.021, 2019.
Delgado, J. A., Sudre, J., Tanahara, S., Montes, I., Hernández-Ayón, J. M., and Zirino, A.: Effect of Caribbean Water incursion into the Gulf of Mexico derived from absolute dynamic topography, satellite data, and remotely sensed chlorophyll a, Ocean Sci., 15, 1561–1578, https://doi.org/10.5194/os-15-1561-2019, 2019.
Dickson, A. G.: An exact definition of total alkalinity and a procedure for
the estimation of alkalinity and total inorganic carbon from titration data,
Deep-Sea Res. Pt. A, 28, 609–623,
https://doi.org/10.1016/0198-0149(81)90121-7, 1981.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds): Guide to best practices for ocean CO2 measurement, Sidney, British Columbia, North Pacific Marine Science Organization, 191 pp, PICES Special Publication 3; IOCCP Report 8 https://doi.org/https://doi.org/10.25607/OBP-1342, 2007.
Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R.,
and Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI):
comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2
and CH4 retrieval algorithm products with measurements from the TCCON,
Atmos. Meas. Tech., 7, 1723–1744, https://doi.org/10.5194/amt-7-1723-2014,
2014.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
acidification: The other CO2 problem, Ann. Rev. Mar. Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Dzwonkowski, B., Fournier, S., Reager, J. T., Milroy, S., Park, K., Shiller,
A. M., Greer, A. T., Soto, I., Dykstra, S. L., and Sanial., V.: Tracking sea
surface salinity and dissolved oxygen on a river-influenced, seasonally
stratified shelf, Mississippi Bight, northern Gulf of Mexico, Cont. Shelf
Res., 169, 25–33, https://doi.org/10.1016/j.csr.2018.09.009, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Farmer, J. R., Hertzberg, J. E., Cardinal, D., Fietz, S., Hendry, K.,
Jaccard, S. L., Paytan, A., and Al, E.: Assessment of C, N, and Si isotopes
as tracers of past ocean nutrient and carbon cycling, Global Biogeochem.
Cy., 35, e2020GB006775, https://doi.org/10.1029/2020GB006775, 2021.
Feely, R. A., Sabine, C. L., Lee, K., Millero, F. J., Lamb, M. F., Greeley, D., Bullister, J. L., Key, R. M., Peng, T.-H., Kozyr, A., Ono, T., and Wong, C. S.: In situ calcium carbonate dissolution in the
Pacific Ocean, Global Biogeochem. Cy., 16, 1144,
https://doi.org/10.1029/2002GB001866, 2002.
Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean acidification: Present
conditions and future changes in a high-CO2 world, Oceanography, 22, 36–47,
http://www.jstor.org/stable/24861022 (last access: 24 September 2021), 2009.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel,
D.: Nitrogen cycling in the Middle Atlantic Bight: Results from a
three-dimensional model and implications for the North Atlantic nitrogen
budget, Global Biogeochem. Cy., 20, 1–14,
https://doi.org/10.1029/2005GB002456, 2006.
Fennel, K., Wilkin, J., Previdi, M., and Najjar, R.: Denitrification effects
on air-sea CO2 flux in the coastal ocean: Simulations for the northwest
North Atlantic, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2008GL036147, 2008.
Fennel, K., Hetland, R., Feng, Y., and DiMarco, S.: A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability, Biogeosciences, 8, 1881–1899, https://doi.org/10.5194/bg-8-1881-2011, 2011.
Fennel, W.: Towards bridging biogeochemical and fish-production models, J.
Mar. Syst., 71, 171–194, https://doi.org/10.1016/j.jmarsys.2007.06.008,
2008.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global
occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim.
Change, 5, 560–564, https://doi.org/10.1038/nclimate2617, 2015.
Frei, C., Schär, C., Lüthi, D., and Davies, H. C.: Heavy
precipitation processes in a warmer climate, Geophys. Res. Lett., 25,
1431–1434, https://doi.org/10.1029/98GL51099, 1998.
García, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, M., Zweng, M. M., Mishonov, A. V, Baranova, O. K., and Seidov,
D.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen
Utilization, and Dissolved Oxygen Saturation, NOAA Atlas NESDIS 83, 38 pp.
https://archimer.ifremer.fr/doc/00651/76337/ (last access: 28 January 2021), 2019.
Gomez, F. A., Wanninkhof, R., Barbero, L., Lee, S.-K., and Hernandez Jr., F. J.: Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model, Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, 2020.
Gomez, F. A., Wanninkhof, R., Barbero, L., and Lee, S.-K.: Surface
patterns of temperature, salinity, total alkalinity (TA), and dissolved
inorganic carbon (DIC) across the Gulf of Mexico derived from the GoMBio
model experiments from 1981-01-01 to 2014-12-31 (NCEI Accession 0242495),
subset used: hindcast.surface.fields.nc, NOAA Natl. Centers Environ.
Information Dataset,
https://doi.org/10.25921/c34h-gb83, 2021.
Gregor, L. and Gruber, N.: OceanSODA-ETHZ: A global gridded data set of the
surface ocean carbonate system for seasonal to decadal studies of ocean
acidification (v2021) (NCEI Accession 0220059), NOAA Natl. Centers Environ.
Information. Dataset, Version 2021, https://doi.org/10.25921/m5wx-ja34,
2020.
Große, F., Fennel, K., and Laurent, A.: Quantifying the relative importance
of riverine and open-ocean nitrogen sources for hypoxia formation in the
northern Gulf of Mexico, J. Geophys. Res.-Ocean., 124, 5451–5467,
https://doi.org/10.1029/2019JC015230, 2019.
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan,
A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel,
R., Robinson, T., Underwood, S., Vahlenkamp, H., and Bu, R.: NOAA-GFDL
GFDL-CM4 model output historical, Version: 20180701, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.8594, 2018.
Gustafsson, E., Hagens, M., Sun, X., Reed, D. C., Humborg, C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea, Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, 2019.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser,
E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M.,
Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and
Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation
and skill assessment of the Regional Ocean Modeling System, J. Comput.
Phys., 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Hofmann, E. E., Cahill, B., Fennel, K., Friedrichs, M. A. M., Hyde, K., Lee,
C., Mannino, A., Najjar, R. G., O'Reilly, J. E., Wilkin, J., and Xue, J.:
Modeling the dynamics of continental shelf carbon, Ann. Rev. Mar. Sci., 3,
93–122, https://doi.org/10.1146/annurev-marine-120709-142740, 2011.
Hu, X. and Cai, W. J.: An assessment of ocean margin anaerobic processes on
oceanic alkalinity budget, Global Biogeochem. Cy., 25, 1–11,
https://doi.org/10.1029/2010GB003859, 2011.
Huang, W. J., Cai, W. J., Wang, Y., Lohrenz, S. E., and Murrell, M. C.: The
carbon dioxide system on the Mississippi River-dominated continental shelf
in the northern Gulf of Mexico, J. Geophys. Res.-Ocean, 120, 1429–1445,
https://doi.org/10.1002/2014JC010498, 2015.
Inskeep, W. P. and Bloom, P. R.: An evaluation of rate equations for calcite
precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8,
Geochim. Cosmochim. Ac., 49, 2165–2180,
https://doi.org/10.1016/0016-7037(85)90074-2, 1985.
Jiang, Z. P., Cai, W. J., Chen, B., Wang, K., Han, C., Roberts, B. J.,
Hussain, N., and Li, Q.: Physical and Biogeochemical Controls on pH Dynamics
in the Northern Gulf of Mexico During Summer Hypoxia, J. Geophys. Res.-Ocean., 124, 5979–5998, https://doi.org/10.1029/2019JC015140, 2019.
Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne,
J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya,
M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S.:
C4MIP-The Coupled Climate-Carbon Cycle Model Intercomparison Project:
Experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880,
https://doi.org/10.5194/gmd-9-2853-2016, 2016.
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., and Mauritsen, Thorst, E.: MPI-M MPI-ESM1.2-HR model
output prepared for CMIP6 CMIP historical, Version 20190710, Earth Syst.
Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.6594, 2019.
Jurado, E., Dachs, J., Duarte, C. M., and Simo, R.: Atmospheric deposition
of organic and black carbon to the global oceans, Atmos. Environ., 42,
7931–7939, https://doi.org/10.1016/j.atmosenv.2008.07.029, 2008.
Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., and Stemmler,
I.: Mapped Observation-Based Oceanic Dissolved Inorganic Carbon (DIC),
monthly climatology from January to December (based on observations between
2004 and 2017), from the Max-Planck-Institute for Meteorology
(MOBO-DIC_MPIM) (NCEI Accession 0221526), NOAA Natl. Centers
Environ. Information Dataset, https://doi.org/10.25921/yvzj-zx46, 2020.
King, A. L., Jenkins, B. D., Wallace, J. R., Liu, Y., Wikfors, G. H., Milke,
L. M., and Meseck, S. L.: Effects of CO2 on growth rate, C : N : P, and fatty
acid composition of seven marine phytoplankton species, Mar. Ecol. Prog.
Ser., 537, 59–69, https://doi.org/10.3354/meps11458, 2015.
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L.,
Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, S.,
Huang, D., Iizumi, H., Ishida, Y., Kang, S., Kantakov, G. A., Kim, H. cheol,
Komatsu, K., Navrotsky, V. V., Smith, S. L., Tadokoro, K., Tsuda, A.,
Yamamura, O., Yamanaka, Y., Yokouchi, K., Yoshie, N., Zhang, J., Zuenko, Y.
I., and Zvalinsky, V. I.: NEMURO-a lower trophic level model for the North
Pacific marine ecosystem, Ecol. Modell., 202, 12–25,
https://doi.org/10.1016/j.ecolmodel.2006.08.021, 2007.
Kishi, M. J., Ito, S. I., Megrey, B. A., Rose, K. A., and Werner, F. E.: A
review of the NEMURO and NEMURO, FISH models and their application to marine
ecosystem investigations, J. Oceanogr., 67, 3–16,
https://doi.org/10.1007/s10872-011-0009-4, 2011.
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I.
M., Horowitz, L. W., Lin, Pu; Milly, P. C., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP historical, Version 20190726, Earth
Syst. Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.8597, 2018.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: An observation-based
global monthly gridded sea surface pCO2 product from 1982 onward and its
monthly climatology (NCEI Accession 0160558), NOAA Natl. Centers Environ.
Information Dataset,
https://doi.org/10.7289/v5z899n6, 2017.
Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I., and Six,
K. D.: Strengthening seasonal marine CO2 variations due to increasing
atmospheric CO2, Nat. Clim. Change, 8, 146–150,
https://doi.org/10.1038/s41558-017-0057-x, 2018.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A
combined global ocean pCO2 climatology combining open ocean and coastal
areas (NCEI Accession 0209633), NOAA Natl. Centers Environ. Information
Dataset, https://doi.org/10.25921/qb25-f418, 2020.
Laurent, A. and Fennel, K.: Time-Evolving, Spatially Explicit Forecasts of
the Northern Gulf of Mexico Hypoxic Zone, Environ. Sci. Technol., 53,
14449–14458, https://doi.org/10.1021/acs.est.9b05790, 2019.
Laurent, A., Fennel, K., Cai, W. J., Huang, W. J., Barbero, L., and
Wanninkhof, R.: Eutrophication-induced acidification of coastal waters in
the northern Gulf of Mexico: Insights into origin and processes from a
coupled physical-biogeochemical model, Geophys. Res. Lett., 44, 946–956,
https://doi.org/10.1002/2016GL071881, 2017.
Laurent, A., Fennel, K., Ko, D. S., and Lehrter, J.: Climate change
projected to exacerbate impacts of coastal eutrophication in the northern
Gulf of Mexico, J. Geophys. Res.-Ocean., 123, 3408–3426,
https://doi.org/10.1002/2017JC013583, 2018.
Laurent, A., Fennel, K., and Kuhn, A.: An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean, Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, 2021.
Lauvset, S. K., Carter, B. R., Perez, F. F., Jiang, L. Q., Feely, R. A.,
Velo, A., and Olsen, A.: Processes Driving Global Interior Ocean pH
Distribution, Global Biogeochem. Cy., 34, 1–17,
https://doi.org/10.1029/2019GB006229, 2020.
Le Moigne, F. A. C., Poulton, A. J., Henson, S. A., Daniels, C. J., Fragoso,
G. M., Mitchell, E., Richier, S., Russell, B. C., Smith, H. E. K., and
Tarling, G. A.: Carbon export efficiency and phytoplankton community
composition in the A tlantic sector of the Arctic Ocean, J. Geophys. Res.-Ocean, 120, 3896–3912, https://doi.org/10.1002/2015JC010700, 2015.
Lewis, E. and Wallace, D.: Program Developed for CO2 System Calculations
ORNL/CDIAC-105, Carbon Dioxide Information Analysis Centre,
https://doi.org/10.2172/639712, 1998.
Lindsay, K., Bonan, G. B., Doney, S. C., Hoffman, F. M., Lawrence, D. M.,
Long, M. C., Mahowald, N. M., Moore, J. K., Randerson, J. T., and Thornton,
P. E.: Preindustrial-control and twentieth-century carbon cycle experiments
with the Earth system model CESM1(BGC), J. Clim., 27, 8981–9005,
https://doi.org/10.1175/JCLI-D-12-00565.1, 2014.
Liszka, C.: Zooplankton-mediated carbon flux in the Southern Ocean:
influence of community structure, metabolism and behaviour, Ph.D. thesis, School of Environmental Sciences, University of East Anglia, England, 237 pp.,
https://ueaeprints.uea.ac.uk/id/eprint/69977 (last access: 15 September 2021, 2018.
Liu, Y., Lee, S. K., Muhling, B. A., Lamkin, J. T., and Enfield, D. B.:
Significant reduction of the Loop Current in the 21st century and its impact
on the Gulf of Mexico, J. Geophys. Res.-Ocean., 117, C05039,
https://doi.org/10.1029/2011JC007555, 2012.
Liu, Y., Lee, S. K., Enfield, D. B., Muhling, B. A., Lamkin, J. T.,
Muller-Karger, F. E., and Roffer, M. A.: Potential impact of climate change
on the Intra-Americas Sea: Part – 1. A dynamic downscaling of the CMIP5 model
projections, J. Mar. Syst., 148, 56–69,
https://doi.org/10.1016/j.jmarsys.2015.01.007, 2015.
Liu, M., Ren, H.-L., Zhang, R., Ineson, S., and Wang, R.: ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6, Environ. Res. Commun., 3, 31004, https://doi.org/10.1088/2515-7620/abf295, 2021.
Lohrenz, S. E., Cai, W. J., Chakraborty, S., Huang, W. J., Guo, X., He, R.,
Xue, Z., Fennel, K., Howden, S., and Tian, H.: Satellite estimation of
coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of
Mexico, Remote Sens. Environ., 207, 71–83,
https://doi.org/10.1016/j.rse.2017.12.039, 2018.
Lovato, T., Peano, D., and Butenschön, M.: CMCC CMCC-ESM2 model output
prepared for CMIP6 CMIP historical, Version 20210114, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.13195, 2021.
Mackenzie, F. T., Lerman, A., and Andersson, A. J.: Past and present of sediment and carbon biogeochemical cycling models, Biogeosciences, 1, 11–32, https://doi.org/10.5194/bg-1-11-2004, 2004.
Maher, D. T. and Eyre, B. D.: Carbon budgets for three autotrophic
Australian estuaries: Implications for global estimates of the coastal
air-water CO2 flux, Global Biogeochem. Cy., 26, GB1032,
https://doi.org/10.1029/2011GB004075, 2012.
Mari, X., Passow, U., Migon, C., Burd, A. B., and Legendre, L.: Transparent
exopolymer particles: Effects on carbon cycling in the ocean, Prog.
Oceanogr., 151, 13–37, https://doi.org/10.1016/j.pocean.2016.11.002, 2017.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering
and biogeochemical processes, Rev. Geophys., 58, https://doi.org/10.1029/2019RG000681, e2019RG000681, 2020.
Millero, F. J.: The effect of pressure on the solubility of minerals in
water and seawater, Geochim. Cosmochim. Ac., 46, 11–22,
https://doi.org/10.1016/0016-7037(82)90286-1, 1982.
Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Ac., 59, 661–677,
https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
Millero, F. J.: The marine inorganic carbon cycle, Chem. Rev., 107,
308–341, https://doi.org/10.1021/cr0503557, 2007.
Millero, F. J.: Carbonate constants for estuarine waters, Mar. Freshw. Res.,
61, 139–142, https://doi.org/10.1071/MF09254, 2010.
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem.
Cy., 18, GB4028, https://doi.org/10.1029/2004GB002220, 2004.
Mucci, A.: The Solubility of Calcite and Aragonite in Seawater at Various
Salinities, Temperatures and One Atmosphere Total Pressure, Am. J. Sci., 283, 780–799, https://doi.org/10.2475/ajs.283.7.780, 1983.
Na, Y., Fu, Q., and Kodama, C.: Precipitation probability and its future changes from a global cloud‐resolving model and CMIP6 simulations, J. Geophys. Res. Atmos., 125, e2019JD031926, https://doi.org/10.1029/2019JD031926, 2020.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J.,
Butman, D., Cai, W. J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M.,
Feagin, R. A., Griffith, P. C., Hinson, A. L., Holmquist, J. R., Hu, X.,
Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis, W.
R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R.,
St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and
Zimmerman, R. C.: Carbon Budget of Tidal Wetlands, Estuaries, and Shelf
Waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416,
https://doi.org/10.1002/2017GB005790, 2018.
Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini,
D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S.,
Bey, I., Daskalakis, N., Heinold, B., and Kokkola, H, U.: HAMMOZ-Consortium
MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical. Version
20190627, Earth Syst. Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.5016,
2019.
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L.,
Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J. C., Graven, H.,
Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R.
J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R.,
Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and
diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP),
Geosci. Model Dev., 10, 2169–2199,
https://doi.org/10.5194/gmd-10-2169-2017, 2017.
Ploug, H., Grossart, H. P., Azam, F., and Jørgensen, B. B.:
Photosynthesis, respiration, and carbon turnover in sinking marine snow from
surface waters of Southern California Bight: implications for the carbon
cycle in the ocean, Mar. Ecol. Prog. Ser., 179, 1–11,
https://doi.org/10.3354/meps179001, 1999.
Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating
coccolithophore calcification rates to phytoplankton community dynamics:
Regional differences and implications for carbon export, Deep-Sea Res. Pt.
II, 54, 538–557,
https://doi.org/10.1016/j.dsr2.2006.12.003, 2007.
Qian, Y., Jochens, A. E., Kennicutt Ii, M. C., and Biggs, D. C.: Spatial and
temporal variability of phytoplankton biomass and community structure over
the continental margin of the northeast Gulf of Mexico based on pigment
analysis, Cont. Shelf Res., 23, 1–17,
https://doi.org/10.1016/S0278-4343(02)00173-5, 2003.
Raven, J. A. and Giordano, M.: Biomineralization by photosynthetic
organisms: Evidence of coevolution of the organisms and their environment?,
Geobiology, 7, 140–154, https://doi.org/10.1111/j.1472-4669.2008.00181.x,
2009.
Raven, M. R., Keil, R. G., and Webb, S. M.: Microbial sulfate reduction and
organic sulfur formation in sinking marine particles, Science, 371,
178–181, https://doi.org/10.1126/science.abc6035, 2021.
Reiman, J. H. and Xu, Y. J.: Dissolved carbon export and CO2 outgassing from
the lower Mississippi River – Implications of future river carbon fluxes,
J. Hydrol., 578, 124093, https://doi.org/10.1016/j.jhydrol.2019.124093,
2019.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon
sequestration, Rev. Geophys., 55, 636–674,
https://doi.org/10.1002/2016RG000533, 2017.
Robbins, L. L., Wanninkhof, R., Barbero, L., Hu, X., Mitra, S., Yvon-Lewis, S., Cai, W., Huang, W., and and Ryerson, T.: Air-sea exchange, Report of The US Gulf of Mexico Carbon Cycle Synthesis Workshop, U.S. Geol. Surv., St. Petersburg, FL. Ocean Carbon & Biogeochemistry, 67 pp., 2014.
Rost, B. and Riebesell, U.: Coccolithophores and the biological pump: responses to environmental changes, Coccolithophores, Springer, Berlin, Heidelberg, 99–125, https://doi.org/10.1007/978-3-662-06278-4_5, 2004.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6513W89, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D61C1TXF, 2011.
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen,
A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A.,
Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang,
Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model output
prepared for CMIP6 CMIP historical, Version 20190815, Earth Syst. Grid Fed.,
https://doi.org/10.22033/ESGF/CMIP6.8036, 2019.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shen, Y., Fichot, C. G., and Benner, R.: Floodplain influence on dissolved
organic matter composition and export from the Mississippi – Atchafalaya
River system to the Gulf of Mexico, Limnol. Oceanogr., 57, 1149–116,
https://doi.org/10.4319/lo.2012.57.4.1149, 2012.
Skamarock, W. C., Klemp, J. B., Dudhi, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, Tech. Rep., 113,
https://doi.org/10.5065/D6DZ069T, 2005.
Smith, S. V. and Hollibaugh, J. T.: Coastal metabolism and the oceanic
organic carbon balance, Rev. Geophys., 31, 75–89,
https://doi.org/10.1029/92RG02584, 1993.
Stackpoole, S. M., Stets, E. G., Clow, D. W., Burns, D. A., Aiken, G. R.,
Aulenbach, B. T., Creed, I. F., Hirsch, R. M., Laudon, H., Pellerin, B. A.,
and Striegl, R. G.: Spatial and temporal patterns of dissolved organic
matter quantity and quality in the Mississippi River Basin, 1997–2013,
Hydrol. Process., 31, 902–915, https://doi.org/10.1002/hyp.11072, 2017.
Strom, S. L. and Strom, M. W.: Microplankton growth, grazing, and community
structure in the northern Gulf of Mexico, Mar. Ecol. Prog. Ser., 130,
229–240, https://doi.org/10.3354/meps130229, 1996.
Sunda, W. G. and Cai, W. J.: Eutrophication induced CO2-acidification of
subsurface coastal waters: Interactive effects of temperature, salinity, and
atmospheric PCO2, Environ. Sci. Technol., 46, 10651–10659,
https://doi.org/10.1021/es300626f, 2012.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W.
G., Majaess, F., Saenko, O. A., Seiler, C., and Seinen, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP historical, Version 20190429, Earth
Syst. Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.3610, 2019.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude surface
oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea–air CO2 flux based on climatological surface
ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res.
Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global ocean surface water partial pressure of CO2 database: Measurements performed during 1957–2016 (version 2016), ORNL/CDIAC-161, NDP-088 (V2015), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, Dataset, Document available at: https://www.nodc.noaa.gov/ocads/oceans/LDEO_Underway_Database/NDP-088_V2016.pdf, 2017.
Takahashi, T., Sutherland, S., Chipman, D. W., Goddard, J. G., Newberger,
T., and Sweeney, C.: Climatological Distributions of pH, pCO2, Total CO2,
Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI Accession
0164568), NOAA Natl. Centers Environ. Information Dataset, https://doi.org/10.3334/cdiac/otg.ndp094, 2017.
Tao, B., Tian, H., Ren, W., Yang, J., Yang, Q., He, R., Cai, W., and
Lohrenz, S.: Increasing Mississippi river discharge throughout the 21st
century influenced by changes in climate, land use, and atmospheric CO2,
Geophys. Res. Lett., 41, 4978–4986, 2014.
Thomas, H., Schiettecatte, L.-S., Suykens, K., Koné, Y. J. M., Shadwick, E. H., Prowe, A. E. F., Bozec, Y., de Baar, H. J. W., and Borges, A. V.: Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments, Biogeosciences, 6, 267–274, https://doi.org/10.5194/bg-6-267-2009, 2009.
Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q., and Allison, S. D.: Changes in soil organic carbon storage predicted by Earth system models during the 21st century, Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, 2014.
Torres, R., Pantoja, S., Harada, N., González, H. E., Daneri, G.,
Frangopulos, M., Rutllant, J. A., Duarte, C. M., Rúiz-Halpern, S.,
Mayol, E., and Fukasawa, M.: Air-sea CO2 fluxes along the coast of Chile:
From CO2 outgassing in central northern upwelling waters to CO2 uptake in
southern Patagonian fjords, J. Geophys. Res.-Ocean., 116, 1–17,
https://doi.org/10.1029/2010JC006344, 2011.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G.,
Greinert, J., Kutterolf, S., and Eisenhauer, A.: Silicate weathering in
anoxic marine sediments, Geochim. Cosmochim. Ac., 72, 2895–2918,
https://doi.org/10.1016/j.gca.2008.03.026, 2008.
Wang, H., Hu, X., Cai, W. J., and Rabalais, N. N.: Comparison of fCO2
trends in river dominant and ocean dominant ocean margins, Am. Geophys.
Union, 2016.
Wang, X., Cai, Y., Guo, L., and Dist, V.: Variations in abundance and size distribution of carbohydrates in the lower Mississippi River, Pearl River and Bay of St Louis, Estuar. Coast. Shelf Sci., 126,
61–69, https://doi.org/10.1016/j.ecss.2013.04.008, 2013.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188,
1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr. Methods, 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Wanninkhof, R., Zhang, J.-Z., Baringer, M. O., Langdon, C., Cai, W.-J.,
Salisbury, J. E., and Byrne, R. H.: Partial pressure (or fugacity) of carbon
dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and
other variables collected from Surface underway, discrete sample and profile
observations using Alkalinity titrator, Barometric pressure sensor and other
instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida,
Gray's Reef National Marine Sanctuary and others from 2007-05-11 to
2007-08-04 (NCEI Accession 0083633), NOAA Natl. Centers Environ.
Information Dataset,
https://doi.org/10.3334/cdiac/otg.clivar_nacp_east_coast_cruise_2007, 2013.
Wanninkhof, R., Zhang, J.-Z., Baringer, M. O., Langdon, C., Cai, W.-J.,
Salisbury, J. E., and Byrne, R. H.: Partial pressure (or fugacity) of carbon
dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity
and other variables collected from discrete sample and profile observations
using CTD, bottle and other instruments from NOAA Ship RONALD H. BROWN in
the Gray's Reef National Marine Sanctuary, Gulf of Mexico and North Atlantic
Ocean from 2012-07-21 to 2012-08-13 (NCEI Accession 0157619), NOAA Natl.
Centers Environ. Information Dataset,
https://doi.org/10.3334/cdiac/otg.coastal_gomecc2, 2016.
Wanninkhof, R., Triñanes, J., Park, G. H., Gledhill, D., and Olsen, A.:
Large Decadal Changes in Air-Sea CO2 Fluxes in the Caribbean Sea, J.
Geophys. Res.-Ocean., 124, 6960–6982, https://doi.org/10.1029/2019JC015366,
2019.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215,
https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner,
M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de
Vrese, P., Raddatz, T., and Mauritsen, Thorst, E.: MPI-M MPI-ESM1.2-LR model
output prepared for CMIP6 CMIP historical. Version 20190710, Earth Syst.
Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.6595, 2019.
Wilson, R. W., Millero, F. J., Taylor, J. R., Walsh, P. J., Christensen, V.,
Jennings, S., and Grosell, M.: Contribution of fish to the marine inorganic
carbon cycle, Science, 323, 359–362, 2009.
Wollast, R. and Mackenzie, F. T.: Global biogeochemical cycles and climate,
Clim. Geo-sciences, Springer, 453–473,
https://doi.org/10.1007/978-94-009-2446-8_26, 1989.
Xu, Y. J. and DelDuco, E. M.: Unravelling the relative contribution of dissolved carbon by the Red River to the Atchafalaya River, Water, 9, 871, https://doi.org/10.3390/w9110871, 2017.
Xue, Z., He, R., Fennel, K., Cai, W.-J., Lohrenz, S., Huang, W.-J., Tian, H., Ren, W., and Zang, Z.: Modeling pCO2 variability in the Gulf of Mexico, Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016, 2016.
Yao, H. and Hu, X.: Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary, Limnol. Oceanogr., 62, S112–S130, https://doi.org/10.1002/lno.10646, 2017.
Zang, Z., Xue, Z. G., Xu, K., Bentley, S. J., Chen, Q., D’Sa, E. J., and Ge, Q.: A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico, Water, 11, 938, https://doi.org/10.3390/w11050938, 2019.
Zang, Z., Xue, Z. G., Xu, K., Bentley, S. J., Chen, Q., D'Sa, E. J., Zhang, L., and Ou, Y.: The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008), Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, 2020.
Zeebe, R. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics,
Isotopes, Amsterdam, Elsevier Science, The Netherlands: Elsevier
Elsevier Oceanography Book Series, 65, 346 pp, Amsterdam, http://113.160.249.209:8080/xmlui/handle/123456789/2912, 2001.
Zhang, X., Hetland, R. D., Marta-Almeida, M., and DiMarco, S. F.: A numerical investigation of the Mississippi and Atchafalaya freshwater transport, filling and flushing times on the Texas-Louisiana Shelf, J. Geophys. Res. Ocean., 117, C11009, https://doi.org/https://doi.org/10.1029/2012JC008108, 2012.
Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang,
Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P., Mackallah,
C., Sullivan, A., O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model
output prepared for CMIP6 CMIP historical, Version 20191115, Earth Syst.
Grid Fed., https://doi.org/10.22033/ESGF/CMIP6.4272, 2019.
Zhong, S. and Mucci, A.: Calcite and aragaonite precipitation from seawater solutions of various salinities : Precipitation rates and overgrowth compositions, Chem. Geol., 78, 283–299, https://doi.org/10.1016/0009-2541(89)90064-8, 1989.
Zondervan, I., Zeebe, R. E., Rost, B., and Riebesell, U.: Decreasing marine
biogenic calcification: A negative feedback on rising atmospheric pCO2,
Global Biogeochem. Cy., 15, 507–516,
https://doi.org/10.1029/2000GB001321, 2001.
Zuddas, P. and Mucci, A.: Kinetics of calcite precipitation from seawater:
II. The influence of the ionic strength, Geochim. Cosmochim. Ac., 62,
757–766, https://doi.org/10.1016/S0016-7037(98)00026-X, 1998.
Short summary
We adopt a high-resolution carbon model for the Gulf of Mexico (GoM) and calculate the decadal trends of important carbon system variables in the GoM from 2001 to 2019. The GoM surface CO2 values experienced a steady increase over the past 2 decades, and the ocean surface pH is declining. Although carbonate saturation rates remain supersaturated with aragonite, they show a slightly decreasing trend. The northern GoM is a stronger carbon sink than we thought.
We adopt a high-resolution carbon model for the Gulf of Mexico (GoM) and calculate the decadal...
Altmetrics
Final-revised paper
Preprint