Articles | Volume 20, issue 6
https://doi.org/10.5194/bg-20-1089-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1089-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
formerly at: NOVELTIS, Labège, France
Natasha MacBean
Departments of Geography & Environment and Biology, Western
University, London, Ontario, Canada
Frédéric Chevallier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Sébastien Léonard
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
now at: Air Liquide R&D, Innovation Campus Paris,
Les-Loges-en-Josas, France
Ernest N. Koffi
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
now at: European Centre for Medium-Range Weather Forecasts,
Robert-Schuman-Platz 3, 53175 Bonn, Germany
Philippe Peylin
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Related authors
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
Short summary
In this study, we compare different methods for optimising parameters of the ORCHIDEE land surface model (LSM) using in situ observations. We use two minimisation methods - local gradient-based and global random search - applied either at each individual site or a group of sites characterised by one plant functional type. We demonstrate the advantages and challenges of different techniques and provide some advice on using it for the LSM parameters optimisation.
Philippe Peylin, Cédric Bacour, Natasha MacBean, Sébastien Leonard, Peter Rayner, Sylvain Kuppel, Ernest Koffi, Abdou Kane, Fabienne Maignan, Frédéric Chevallier, Philippe Ciais, and Pascal Prunet
Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, https://doi.org/10.5194/gmd-9-3321-2016, 2016
Short summary
Short summary
The study describes a carbon cycle data assimilation system that uses satellite observations of vegetation activity, net ecosystem exchange of carbon and water at many sites and atmospheric CO2 concentrations, in order to optimize the parameters of the ORCHIDEE land surface model. The optimized model is able to fit all three data streams leading to a land carbon uptake similar to independent estimates, which opens new perspectives for better prediction of the land carbon balance.
N. MacBean, F. Maignan, P. Peylin, C. Bacour, F.-M. Bréon, and P. Ciais
Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, https://doi.org/10.5194/bg-12-7185-2015, 2015
Short summary
Short summary
Previous model evaluation studies have shown that terrestrial biosphere models (TBMs) need a better representation of the leaf phenology, but the model deficiency could be related to incorrect model parameters or inaccurate model structure. This paper presents a framework for optimising the parameters of phenology models that are commonly used in TBMs. It further demonstrates that the optimisation can result in changes to trends in vegetation productivity and an improvement in gross C fluxes.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Anthony Rey-Pommier, Alexandre Héraud, Frédéric Chevallier, Philippe Ciais, Theodoros Christoudias, Jonilda Kushta, and Jean Sciare
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-410, https://doi.org/10.5194/essd-2024-410, 2024
Preprint under review for ESSD
Short summary
Short summary
In this study, we estimate emissions of nitrogen oxides (NOx) in 2022 at high-resolution at the global scale, using satellite observations. We provide maps of the emissions and identify several types of sources. Our results are similar to the EDGAR emission inventory. However, differences are found in countries with lower observation densities and lower emissions.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-103, https://doi.org/10.5194/essd-2024-103, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three main GHG fluxes at the national level. Compared to the previous study, new satellite-based CO2 inversions were included. Additionally, an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024, https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary
Short summary
We present a Python software library for data-driven emission quantification (ddeq). It can be used to determine the emissions of hot spots (cities, power plants and industry) from remote sensing images using different methods. ddeq can be extended for new datasets and methods, providing a powerful community tool for users and developers. The application of the methods is shown using Jupyter notebooks included in the library.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
Luis-Enrique Olivera-Guerra, Catherine Ottlé, Nina Raoult, and Philippe Peylin
EGUsphere, https://doi.org/10.5194/egusphere-2024-546, https://doi.org/10.5194/egusphere-2024-546, 2024
Short summary
Short summary
We assimilate the recent land surface temperature (LST) product from ESA-CCI to optimize parameters of the ORCHIDEE model. We test different strategies of assimilation to evaluate the best strategy over various in situ stations across Europe. We provide some advice on how to assimilate this recent LST product to better simulate LST and surface energy fluxes from ORCHIDEE. We demonstrate the effectiveness of this optimization, which is essential to better simulate future projections.
Mounia Mostefaoui, Philippe Ciais, Matthew J. McGrath, Philippe Peylin, Prabir K. Patra, and Yolandi Ernst
Earth Syst. Sci. Data, 16, 245–275, https://doi.org/10.5194/essd-16-245-2024, https://doi.org/10.5194/essd-16-245-2024, 2024
Short summary
Short summary
Our aim is to assess African anthropogenic greenhouse gas emissions and removals by using different data products, including inventories and process-based models, and to compare their relative merits with inversion data coming from satellites. We show a good match among the various estimates in terms of overall trends at a regional level and on a decadal basis, but large differences exist even among similar data types, which is a limit to the possibility of verification of country-reported data.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amoros, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-241, https://doi.org/10.5194/amt-2023-241, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study evaluates data-driven inversion methods for the estimate of CO2 emissions from local sources such as power plants and cities based on meteorological data and XCO2 and NO2 satellite images without atmospheric transport modeling. We assess and compare the performance of five different methods with simulations of one year of images from the future CO2M satellite mission over 15 power plants and the city of Berlin in Eastern Germany.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487, https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary
Short summary
A consistent estimation of CO2 emissions is complicated due to the scarcity of CO2 observations. In this study, we showcase the potential to improve the CO2 emissions estimations from the NO2 concentrations based on the NO2-to-CO2 ratio, which should be constant for a source co-emitting NO2 and CO2, by comparing satellite observations with atmospheric chemistry and transport model simulations for NO2 and CO2. Furthermore, we demonstrate the significance of the chemistry in NO2 simulations.
Zoé Lloret, Frédéric Chevallier, Anne Cozic, Marine Remaud, and Yann Meurdesoif
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-140, https://doi.org/10.5194/gmd-2023-140, 2023
Revised manuscript not accepted
Short summary
Short summary
In this study, we evaluate the performance of a new model coupling, ICO, for simulating atmospheric carbon dioxide (CO2) transport. Using an unstructured grid, our model accurately captures seasonal CO2 variations at surface stations. The model exhibits comparable accuracy to a reference configuration and offers advantages in computational speed and storage. This highlights the importance of advanced modeling approaches and high-resolution grids in refining climate models.
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Jonilda Kushta, Theodoros Christoudias, I. Safak Bayram, and Jean Sciare
Atmos. Chem. Phys., 23, 13565–13583, https://doi.org/10.5194/acp-23-13565-2023, https://doi.org/10.5194/acp-23-13565-2023, 2023
Short summary
Short summary
We use four years (2019–2022) of TROPOMI NO2 data to map NOx emissions in Qatar. We estimate average monthly emissions for the country and industrial facilities and derive an emission factor for the power sector. Monthly emissions have a weekly cycle reflecting the social norms in Qatar and an annual cycle consistent with the electricity production by gas-fired power plants. Their mean value is lower than the NOx emissions in global inventories but similar to the emissions reported for 2007.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Xiaojuan Lin, Ronald van der A, Jos de Laat, Henk Eskes, Frédéric Chevallier, Philippe Ciais, Zhu Deng, Yuanhao Geng, Xuanren Song, Xiliang Ni, Da Huo, Xinyu Dou, and Zhu Liu
Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, https://doi.org/10.5194/acp-23-6599-2023, 2023
Short summary
Short summary
Satellite observations provide evidence for CO2 emission signals from isolated power plants. We use these satellite observations to quantify emissions. We found that for power plants with multiple observations, the correlation of estimated and reported emissions is significantly improved compared to a single observation case. This demonstrates that accurate estimation of power plant emissions can be achieved by monitoring from future satellite missions with more frequent observations.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Elise Potier, Grégoire Broquet, Yilong Wang, Diego Santaren, Antoine Berchet, Isabelle Pison, Julia Marshall, Philippe Ciais, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5261–5288, https://doi.org/10.5194/amt-15-5261-2022, https://doi.org/10.5194/amt-15-5261-2022, 2022
Short summary
Short summary
Atmospheric inversion at local–regional scales over Europe and pseudo-data assimilation are used to evaluate how CO2 and 14CO2 ground-based measurement networks could complement satellite CO2 imagers to monitor fossil fuel (FF) CO2 emissions. This combination significantly improves precision in the FF emission estimates in areas with a dense network but does not strongly support the separation of the FF from the biogenic signals or the spatio-temporal extrapolation of the satellite information.
François-Marie Bréon, Leslie David, Pierre Chatelanaz, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5219–5234, https://doi.org/10.5194/amt-15-5219-2022, https://doi.org/10.5194/amt-15-5219-2022, 2022
Short summary
Short summary
The estimate of atmospheric CO2 from space measurement is difficult. Current methods are based on a detailed description of the atmospheric radiative transfer. These are affected by significant biases and errors and are very computer intensive. Instead we have proposed using a neural network approach. A first attempt led to confusing results. Here we provide an interpretation for these results and describe a new version that leads to high-quality estimates.
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Theodoros Christoudias, Jonilda Kushta, Didier Hauglustaine, and Jean Sciare
Atmos. Chem. Phys., 22, 11505–11527, https://doi.org/10.5194/acp-22-11505-2022, https://doi.org/10.5194/acp-22-11505-2022, 2022
Short summary
Short summary
Emission inventories for air pollutants can be uncertain in developing countries. In order to overcome these uncertainties, we model nitrogen oxide emissions in Egypt using satellite retrievals. We detect a weekly cycle reflecting Egyptian social norms, an annual cycle consistent with electricity consumption and an activity drop due to the COVID-19 pandemic. However, discrepancies with inventories remain high, illustrating the needs for additional data to improve the potential of our method.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021, https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary
Short summary
The growth of methane, the second-most important anthropogenic greenhouse gas after carbon dioxide, has been accelerating in recent years. Using an ensemble of multi-tracer atmospheric inversions constrained by surface or satellite observations, we show that global methane emissions increased by nearly 1 % per year from 2010–2017, with leading contributions from the tropics and East Asia.
Fabienne Maignan, Camille Abadie, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi P. Shiga, Nicolas Vuichard, Mary E. Whelan, and Philippe Peylin
Biogeosciences, 18, 2917–2955, https://doi.org/10.5194/bg-18-2917-2021, https://doi.org/10.5194/bg-18-2917-2021, 2021
Short summary
Short summary
The assimilation of carbonyl sulfide (COS) by continental vegetation has been proposed as a proxy for gross primary production (GPP). Using a land surface and a transport model, we compare a mechanistic representation of the plant COS uptake (Berry et al., 2013) to the classical leaf relative uptake (LRU) approach linking GPP and vegetation COS fluxes. We show that at high temporal resolutions a mechanistic approach is mandatory, but at large scales the LRU approach compares similarly.
Diego Santaren, Grégoire Broquet, François-Marie Bréon, Frédéric Chevallier, Denis Siméoni, Bo Zheng, and Philippe Ciais
Atmos. Meas. Tech., 14, 403–433, https://doi.org/10.5194/amt-14-403-2021, https://doi.org/10.5194/amt-14-403-2021, 2021
Short summary
Short summary
Atmospheric transport inversions with synthetic data are used to assess the potential of new satellite observations of atmospheric CO2 to monitor anthropogenic emissions from regions, cities and large industrial plants. The analysis, applied to a large ensemble of sources in western Europe, shows a strong dependence of the results on different characteristics of the spaceborne instrument, on the source emission budgets and spreads, and on the wind conditions.
Leslie David, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 14, 117–132, https://doi.org/10.5194/amt-14-117-2021, https://doi.org/10.5194/amt-14-117-2021, 2021
Short summary
Short summary
This paper shows that a neural network (NN) approach can be used to process spaceborne observations from the OCO-2 satellite and retrieve both surface pressure and atmospheric CO2 content. The accuracy evaluation indicates that the retrievals have an accuracy that is at least as good as those of the operational approach, which relies on complex algorithms and is computer intensive. The NN approach is therefore a promising alternative for the processing of CO2-monitoring missions.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Bo Zheng, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Yilong Wang, Jinghui Lian, and Yuanhong Zhao
Atmos. Chem. Phys., 20, 8501–8510, https://doi.org/10.5194/acp-20-8501-2020, https://doi.org/10.5194/acp-20-8501-2020, 2020
Short summary
Short summary
The Paris Climate Agreement requires all parties to report CO2 emissions regularly. Given the self-reporting nature of this system, it is critical to evaluate the emission reports with independent observation systems. Here we present the direct observations of city CO2 plumes from space and the quantification of CO2 emissions from these observations over the largest emitter country China. The emissions from 46 hot-spot regions representing 13 % of China's total emissions can be well constrained.
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Short summary
Satellite measurements of solar-induced chlorophyll fluorescence (SIF) provide a global measure of photosynthetic change. This enables scientists to better track carbon cycle responses to environmental change and tune biochemical processes in vegetation models for an improved simulation of future change. We use tower-instrumented SIF measurements and controlled model experiments to assess the state of the art in terrestrial biosphere SIF modeling and find a wide range of sensitivities to light.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Frédéric Chevallier, Marine Remaud, Christopher W. O'Dell, David Baker, Philippe Peylin, and Anne Cozic
Atmos. Chem. Phys., 19, 14233–14251, https://doi.org/10.5194/acp-19-14233-2019, https://doi.org/10.5194/acp-19-14233-2019, 2019
Short summary
Short summary
We present a way to rate the CO2 flux estimates made from inversion of a global atmospheric transport model. Our approach relies on accurate aircraft measurements in the free troposphere. It shows that some satellite soundings can now provide inversion results that are, despite their uncertainty, comparable in credibility to traditional inversions using the accurate but sparse surface network and that these inversions are, therefore, complementary for studies of the global carbon budget.
Peter J. Rayner, Anna M. Michalak, and Frédéric Chevallier
Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, https://doi.org/10.5194/acp-19-13911-2019, 2019
Short summary
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Bo Zheng, Frederic Chevallier, Yi Yin, Philippe Ciais, Audrey Fortems-Cheiney, Merritt N. Deeter, Robert J. Parker, Yilong Wang, Helen M. Worden, and Yuanhong Zhao
Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, https://doi.org/10.5194/essd-11-1411-2019, 2019
Short summary
Short summary
We use a multi-species atmospheric Bayesian inversion approach to attribute satellite-observed atmospheric carbon monoxide (CO) variations to its sources and sinks in order to achieve a full closure of the global CO budget during 2000–2017. We identify a declining trend in the global CO budget since 2000, driven by reduced anthropogenic emissions in the US, Europe, and China, as well as by reduced biomass burning emissions globally, especially in equatorial Africa.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Anna Agustí-Panareda, Michail Diamantakis, Sébastien Massart, Frédéric Chevallier, Joaquín Muñoz-Sabater, Jérôme Barré, Roger Curcoll, Richard Engelen, Bavo Langerock, Rachel M. Law, Zoë Loh, Josep Anton Morguí, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Coleen Roehl, Alex T. Vermeulen, Thorsten Warneke, and Debra Wunch
Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, https://doi.org/10.5194/acp-19-7347-2019, 2019
Short summary
Short summary
This paper demonstrates the benefits of using global models with high horizontal resolution to represent atmospheric CO2 patterns associated with evolving weather. The modelling of CO2 weather is crucial to interpret the variability from ground-based and satellite CO2 observations, which can then be used to infer CO2 fluxes in atmospheric inversions. The benefits of high resolution come from an improved representation of the topography, winds, tracer transport and CO2 flux distribution.
Felix R. Vogel, Matthias Frey, Johannes Staufer, Frank Hase, Grégoire Broquet, Irène Xueref-Remy, Frédéric Chevallier, Philippe Ciais, Mahesh Kumar Sha, Pascale Chelin, Pascal Jeseck, Christof Janssen, Yao Té, Jochen Groß, Thomas Blumenstock, Qiansi Tu, and Johannes Orphal
Atmos. Chem. Phys., 19, 3271–3285, https://doi.org/10.5194/acp-19-3271-2019, https://doi.org/10.5194/acp-19-3271-2019, 2019
Short summary
Short summary
Providing timely information on greenhouse gas emissions to stakeholders at sub-national scale is an emerging challenge and understanding urban CO2 levels is one key aspect. This study uses atmospheric observations of total column CO2 and compares them to numerical simulations to investigate CO2 levels in the Paris metropolitan area due to natural fluxes and anthropogenic emissions. Our measurements reveal the influence of locally added CO2, which our model is also able to predict.
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
Short summary
In this study, we compare different methods for optimising parameters of the ORCHIDEE land surface model (LSM) using in situ observations. We use two minimisation methods - local gradient-based and global random search - applied either at each individual site or a group of sites characterised by one plant functional type. We demonstrate the advantages and challenges of different techniques and provide some advice on using it for the LSM parameters optimisation.
Marine Remaud, Frédéric Chevallier, Anne Cozic, Xin Lin, and Philippe Bousquet
Geosci. Model Dev., 11, 4489–4513, https://doi.org/10.5194/gmd-11-4489-2018, https://doi.org/10.5194/gmd-11-4489-2018, 2018
Short summary
Short summary
We compare several versions of a global atmospheric transport model for the simulation of CO2. The representation of subgrid-scale processes modulates the interhemispheric gradient and the amplitude of the seasonal cycle in the Northern Hemisphere. It has the largest impact over Brazil. Refining the horizontal resolution improves the simulation near emission hotspots or along the coastlines. The sensitivities to the land surface model and to the increase in vertical resolution are marginal.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Sourish Basu, David F. Baker, Frédéric Chevallier, Prabir K. Patra, Junjie Liu, and John B. Miller
Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, https://doi.org/10.5194/acp-18-7189-2018, 2018
Short summary
Short summary
CO2 measurements from the global surface network and CO2 estimates from satellites such as the Orbiting Carbon Observatory 2 (OCO-2) are currently used to quantify the surface sources and sinks of CO2, using what we know about atmospheric transport of gases. In this work, we quantify the uncertainties in those surface source/sink estimates that stem from errors in our atmospheric transport models, using an observing system simulation experiment (OSSE).
Yilong Wang, Grégoire Broquet, Philippe Ciais, Frédéric Chevallier, Felix Vogel, Lin Wu, Yi Yin, Rong Wang, and Shu Tao
Atmos. Chem. Phys., 18, 4229–4250, https://doi.org/10.5194/acp-18-4229-2018, https://doi.org/10.5194/acp-18-4229-2018, 2018
Short summary
Short summary
This paper assesses the potential of atmospheric 14CO2 observations and a global inversion system to solve for fossil fuel CO2 (FFCO2) emissions in Europe. The estimate of monthly emission budgets is largely improved in high emitting regions. The results are sensitive to the observation network and the prior uncertainty. Using a high-resolution transport model and a systematic evaluation of the uncertainty in current emission inventories should improve the potential to retrieve FFCO2 emissions.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Irène Xueref-Remy, Elsa Dieudonné, Cyrille Vuillemin, Morgan Lopez, Christine Lac, Martina Schmidt, Marc Delmotte, Frédéric Chevallier, François Ravetta, Olivier Perrussel, Philippe Ciais, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, T. Gerard Spain, and Christophe Ampe
Atmos. Chem. Phys., 18, 3335–3362, https://doi.org/10.5194/acp-18-3335-2018, https://doi.org/10.5194/acp-18-3335-2018, 2018
Short summary
Short summary
Urbanized and industrialized areas are the largest source of fossil CO2. This work analyses the atmospheric CO2 variability observed from the first in situ network deployed in the Paris megacity area. Gradients of several ppm are found between the rural, peri-urban and urban sites at the diurnal to the seasonal scales. Wind direction and speed as well as boundary layer dynamics, correlated to highly variable urban emissions, are shown to be key regulator factors of the observed CO2 records.
Grégoire Broquet, François-Marie Bréon, Emmanuel Renault, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Frédéric Chevallier, Lin Wu, and Philippe Ciais
Atmos. Meas. Tech., 11, 681–708, https://doi.org/10.5194/amt-11-681-2018, https://doi.org/10.5194/amt-11-681-2018, 2018
Short summary
Short summary
This study assesses the potential of space-borne imagery of CO2 atmospheric concentrations for monitoring the emissions from the Paris area. Such imagery could be provided by European and American missions in the next decade. It highlights the difficulty to improve current knowledge on CO2 emissions for urban areas with CO2 observations from satellites, and calls for more technological innovations in the remote sensing of CO2 and in the models that exploit it.
Wei Li, Natasha MacBean, Philippe Ciais, Pierre Defourny, Céline Lamarche, Sophie Bontemps, Richard A. Houghton, and Shushi Peng
Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, https://doi.org/10.5194/essd-10-219-2018, 2018
Short summary
Short summary
We evaluated the land cover changes based on plant functional types (PFTs) derived from the newly released annual ESA land cover maps. We addressed the geographical distributions and temporal trends of the translated PFT maps and compared with other datasets commonly used by the land surface model community. Different choices of these datasets for the applications in land surface models are proposed depending on the research purposes.
Arsène Druel, Philippe Peylin, Gerhard Krinner, Philippe Ciais, Nicolas Viovy, Anna Peregon, Vladislav Bastrikov, Natalya Kosykh, and Nina Mironycheva-Tokareva
Geosci. Model Dev., 10, 4693–4722, https://doi.org/10.5194/gmd-10-4693-2017, https://doi.org/10.5194/gmd-10-4693-2017, 2017
Short summary
Short summary
To improve the simulation of vegetation–climate feedbacks at high latitudes, three new circumpolar vegetation types were added in the ORCHIDEE land surface model: bryophytes (mosses) and lichens, Arctic shrubs, and Arctic grasses. This article is an introduction to the modification of vegetation distribution and physical behaviour, implying for example lower productivity, roughness, and higher winter albedo or freshwater discharge in the Arctic Ocean.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Francesc Montané, Andrew M. Fox, Avelino F. Arellano, Natasha MacBean, M. Ross Alexander, Alex Dye, Daniel A. Bishop, Valerie Trouet, Flurin Babst, Amy E. Hessl, Neil Pederson, Peter D. Blanken, Gil Bohrer, Christopher M. Gough, Marcy E. Litvak, Kimberly A. Novick, Richard P. Phillips, Jeffrey D. Wood, and David J. P. Moore
Geosci. Model Dev., 10, 3499–3517, https://doi.org/10.5194/gmd-10-3499-2017, https://doi.org/10.5194/gmd-10-3499-2017, 2017
Short summary
Short summary
How carbon is allocated to different plant tissues (leaves, stem, and roots) determines carbon residence time and thus remains a central challenge for understanding the global carbon cycle. In this paper, we compared standard and novel carbon allocation schemes in CLM4.5 and evaluated them using eddy covariance wood and leaf biomass. The dynamic scheme based on work by Litton improved model performance, but this was dependent on model assumptions about woody turnover.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Anna M. Michalak, Nina A. Randazzo, and Frédéric Chevallier
Atmos. Chem. Phys., 17, 7405–7421, https://doi.org/10.5194/acp-17-7405-2017, https://doi.org/10.5194/acp-17-7405-2017, 2017
Short summary
Short summary
The use of inverse modeling for quantifying emissions of greenhouse gases is increasing. Estimates are very difficult to evaluate objectively, however, due to limited atmospheric observations and the lack of direct emissions measurements at compatible scales. Diagnostic tools have been proposed to partially circumvent these limitations. This paper presents the first systematic review of the scope and applicability of these tools for atmospheric inversions of long-lived greenhouse gases.
Jerónimo Escribano, Olivier Boucher, Frédéric Chevallier, and Nicolás Huneeus
Atmos. Chem. Phys., 17, 7111–7126, https://doi.org/10.5194/acp-17-7111-2017, https://doi.org/10.5194/acp-17-7111-2017, 2017
Short summary
Short summary
Top-down estimates of mineral dust flux usually rely on a single observational dataset whose observational errors propagate onto the emission estimates. Aerosol optical depth from five satellites are assimilated one by one into a source inversion system over northern Africa. We find a relatively large dispersion in flux estimates among the five experiments, which can likely be attributed to differences in the assimilated observational datasets and their associated error statistics.
Yi Yin, Frederic Chevallier, Philippe Ciais, Gregoire Broquet, Anne Cozic, Sophie Szopa, and Yilong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-166, https://doi.org/10.5194/acp-2017-166, 2017
Revised manuscript not accepted
Short summary
Short summary
CO inverse modelling studies have so far reported significant discrepancies between model concentrations optimised with the Measurement of Pollution in the Troposphere (MOPITT) satellite retrievals and surface in-situ measurements. Here, we assess how well a global CTM fits a large variety of independent CO observations before and after assimilating MOPITTv6 retrievals to optimise CO sources/sink and discuss potential sources of errors and their implications for global CO modelling studies.
Sander Houweling, Peter Bergamaschi, Frederic Chevallier, Martin Heimann, Thomas Kaminski, Maarten Krol, Anna M. Michalak, and Prabir Patra
Atmos. Chem. Phys., 17, 235–256, https://doi.org/10.5194/acp-17-235-2017, https://doi.org/10.5194/acp-17-235-2017, 2017
Short summary
Short summary
The aim of this paper is to present an overview of inverse modeling methods, developed over the years, for estimating the global sources and sinks of the greenhouse gas methane from atmospheric measurements. It provides insight into how techniques and estimates have evolved over time, what the remaining shortcomings are, new developments, and promising future directions.
Lamia Ammoura, Irène Xueref-Remy, Felix Vogel, Valérie Gros, Alexia Baudic, Bernard Bonsang, Marc Delmotte, Yao Té, and Frédéric Chevallier
Atmos. Chem. Phys., 16, 15653–15664, https://doi.org/10.5194/acp-16-15653-2016, https://doi.org/10.5194/acp-16-15653-2016, 2016
Short summary
Short summary
We propose a new approach to estimate urban emission ratios that takes advantage of the enhanced local urban signal in the atmosphere at low wind speed. We apply it to estimate monthly ratios between CO2, CO and some VOCs from atmospheric measurement datasets acquired in the centre of Paris between 2010 and 2014. We find that this approach is little sensitive to the regional background level definition. With this new method, we may reveal spatial and seasonal variability in the ratios in Paris.
Johannes Staufer, Grégoire Broquet, François-Marie Bréon, Vincent Puygrenier, Frédéric Chevallier, Irène Xueref-Rémy, Elsa Dieudonné, Morgan Lopez, Martina Schmidt, Michel Ramonet, Olivier Perrussel, Christine Lac, Lin Wu, and Philippe Ciais
Atmos. Chem. Phys., 16, 14703–14726, https://doi.org/10.5194/acp-16-14703-2016, https://doi.org/10.5194/acp-16-14703-2016, 2016
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Natasha MacBean, Philippe Peylin, Frédéric Chevallier, Marko Scholze, and Gregor Schürmann
Geosci. Model Dev., 9, 3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, https://doi.org/10.5194/gmd-9-3569-2016, 2016
Short summary
Short summary
Model projections of the response of the terrestrial biosphere to anthropogenic emissions are uncertain, in part due to unknown fixed parameters in a model. Data assimilation can address this by using observations to optimise these parameter values. Using multiple types of data is beneficial for constraining different model processes, but it can also pose challenges in a DA context. This paper demonstrates and discusses the issues involved using toy models and examples from existing literature.
Philippe Peylin, Cédric Bacour, Natasha MacBean, Sébastien Leonard, Peter Rayner, Sylvain Kuppel, Ernest Koffi, Abdou Kane, Fabienne Maignan, Frédéric Chevallier, Philippe Ciais, and Pascal Prunet
Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, https://doi.org/10.5194/gmd-9-3321-2016, 2016
Short summary
Short summary
The study describes a carbon cycle data assimilation system that uses satellite observations of vegetation activity, net ecosystem exchange of carbon and water at many sites and atmospheric CO2 concentrations, in order to optimize the parameters of the ORCHIDEE land surface model. The optimized model is able to fit all three data streams leading to a land carbon uptake similar to independent estimates, which opens new perspectives for better prediction of the land carbon balance.
Anna Agustí-Panareda, Sébastien Massart, Frédéric Chevallier, Gianpaolo Balsamo, Souhail Boussetta, Emanuel Dutra, and Anton Beljaars
Atmos. Chem. Phys., 16, 10399–10418, https://doi.org/10.5194/acp-16-10399-2016, https://doi.org/10.5194/acp-16-10399-2016, 2016
Short summary
Short summary
This paper presents a method to adjust the sinks and sources of CO2 associated with land ecosystems within a global atmospheric CO2 forecasting system in order to reduce the errors in the forecast. This is done by combining information on (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, and (3) simulated fluxes from the model. Because the method is simple and flexible, it can easily run in real time as part of a forecasting system.
Cindy Cressot, Isabelle Pison, Peter J. Rayner, Philippe Bousquet, Audrey Fortems-Cheiney, and Frédéric Chevallier
Atmos. Chem. Phys., 16, 9089–9108, https://doi.org/10.5194/acp-16-9089-2016, https://doi.org/10.5194/acp-16-9089-2016, 2016
Short summary
Short summary
Several hypothesis have been made to attribute current trends in atmospheric methane to particular regions. In this context, this work aims at evaluating how well anomalies in methane emissions can be detected at the regional scale with currently available observing systems: two space-borne instruments and a surface network. Our results show that inter-annual analyses of methane emissions inferred by atmospheric inversions should always include an uncertainty assessment.
Peter Rayner, Anna M. Michalak, and Frédéric Chevallier
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-148, https://doi.org/10.5194/gmd-2016-148, 2016
Revised manuscript not accepted
Short summary
Short summary
Numerical models are among our most important tools for understanding and prediction. Models include quantities or equations that we cannot verify directly. We learn about these unknowns by comparing model output with observations and using some algorithm to improve the inputs. We show here that the many methods for doing this are special cases of underlying statistics. This provides a unified way of comparing and contrasting such methods.
Christian Frankenberg, Susan S. Kulawik, Steven C. Wofsy, Frédéric Chevallier, Bruce Daube, Eric A. Kort, Christopher O'Dell, Edward T. Olsen, and Gregory Osterman
Atmos. Chem. Phys., 16, 7867–7878, https://doi.org/10.5194/acp-16-7867-2016, https://doi.org/10.5194/acp-16-7867-2016, 2016
Short summary
Short summary
We use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1).
Lin Wu, Grégoire Broquet, Philippe Ciais, Valentin Bellassen, Felix Vogel, Frédéric Chevallier, Irène Xueref-Remy, and Yilong Wang
Atmos. Chem. Phys., 16, 7743–7771, https://doi.org/10.5194/acp-16-7743-2016, https://doi.org/10.5194/acp-16-7743-2016, 2016
Short summary
Short summary
This paper advances atmospheric inversion of city CO2 emissions as follows: (1) illustrate how inversion methodology can be tailored to deal with very large urban networks of sensors measuring CO2 concentrations; (2) demonstrate that atmospheric inversion could be a relevant tool of Monitoring, Reporting and Verification (MRV) of city CO2 emissions; (3) clarify the theoretical potential of inversion for reducing uncertainties in the estimates of citywide total and sectoral CO2 emissions.
Alex Boon, Grégoire Broquet, Deborah J. Clifford, Frédéric Chevallier, David M. Butterfield, Isabelle Pison, Michel Ramonet, Jean-Daniel Paris, and Philippe Ciais
Atmos. Chem. Phys., 16, 6735–6756, https://doi.org/10.5194/acp-16-6735-2016, https://doi.org/10.5194/acp-16-6735-2016, 2016
Short summary
Short summary
We measured carbon dioxide and methane concentrations at four near-ground sites located in London, 2012. We investigated the potential for using these measurements, alongside numerical modelling, to help us to understand urban greenhouse gas emissions. Low-level sites were highly sensitive to local emissions, which questions our ability to use measurements from near-ground sites in cities in some modelling applications. A gradient approach was found to be beneficial to reduce model–data errors.
Sudhanshu Pandey, Sander Houweling, Maarten Krol, Ilse Aben, Frédéric Chevallier, Edward J. Dlugokencky, Luciana V. Gatti, Emanuel Gloor, John B. Miller, Rob Detmers, Toshinobu Machida, and Thomas Röckmann
Atmos. Chem. Phys., 16, 5043–5062, https://doi.org/10.5194/acp-16-5043-2016, https://doi.org/10.5194/acp-16-5043-2016, 2016
Short summary
Short summary
This study investigates the constraint provided by measurements of Xratio (XCH4/XCO2) from space on surface fluxes of CH4 and CO2. We apply the ratio inversion method described in Pandey et al. (2015) to Xratio retrievals from the GOSAT with the TM5-4DVAR inverse modeling system, to constrain the surface fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy CH4 inversions using model-derived-XCO2 mixing ratios from CarbonTracker and MACC.
Antoine Berchet, Philippe Bousquet, Isabelle Pison, Robin Locatelli, Frédéric Chevallier, Jean-Daniel Paris, Ed J. Dlugokencky, Tuomas Laurila, Juha Hatakka, Yrjo Viisanen, Doug E. J. Worthy, Euan Nisbet, Rebecca Fisher, James France, David Lowry, Viktor Ivakhov, and Ove Hermansen
Atmos. Chem. Phys., 16, 4147–4157, https://doi.org/10.5194/acp-16-4147-2016, https://doi.org/10.5194/acp-16-4147-2016, 2016
Short summary
Short summary
We propose insights based on atmospheric observations around the Arctic circle to evaluate estimates of methane emissions to the atmosphere from the East Siberian Arctic Shelf. Based on a comprehensive statistical analysis of the observations and of high-resolution transport simulations, annual methane emissions from ESAS are estimated to range from 0.0 to 4.5 TgCH4 yr−1, with a maximum in summer and very low emissions in winter.
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
N. MacBean, F. Maignan, P. Peylin, C. Bacour, F.-M. Bréon, and P. Ciais
Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, https://doi.org/10.5194/bg-12-7185-2015, 2015
Short summary
Short summary
Previous model evaluation studies have shown that terrestrial biosphere models (TBMs) need a better representation of the leaf phenology, but the model deficiency could be related to incorrect model parameters or inaccurate model structure. This paper presents a framework for optimising the parameters of phenology models that are commonly used in TBMs. It further demonstrates that the optimisation can result in changes to trends in vegetation productivity and an improvement in gross C fluxes.
Y. Yin, F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison, and M. Saunois
Atmos. Chem. Phys., 15, 13433–13451, https://doi.org/10.5194/acp-15-13433-2015, https://doi.org/10.5194/acp-15-13433-2015, 2015
Short summary
Short summary
We studied the global CO concentration decline over the recent decade with a sophisticated atmospheric inversion system assimilating MOPITT CO retrievals, surface methane and surface methyl chloroform in situ measurements. The inversion interprets the CO concentration decline as a 23% decrease in the CO emissions from 2002 to 2011, twice the negative trend estimated by emission inventories. In contrast to bottom-up inventories, we find negative trends over China and South-east Asia.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
H. Lindqvist, C. W. O'Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, and Y. Yoshida
Atmos. Chem. Phys., 15, 13023–13040, https://doi.org/10.5194/acp-15-13023-2015, https://doi.org/10.5194/acp-15-13023-2015, 2015
Short summary
Short summary
Atmospheric carbon dioxide concentration varies seasonally mainly due to plant photosynthesis in the Northern Hemisphere. We found that the satellite GOSAT can capture this variability from space to within 1ppm. We also found that models can differ by more than 1ppm. This implies that the satellite measurements could be useful in evaluating models and their prior estimates of carbon dioxide sources and sinks.
N. Kadygrov, G. Broquet, F. Chevallier, L. Rivier, C. Gerbig, and P. Ciais
Atmos. Chem. Phys., 15, 12765–12787, https://doi.org/10.5194/acp-15-12765-2015, https://doi.org/10.5194/acp-15-12765-2015, 2015
Short summary
Short summary
We study the potential of the European Integrated Carbon Observing System (ICOS) atmospheric network for estimating European CO2 ecosystem fluxes. Regional atmospheric inversions with synthetic data are used to derive it in terms of statistical uncertainty. This potential is high in western Europe and future extensions of the network will increase it in eastern Europe. Future improvements of the models underlying the inversion should also significantly decrease uncertainties at high resolution.
R. J. Parker, H. Boesch, K. Byckling, A. J. Webb, P. I. Palmer, L. Feng, P. Bergamaschi, F. Chevallier, J. Notholt, N. Deutscher, T. Warneke, F. Hase, R. Sussmann, S. Kawakami, R. Kivi, D. W. T. Griffith, and V. Velazco
Atmos. Meas. Tech., 8, 4785–4801, https://doi.org/10.5194/amt-8-4785-2015, https://doi.org/10.5194/amt-8-4785-2015, 2015
Short summary
Short summary
Atmospheric CH4 is an important greenhouse gas. Long-term global observations are necessary to understand its behaviour, with satellite observations playing a key role. The "proxy" retrieval method is one of the most successful but relies on the contribution from atmospheric CO2 models. This work assesses the significance of the uncertainty from the model CO2 within the retrieval and determines that despite this uncertainty the data are still valuable for determining sources and sinks of CH4.
F. Chevallier
Atmos. Chem. Phys., 15, 11133–11145, https://doi.org/10.5194/acp-15-11133-2015, https://doi.org/10.5194/acp-15-11133-2015, 2015
Short summary
Short summary
We demonstrate that the current two-step approach to infer the CO2 surface fluxes from satellite measured radiances, with CO2 retrievals as an intermediate product, is not optimal. This suboptimality corrupts the 4D information flow from the radiance measurements to the surface flux estimates. It is amplified by current retrieval strategies where prior errors are much larger than the performance of prior CO2 simulations used in atmospheric inversions.
A. Berchet, I. Pison, F. Chevallier, J.-D. Paris, P. Bousquet, J.-L. Bonne, M. Y. Arshinov, B. D. Belan, C. Cressot, D. K. Davydov, E. J. Dlugokencky, A. V. Fofonov, A. Galanin, J. Lavrič, T. Machida, R. Parker, M. Sasakawa, R. Spahni, B. D. Stocker, and J. Winderlich
Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015, https://doi.org/10.5194/bg-12-5393-2015, 2015
R. Locatelli, P. Bousquet, M. Saunois, F. Chevallier, and C. Cressot
Atmos. Chem. Phys., 15, 9765–9780, https://doi.org/10.5194/acp-15-9765-2015, https://doi.org/10.5194/acp-15-9765-2015, 2015
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
L. Molina, G. Broquet, P. Imbach, F. Chevallier, B. Poulter, D. Bonal, B. Burban, M. Ramonet, L. V. Gatti, S. C. Wofsy, J. W. Munger, E. Dlugokencky, and P. Ciais
Atmos. Chem. Phys., 15, 8423–8438, https://doi.org/10.5194/acp-15-8423-2015, https://doi.org/10.5194/acp-15-8423-2015, 2015
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
F. M. Bréon, G. Broquet, V. Puygrenier, F. Chevallier, I. Xueref-Remy, M. Ramonet, E. Dieudonné, M. Lopez, M. Schmidt, O. Perrussel, and P. Ciais
Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, https://doi.org/10.5194/acp-15-1707-2015, 2015
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
L. Ammoura, I. Xueref-Remy, V. Gros, A. Baudic, B. Bonsang, J.-E. Petit, O. Perrussel, N. Bonnaire, J. Sciare, and F. Chevallier
Atmos. Chem. Phys., 14, 12871–12882, https://doi.org/10.5194/acp-14-12871-2014, https://doi.org/10.5194/acp-14-12871-2014, 2014
Short summary
Short summary
We present the first study of CO2, VOCs and NOx measured all together in a road tunnel around the Paris megacity with the aim to quantify the ratios of these species co-emitted within traffic emissions. It allows us to independently assess some of the ratios provided in the latest Paris emission inventory. It also reveals a large variability of the ratios to CO2, implying that traffic does not have a unique imprint in the urban plume, but rather leaves various signatures.
A. Agustí-Panareda, S. Massart, F. Chevallier, S. Boussetta, G. Balsamo, A. Beljaars, P. Ciais, N. M. Deutscher, R. Engelen, L. Jones, R. Kivi, J.-D. Paris, V.-H. Peuch, V. Sherlock, A. T. Vermeulen, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, https://doi.org/10.5194/acp-14-11959-2014, 2014
Short summary
Short summary
This paper presents a new operational CO2 forecast product as part of the Copernicus Atmospheric Services suite of atmospheric composition products, using the state-of-the-art numerical weather prediction model from the European Centre of Medium-Range Weather Forecasts.
The evaluation with independent observations shows that the forecast has skill in predicting the synoptic variability of CO2. The online simulation of CO2 fluxes from vegetation contributes to this skill.
S. Kuppel, P. Peylin, F. Maignan, F. Chevallier, G. Kiely, L. Montagnani, and A. Cescatti
Geosci. Model Dev., 7, 2581–2597, https://doi.org/10.5194/gmd-7-2581-2014, https://doi.org/10.5194/gmd-7-2581-2014, 2014
Short summary
Short summary
A consistent calibration of an advanced land surface model was performed by grouping in situ information on land-atmosphere exchanges of carbon and water using broad ecosystem and climate classes. Signatures of improved carbon cycle simulations were found across spatial and temporal scales, along with insights into current model limitations. These results hold promising perspectives within the ongoing efforts towards building robust model-data fusion frameworks for earth system models.
C. Wilson, M. P. Chipperfield, M. Gloor, and F. Chevallier
Geosci. Model Dev., 7, 2485–2500, https://doi.org/10.5194/gmd-7-2485-2014, https://doi.org/10.5194/gmd-7-2485-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
S. Massart, A. Agusti-Panareda, I. Aben, A. Butz, F. Chevallier, C. Crevoisier, R. Engelen, C. Frankenberg, and O. Hasekamp
Atmos. Chem. Phys., 14, 6139–6158, https://doi.org/10.5194/acp-14-6139-2014, https://doi.org/10.5194/acp-14-6139-2014, 2014
M. Balzarolo, S. Boussetta, G. Balsamo, A. Beljaars, F. Maignan, J.-C. Calvet, S. Lafont, A. Barbu, B. Poulter, F. Chevallier, C. Szczypta, and D. Papale
Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, https://doi.org/10.5194/bg-11-2661-2014, 2014
R. L. Thompson, F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki
Atmos. Chem. Phys., 14, 1801–1817, https://doi.org/10.5194/acp-14-1801-2014, https://doi.org/10.5194/acp-14-1801-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
C. Cressot, F. Chevallier, P. Bousquet, C. Crevoisier, E. J. Dlugokencky, A. Fortems-Cheiney, C. Frankenberg, R. Parker, I. Pison, R. A. Scheepmaker, S. A. Montzka, P. B. Krummel, L. P. Steele, and R. L. Langenfelds
Atmos. Chem. Phys., 14, 577–592, https://doi.org/10.5194/acp-14-577-2014, https://doi.org/10.5194/acp-14-577-2014, 2014
P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. Rayner, C. Rödenbeck, I. T. van der Laan-Luijkx, and X. Zhang
Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, https://doi.org/10.5194/bg-10-6699-2013, 2013
R. Locatelli, P. Bousquet, F. Chevallier, A. Fortems-Cheney, S. Szopa, M. Saunois, A. Agusti-Panareda, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, E. Gloor, S. Houweling, S. R. Kawa, M. Krol, P. K. Patra, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson
Atmos. Chem. Phys., 13, 9917–9937, https://doi.org/10.5194/acp-13-9917-2013, https://doi.org/10.5194/acp-13-9917-2013, 2013
G. Broquet, F. Chevallier, F.-M. Bréon, N. Kadygrov, M. Alemanno, F. Apadula, S. Hammer, L. Haszpra, F. Meinhardt, J. A. Morguí, J. Necki, S. Piacentino, M. Ramonet, M. Schmidt, R. L. Thompson, A. T. Vermeulen, C. Yver, and P. Ciais
Atmos. Chem. Phys., 13, 9039–9056, https://doi.org/10.5194/acp-13-9039-2013, https://doi.org/10.5194/acp-13-9039-2013, 2013
A. Berchet, I. Pison, F. Chevallier, P. Bousquet, S. Conil, M. Geever, T. Laurila, J. Lavrič, M. Lopez, J. Moncrieff, J. Necki, M. Ramonet, M. Schmidt, M. Steinbacher, and J. Tarniewicz
Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, https://doi.org/10.5194/acp-13-7115-2013, 2013
N. Huneeus, O. Boucher, and F. Chevallier
Atmos. Chem. Phys., 13, 6555–6573, https://doi.org/10.5194/acp-13-6555-2013, https://doi.org/10.5194/acp-13-6555-2013, 2013
F. Chevallier
Geosci. Model Dev., 6, 783–790, https://doi.org/10.5194/gmd-6-783-2013, https://doi.org/10.5194/gmd-6-783-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
Related subject area
Biogeophysics: Physical - Biological Coupling
Impact of livestock activity on near-surface ground temperatures in Mongolia
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Source-to-Sink Pathways of Dissolved Organic Carbon in the River-Estuary-Ocean Continuum: A Modeling Investigation
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
The contrasted phytoplankton dynamics across a frontal system in the southwestern Mediterranean Sea
Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts
Differential feeding habits of the shallow-water hydrothermal vent crab Xenograpsus testudinatus correlate with their resident vent types at a scale of meters
Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region
Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange
Phytoplankton reaction to an intense storm in the north-western Mediterranean Sea
Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites
Reply to Lars Olof Björn's comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by Michaelian and Simeonov (2015)
Modelling submerged biofouled microplastics and their vertical trajectories
A Bayesian sequential updating approach to predict phenology of silage maize
Using an oceanographic model to investigate the mystery of the missing puerulus
Climate pathways behind phytoplankton-induced atmospheric warming
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Grazing behavior and winter phytoplankton accumulation
Episodic subduction patches in the western North Pacific identified from BGC-Argo float data
Do Loop Current eddies stimulate productivity in the Gulf of Mexico?
Quasi-tropical cyclone caused anomalous autumn coccolithophore bloom in the Black Sea
Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain
Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season
Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing
Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds
Root uptake under mismatched distributions of water and nutrients in the root zone
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems
Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air
Linking tundra vegetation, snow, soil temperature, and permafrost
Drivers of the spatial phytoplankton gradient in estuarine–coastal systems: generic implications of a case study in a Dutch tidal bay
Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary
Dissolved inorganic nitrogen and particulate organic nitrogen budget in the Yucatán shelf: driving mechanisms through a physical–biogeochemical coupled model
Basal thermal regime affects the biogeochemistry of subglacial systems
Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model
Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream
Stand age and species composition effects on surface albedo in a mixedwood boreal forest
Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling
Tidal and seasonal forcing of dissolved nutrient fluxes in reef communities
Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth
Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal
Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014
Longitudinal contrast in turbulence along a ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes
Ideas and perspectives: Strengthening the biogeosciences in environmental research networks
Imprint of Southern Ocean mesoscale eddies on chlorophyll
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)
OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy
Robin B. Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1790, https://doi.org/10.5194/egusphere-2024-1790, 2024
Short summary
Short summary
Intense grazing at grassland sites removes vegetation, reduces the snow cover, and inhibits litter layers from forming. Grazed sites generally have a larger annual ground surface temperature amplitude than ungrazed sites, but the net effect depends on effects in the transitional seasons. Our results also suggest that seasonal use of pastures can reduce ground temperatures, which can be a strategy to protect currently degrading grassland permafrost.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2024-2, https://doi.org/10.5194/bg-2024-2, 2024
Revised manuscript accepted for BG
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for costal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics-biogeochemistry model. Results showed a transition from sink to source of DOC in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023, https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Short summary
The global ocean is losing oxygen due to warming. The Indian Ocean, however, is gaining oxygen in large parts of the basin, and its naturally occurring oxygen minimum zone is not expanding. This rather unexpected response is explained by the unique ocean circulation of the Indian Ocean, which is bounded by a continent to the north but connected to the Pacific Ocean by the Indonesian Throughflow.
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023, https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
Short summary
Using a numerical model, we revealed that a large proportion of nutrients in a semi-enclosed sea (Seto Inland Sea, Japan) comes from the Pacific Ocean and supports about half of the phytoplankton growth in the sea. Such results imply that the human-made management of nutrient load from land needs to consider the presence of oceanic nutrients, which act as a background concentration and are not controlled by human activities.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Jing-Ying Wu, Siou-Yan Lin, Jung-Fu Huang, Chen-Tung Arthur Chen, Jia-Jang Hung, Shao-Hung Peng, and Li-Lian Liu
Biogeosciences, 20, 2693–2706, https://doi.org/10.5194/bg-20-2693-2023, https://doi.org/10.5194/bg-20-2693-2023, 2023
Short summary
Short summary
The shallow-water hydrothermal vents off the Kueishan Island, Taiwan, have the most extreme records of pH values (1.52), temperatures (116 °C), and H2S concentrations (172.4 mmol mol−1) in the world. White and yellow vents differ in the color and physical and chemical characteristics of emitted plumes. We found that the feeding habits of the endemic vent crabs (Xenograpsus testudinatus) are adapted to their resident vent types at a distance of 100 m, and the trans-vent movement is uncommon.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021, https://doi.org/10.5194/bg-18-5903-2021, 2021
Short summary
Short summary
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations. The analysis showed that ecosystem vulnerability is caused by several varying combinations of both drivers during the yearly cycle. The approach presented here helps to provide insights on the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Sergey V. Stanichny, Elena A. Kubryakova, and Arseny A. Kubryakov
Biogeosciences, 18, 3173–3188, https://doi.org/10.5194/bg-18-3173-2021, https://doi.org/10.5194/bg-18-3173-2021, 2021
Short summary
Short summary
In this paper, we show that the short-term impact of tropical cyclones can trigger the intense, long-term bloom of coccolithophores, which are major marine calcifiers playing an important role in the balance and fluxes of inorganic carbon in the ocean. In our paper, we describe the evolution of and physical reasons for such an unusual bloom observed in autumn 2005 in the Black Sea on the basis of satellite data.
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021, https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Short summary
The sowing date is key to the surface biophysical processes in the winter dormancy period. The climate effect of the sowing date shift is therefore very interesting and may contribute to the mitigation of climate change. An earlier sowing date always had a higher LAI but a higher temperature in the dormancy period and a lower temperature in the growth period. The main reason was the relative contributions of the surface albedo and energy partitioning processes.
Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen
Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, https://doi.org/10.5194/bg-18-1577-2021, 2021
Short summary
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Jing Yan, Nathaniel A. Bogie, and Teamrat A. Ghezzehei
Biogeosciences, 17, 6377–6392, https://doi.org/10.5194/bg-17-6377-2020, https://doi.org/10.5194/bg-17-6377-2020, 2020
Short summary
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Amandine Erktan, Matthias C. Rillig, Andrea Carminati, Alexandre Jousset, and Stefan Scheu
Biogeosciences, 17, 4961–4980, https://doi.org/10.5194/bg-17-4961-2020, https://doi.org/10.5194/bg-17-4961-2020, 2020
Short summary
Short summary
Soil aggregation is crucial for soil functioning. While the role of bacteria and fungi in soil aggregation is well established, how predators feeding on microbes modify soil aggregation has hardly been investigated. We showed for the first time that protists modify soil aggregation, presumably through changes in the production of bacterial mucilage, and that collembolans reduce soil aggregation, presumably by reducing the abundance of saprotrophic fungi.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sheila N. Estrada-Allis, Julio Sheinbaum Pardo, Joao M. Azevedo Correia de Souza, Cecilia Elizabeth Enríquez Ortiz, Ismael Mariño Tapia, and Jorge A. Herrera-Silveira
Biogeosciences, 17, 1087–1111, https://doi.org/10.5194/bg-17-1087-2020, https://doi.org/10.5194/bg-17-1087-2020, 2020
Short summary
Short summary
Continental shelves are the most productive areas in the ocean and can have an important impact on the nutrient cycle as well as the climate system. The one in Yucatán is the largest shelf in the Gulf of Mexico. However, its nutrient budget remains unidentifiable. Here we propose not only a general nutrient budget for the Yucatán Shelf but also the physical processes responsible for its pathway modulation through a physical–biogeochemical coupled model of the whole Gulf of Mexico.
Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker
Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, https://doi.org/10.5194/bg-17-963-2020, 2020
Short summary
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Audrey Delpech, Anna Conchon, Olivier Titaud, and Patrick Lehodey
Biogeosciences, 17, 833–850, https://doi.org/10.5194/bg-17-833-2020, https://doi.org/10.5194/bg-17-833-2020, 2020
Short summary
Short summary
Micronekton is an important, yet poorly known, component of the trophic chain, which partly contributes to the storage of CO2 in the deep ocean thanks to biomass vertical migrations. In this study, we characterize the ideal sampling regions to estimate the amount of biomass that undergoes theses migrations. We find that observations made in warm, nondynamic and productive waters reduce the error of the estimation by 20 %. This result should likely serve for future in situ network deployment.
Filippos Tagklis, Takamitsu Ito, and Annalisa Bracco
Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020, https://doi.org/10.5194/bg-17-231-2020, 2020
Short summary
Short summary
Deoxygenation of the oceans is potentially one of the most severe ecosystem stressors resulting from global warming given the high sensitivity of dissolved oxygen to ocean temperatures. Climate models suggest that despite the thermodynamic tendency of the oceans to lose oxygen, certain regions experience significant changes in the biologically driven O2 consumption, resulting in a resistance against deoxygenation. Overturning circulation changes are responsible for such a behavior.
Mohammad Abdul Halim, Han Y. H. Chen, and Sean C. Thomas
Biogeosciences, 16, 4357–4375, https://doi.org/10.5194/bg-16-4357-2019, https://doi.org/10.5194/bg-16-4357-2019, 2019
Short summary
Short summary
Using field data collected over 4 years across a range of stand ages, we investigated how seasonal surface albedo in boreal forest varies with stand age, stand structure, and composition. Our results indicate that successional change in species composition is a key driver of age–related patterns in albedo, with hardwood species associated with higher albedo. The patterns described have important implications for both climate modeling and
climate–smartboreal forest management.
Paul A. Moore, Maxwell C. Lukenbach, Dan K. Thompson, Nick Kettridge, Gustaf Granath, and James M. Waddington
Biogeosciences, 16, 3491–3506, https://doi.org/10.5194/bg-16-3491-2019, https://doi.org/10.5194/bg-16-3491-2019, 2019
Short summary
Short summary
Using very-high-resolution digital elevation models (DEMs), we assessed the basic structure and microtopographic variability of hummock–hollow plots at boreal and hemi-boreal sites primarily in North America. Using a simple model of peatland biogeochemical function, our results suggest that both surface heating and moss productivity may not be adequately resolved in models which only consider idealized hummock–hollow units.
Renee K. Gruber, Ryan J. Lowe, and James L. Falter
Biogeosciences, 16, 1921–1935, https://doi.org/10.5194/bg-16-1921-2019, https://doi.org/10.5194/bg-16-1921-2019, 2019
Short summary
Short summary
Researchers from the University of Western Australia's Oceans Institute are studying large tides (up to 12 m range) that occur in the Kimberley region of Australia. These tides flush coral reefs with water rich in nutrients, which supports the growth of reef organisms. In this paper, we show how tidal cycles and seasons control nutrient availability on reefs. This study is among the first published accounts of reefs and water quality data in the remote and pristine Kimberley region.
Sergey A. Marakushev and Ol'ga V. Belonogova
Biogeosciences, 16, 1817–1828, https://doi.org/10.5194/bg-16-1817-2019, https://doi.org/10.5194/bg-16-1817-2019, 2019
Short summary
Short summary
Among the existing theories of the autotrophic origin of life, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable to development of primary methanotroph.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018, https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Short summary
To investigate how grazing alters litter composition, quality and decomposition, we collected litter from grazing (GP) and grazing exclusion paddocks (GEP) and incubated them in situ and across sites. Grazing increased litter N and grazing exclusion increased litter mass of palatable species and promoted SOC. Litter decomposed faster in GP and N was opposite. Site environment had more impact on litter decomposition. Results may be helpful in developing strategies to restore degraded grasslands.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018, https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Short summary
Oceanographic campaigns to measure biogeochemical processes popularly deploy drifters with onboard incubations to stay in a single body of water. Here, we aggregate physical data taken during such a cruise, OUTPACE, to independently test in a new approach whether the drifter really stayed in what can be considered a single biological or chemical environment. This study concludes that future campaigns would benefit from similar data collection and analysis to validate their sampling strategy.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A.,
Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., and Jain, A.
K.: The dominant role of semi-arid ecosystems in the trend and variability
of the land CO2 sink, Science, 48, 895–899, 2015.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The data assimilation research testbed: A community
facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Bacour, C., Peylin, P., MacBean, N., Rayner, P. J., Delage, F., Chevallier,
F., Weiss, M., Demarty, J., Santaren, D., and Baret, F.: Joint assimilation
of eddy covariance flux measurements and FAPAR products over temperate
forests within a process-oriented biosphere model, J. Geophys. Res.-Biogeo., 120, 1839–1857, 2015.
Bacour, C., Maignan, F., Peylin, P., Macbean, N., Bastrikov, V., Joiner, J.,
Köhler, P., Guanter, L., and Frankenberg, C.: Differences between OCO-2
and GOME-2 SIF products from a model-data fusion perspective, J. Geophys. Res.-Biogeo., 124, 3143–3157, 2019a.
Bacour, C., Maignan, F., MacBean, N., Porcar-Castell, A., Flexas, J., Frankenberg, C., Peylin, P., Chevallier, F., Vuichard, N., and Bastrikov, V.: Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model, J. Geophys. Res.-Biogeo., 124, 3281–3306. https://doi.org/10.1029/2019jg005040, 2019b.
Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., and Peylin, P.: Land surface model parameter optimisation using in situ flux data: comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2), Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, 2018.
Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., and Monfray, P.: A
global prognostic scheme of leaf onset using satellite data, Global Change Biol., 6, 709–725, 2000.
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical
parameters: The importance of model discrepancy, Inverse Probl., 30,
114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014.
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm
for bound constrained optimization, SIAM J. Sci. Comput.,
16, 1190–1208, 1995.
Cameron, D., Hartig, F., Minnuno, F., Oberpriller, J., Reineking, B., Van
Oijen, M., and Dietze, M.: Issues in calibrating models with multiple
unbalanced constraints: the significance of systematic model and data
errors, Meth. Ecol. Evol., 13, 2757–2770, 2022.
Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic
of a data assimilation system, Quarterly Journal of the Royal Meteorological
Society: A journal of the atmospheric sciences, applied meteorology and
physical oceanography, Q. J. Roy. Meteor. Soc., 130, 2767–2786, 2004.
Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D.,
Montagnani, L., Papale, D., Rambal, S., and Seixas, J.: Identification of
vegetation and soil carbon pools out of equilibrium in a process model via
eddy covariance and biometric constraints, Global Change Biol., 16,
2813–2829, 2010.
Chevallier, F., Bréon, F. M., and Rayner, P. J.: Contribution of the
Orbiting Carbon Observatory to the estimation of CO2 sources and sinks:
Theoretical study in a variational data assimilation framework, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007375, 2007.
Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., Frankenberg, C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B., Steele, L. P., and Langenfelds, R. L.: On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577–592, https://doi.org/10.5194/acp-14-577-2014, 2014.
Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019.
Dee, D. P.: Bias and data assimilation, Q. J. Roy.
Meteor. Soc., 131, 3323–3343, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., and Bauer, D. P.:
The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc.,
131, 3385–3396, 2005.
Dietze, M. C., Lebauer, D. S., and Kooper, R. O. B: On improving the
communication between models and data, Plant, Cell Environ., 36,
1575–1585, 2013.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., and Benshila, R.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Exbrayat, J.-F., Pitman, A. J., and Abramowitz, G.: Response of microbial
decomposition to spin-up explains CMIP5 soil carbon range until 2100,
Geoscientific Model Development, 7(6), 2683–2692, 2014.
Forkel, M., Carvalhais, N., Schaphoff, S., v. Bloh, W., Migliavacca, M., Thurner, M., and Thonicke, K.: Identifying environmental controls on vegetation greenness phenology through model–data integration, Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, 2014.
Fox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K.,
Litvak, M. E., MacBean, N., Schimel, D. S., and Moore, D. J.: Evaluation of
a data assimilation system for land surface models using CLM4.5, J. Adv. Model. Earth Sy., 10, 2471–2494, 2018.
FLUXNET: La Thuile Synthesis Dataset, FLUXNET [data set], https://fluxnet.org/data/la-thuile-dataset/, last access: September 2016.
Giering, R., Kaminski, T., and Slawig, T.: Generating efficient derivative
code with TAF: Adjoint and tangent linear Euler flow around an airfoil,
Future generation computer systems, 21, 1345–1355, 2005.
GLOBALVIEW: Cooperative Global Atmospheric Data Integration Project, updated annually, Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979–2012 (obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013-12-23), compiled by NOAA Global Monitoring Division: Boulder, Colorado, USA Data product: doi:10.3334/OBSPACK/1002, 2013.
Groenendijk, M., Dolman, A. J., Van Der Molen, M. K., Leuning, R., Arneth,
A., Delpierre, N., Gash, J. H. C., Lindroth, A., Richardson, A. D., and
Verbeeck, H.: Assessing parameter variability in a photosynthesis model
within and between plant functional types using global Fluxnet eddy
covariance data, Agr. Forest Meteorol., 151, 22–38, 2011.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne,
J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., and Grandpeix,
J.-Y.: The LMDZ4 general circulation model: climate performance and
sensitivity to parametrized physics with emphasis on tropical convection,
Clim. Dynam., 27, 787–813, 2006.
Jian, J., Vargas, R., Anderson-Teixeira, K., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., and Bond-Lamberty, B.: A restructured and updated global soil respiration database (SRDB-V5), Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, 2021.
Kaminski, T., Knorr, W., Rayner, P. J., and Heimann, M.: Assimilating
atmospheric data into a terrestrial biosphere model: A case study of the
seasonal cycle, Global Biogeochem. Cy., 16, 14–1, 2002.
Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P. J.,
Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., and Giering, R.: The
BETHY/JSBACH carbon cycle data assimilation system: Experiences and
challenges, J. Geophys. Res.-Biogeo., 118,
1414–1426, 2013.
Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T., Kattge, J.,
and Gobron, N.: Simultaneous assimilation of satellite and eddy covariance
data for improving terrestrial water and carbon simulations at a semi-arid
woodland site in Botswana, Biogeosciences, 10, 789–802, 2013.
Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D.: Rate
my data: quantifying the value of ecological data for the development of
models of the terrestrial carbon cycle, Ecol. Appl., 23,
273–286, 2013.
Klonecki, A., Pommier, M., Clerbaux, C., Ancellet, G., Cammas, J.-P., Coheur, P.-F., Cozic, A., Diskin, G. S., Hadji-Lazaro, J., Hauglustaine, D. A., Hurtmans, D., Khattatov, B., Lamarque, J.-F., Law, K. S., Nedelec, P., Paris, J.-D., Podolske, J. R., Prunet, P., Schlager, H., Szopa, S., and Turquety, S.: Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements, Atmos. Chem. Phys., 12, 4493–4512, https://doi.org/10.5194/acp-12-4493-2012, 2012.
Knorr, W. and Heimann, M.: Impact of drought stress and other factors on
seasonal land biosphere CO2 exchange studied through an atmospheric tracer
transport model, Tellus B, 47, 471–489, 1995.
Knorr, W. and Kattge, J.: Inversion of terrestrial ecosystem model parameter
values against eddy covariance measurements by Monte Carlo sampling, Global Change Biol., 11, 1333–1351, 2005.
Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Giering, R.,
and Mathieu, P.-P.: Carbon cycle data assimilation with a generic phenology
model, J. Geophys. Res.-Biogeo., 115, https://doi.org/10.1029/2009JG001119, 2010.
Kondo, M., Patra, P. K., Sitch, S., Friedlingstein, P., Poulter, B.,
Chevallier, F.,... & Ziehn, T.: State of the science in reconciling
top-down and bottom-up approaches for terrestrial CO2 budget, Global Change Biol., 26(3), 1068-1084, 2020.
Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: Atmospheric
constraints on gross primary productivity and net ecosystem productivity:
Results from a carbon-cycle data assimilation system, Global Biogeochem. Cy., 26, https://doi.org/10.1029/2010GB003900, 2012.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, https://doi.org/10.1029/2003GB002199, 2005.
Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D.,
Yatheendradas, S., and Santanello, J. A.: A comparison of methods for a
priori bias correction in soil moisture data assimilation, Water Resour.
Res., 48, https://doi.org/10.1029/2010WR010261, 2012.
Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A. D.: Constraining a global ecosystem model with multi-site eddy-covariance data, Biogeosciences, 9, 3757–3776, https://doi.org/10.5194/bg-9-3757-2012, 2012.
Kuppel, S., Chevallier, F., and Peylin, P.: Quantifying the model structural error in carbon cycle data assimilation systems, Geosci. Model Dev., 6, 45–55, https://doi.org/10.5194/gmd-6-45-2013, 2013.
Kuppel, S., Peylin, P., Maignan, F., Chevallier, F., Kiely, G., Montagnani, L., and Cescatti, A.: Model–data fusion across ecosystems: from multisite optimizations to global simulations, Geosci. Model Dev., 7, 2581–2597, https://doi.org/10.5194/gmd-7-2581-2014, 2014.
Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher, R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D., Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M., Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I. C., Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J. Y., Zaehle, S., and Zhou, X. H.: A framework for benchmarking land models, Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, 2012.
MacBean, N., Maignan, F., Peylin, P., Bacour, C., Bréon, F.-M., and Ciais, P.: Using satellite data to improve the leaf phenology of a global terrestrial biosphere model, Biogeosciences, 12, 7185–7208, https://doi.org/10.5194/bg-12-7185-2015, 2015.
MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schürmann, G.: Consistent assimilation of multiple data streams in a carbon cycle data assimilation system, Geosci. Model Dev., 9, 3569–3588, https://doi.org/10.5194/gmd-9-3569-2016, 2016.
MacBean, N., Bacour, C., Raoult, N., Bastrikov, V., Koffi, E. N., Kuppel,
S., Maignan, F., Ottlé, C., Peaucelle, M., Santaren, D., and Peylin, P.:
Quantifying and Reducing Uncertainty in Global Carbon Cycle Predictions:
Lessons and Perspectives From 15 Years of Data Assimilation Studies with the
ORCHIDEE Terrestrial Biosphere Model, Global Biogeochem. Cy.,
e2021GB007177, https://doi.org/10.1029/2021GB007177, 2022.
Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T.,
Matteucci, G., Manca, G., and Seufert, G.: Modeling gross primary production
of agro-forestry ecosystems by assimilation of satellite-derived information
in a process-based model, Sensors, 9, 922–942, 2009.
Moore, D. J., Hu, J., Sacks, W. J., Schimel, D. S., and Monson, R. K.:
Estimating transpiration and the sensitivity of carbon uptake to water
availability in a subalpine forest using a simple ecosystem process model
informed by measured net CO2 and H2O fluxes, Agr. Forest Meteorol., 148, 1467–1477, 2008.
Nave, L., Johnson, K., Van Ingen, C., Agarwal, D., Humphrey, M., and Beekwilder, N.: International Soil Carbon Network (ISCN) Database v3-1, https://doi.org/10.17040/ISCN/1305039, 2016.
Oberpriller, J., Cameron, D. R., Dietze, M. C., and Hartig, F.: Towards
robust statistical inference for complex computer models, Ecol. Lett.,
24, 1251–1261, 2021.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of
factors controlling soil organic matter levels in Great Plains grasslands,
Soil Sci. Soc. Am. J., 51, 1173–1179, 1987.
Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O'Dell, C., Jacobson, A. R., Chevallier, F., Liu, J., Eldering, A., Crisp, D., Deng, F., Weir, B., Basu, S., Johnson, M. S., Philip, S., and Baker, I.: Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, 2022.
Peylin, P., Bousquet, P., Le Quéré, C., Sitch, S., Friedlingstein, P., McKinley, G., Gruber, N., Rayner, P., and Ciais, P.: Multiple constraints on regional CO2 flux variations over land and oceans, Global Biogeochem. Cy., 19, 2005, https://doi.org/10.1029/2003GB002214
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013.
Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet, P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016.
Quaife, T., Lewis, P., De Kauwe, M., Williams, M., Law, B. E., Disney, M.,
and Bowyer, P.: Assimilating canopy reflectance data into an ecosystem model
with an Ensemble Kalman Filter, Remote Sens. Environ., 112,
1347–1364, 2008.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 3 (GFEDv3.1), Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1191, 2013.
Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833–2852, https://doi.org/10.5194/gmd-9-2833-2016, 2016.
Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S., Heimann, M.,
Ojima, D. S., Quegan, S., and Schmullius, C. C.: Model–data synthesis in
terrestrial carbon observation: methods, data requirements and data
uncertainty specifications, Global Change Biol., 11, 378–397, 2005.
Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cy., 19, 2005, https://doi.org/10.1029/2004GB002254, 2005.
Ricciuto, D. M., King, A. W., Dragoni, D., and Post, W. M.: Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length, J. Geophys. Res.-Biogeo., 116, https://doi.org/10.1029/2010JG001400, 2011.
Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J., Dail, D.
B., Davidson, E. A., Scott, N. A., Evans, R. S., Hughes, H., and Lee, J. T.:
Estimating parameters of a forest ecosystem C model with measurements of
stocks and fluxes as joint constraints, Oecologia, 164, 25–40, 2010.
Sacks, W. J., Schimel, D. S., and Monson, R. K.: Coupling between carbon
cycling and climate in a high-elevation, subalpine forest: a model-data
fusion analysis, Oecologia, 151, 54–68, 2007.
Santaren, D., Peylin, P., Viovy, N., and Ciais, P.: Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France, Global Biogeochem. Cy., 21, https://doi.org/10.1029/2006GB002834, 2007.
Santaren, D., Peylin, P., Bacour, C., Ciais, P., and Longdoz, B.: Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances, Biogeosciences, 11, 7137–7158, https://doi.org/10.5194/bg-11-7137-2014, 2014.
Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S.,
Painter, T. H., and Townsend, A. R.: Climatic, edaphic, and biotic
controls over storage and turnover of carbon in soils, Global Biogeochem. Cy., 8, 279-293, 1994.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2
on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112, 436–441, 2015.
Schürmann, G. J., Kaminski, T., Köstler, C., Carvalhais, N., Voßbeck, M., Kattge, J., Giering, R., Rödenbeck, C., Heimann, M., and Zaehle, S.: Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0, Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, 2016.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Stöckli, R., Rutishauser, T., Dragoni, D., O’keefe, J., Thornton, P. E., Jolly, M., Lu, L., and Denning, A. S.: Remote sensing data assimilation for a prognostic phenology model, J. Geophys. Res. Biogeo., 113, https://doi.org/10.1029/2008JG000781, 2008.
Tarantola, A.: Inverse problem theory and methods for model parameter
estimation, Society for industrial and applied mathematics, ISBN 0-89871-572-5, 2005.
Thum, T., MacBean, N., Peylin, P., Bacour, C., Santaren, D., Longdoz, B.,
Loustau, D., and Ciais, P.: The potential benefit of using forest biomass
data in addition to carbon and water flux measurements to constrain
ecosystem model parameters: case studies at two temperate forest sites,
Agr. Forest Meteorol., 234, 48–65, 2017.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Trémolet, Y.: Accounting for an imperfect model in 4D-Var, Quarterly
Journal of the Royal Meteorological Society: A journal of the atmospheric
sciences, Appl. Meteor. Phys. Ocean., 132,
2483–2504, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring of land surfaces, J. Geophys. Res.-Atmos., 113, D23S90, https://doi.org/10.1029/2007JD009662, 2008.
Vermote, E., Justice, C. O., and Bréon, F.-M.: Towards a generalized
approach for correction of the BRDF effect in MODIS directional
reflectances, IEEE T. Geosci. Remote, 47,
898–908, 2008.
Wang, Y.-P., Leuning, R., Cleugh, H. A., and Coppin, P. A.: Parameter
estimation in surface exchange models using nonlinear inversion: how many
parameters can we estimate and which measurements are most useful?, Global Change Biol., 7, 495–510, 2001.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wutzler, T. and Carvalhais, N.: Balancing multiple constraints in model-data
integration: Weights and the parameter block approach, J. Geophys. Res.-Biogeo., 119, 2112–2129, 2014.
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization, ACM
Transactions on mathematical software, 23, 550–560, 1997.
Zobitz, J. M., Moore, D. J., Quaife, T., Braswell, B. H., Bergeson, A.,
Anthony, J. A., and Monson, R. K.: Joint data assimilation of satellite
reflectance and net ecosystem exchange data constrains ecosystem carbon
fluxes at a high-elevation subalpine forest, Agr. Forest
Meteorol., 195, 73–88, 2014.
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
The impact of assimilating different dataset combinations on regional to global-scale C budgets...
Altmetrics
Final-revised paper
Preprint