Articles | Volume 20, issue 13
https://doi.org/10.5194/bg-20-2727-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2727-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Haiyang Shi
School of Earth Sciences and Engineering, Hohai University, Nanjing, 211100, China
Sino-Belgian Joint Laboratory of Geo-Information, Ghent 9000, Belgium
Geping Luo
CORRESPONDING AUTHOR
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese
Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
The National Key Laboratory of Ecological Security and Sustainable
Development in Arid Region, Chinese Academy of Sciences, Urumqi, 830011, China
Sino-Belgian Joint Laboratory of Geo-Information, Ghent 9000, Belgium
Olaf Hellwich
CORRESPONDING AUTHOR
Department of Computer Vision & Remote Sensing, Technische
Universität Berlin, 10587 Berlin, Germany
Alishir Kurban
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese
Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
The National Key Laboratory of Ecological Security and Sustainable
Development in Arid Region, Chinese Academy of Sciences, Urumqi, 830011, China
Sino-Belgian Joint Laboratory of Geo-Information, Ghent 9000, Belgium
Philippe De Maeyer
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi,
Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese
Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory of Geo-Information, Ghent 9000, Belgium
Tim Van de Voorde
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory of Geo-Information, Ghent 9000, Belgium
Related authors
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Philippe de Maeyer and Jan Vandersmissen
Abstr. Int. Cartogr. Assoc., 10, 55, https://doi.org/10.5194/ica-abs-10-55-2025, https://doi.org/10.5194/ica-abs-10-55-2025, 2025
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 6, 49, https://doi.org/10.5194/ica-abs-6-49-2023, https://doi.org/10.5194/ica-abs-6-49-2023, 2023
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 5, 3, https://doi.org/10.5194/ica-abs-5-3-2022, https://doi.org/10.5194/ica-abs-5-3-2022, 2022
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Jana Ameye, Philippe De Maeyer, Mario Hernandez, and Luc Zwartjes
Abstr. Int. Cartogr. Assoc., 3, 5, https://doi.org/10.5194/ica-abs-3-5-2021, https://doi.org/10.5194/ica-abs-3-5-2021, 2021
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Cited articles
Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G., and Tuttle,
S. E.: Plant functional traits and climate influence drought intensification
and land–atmosphere feedbacks, P. Natl. Acad. Sci. USA, 116, 14071–14076, 2019.
Bairey, E., Kelsic, E. D., and Kishony, R.: High-order species interactions
shape ecosystem diversity, Nat. Commun., 7, 1–7,
https://doi.org/10.1038/ncomms12285, 2016.
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere–the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, 2014.
Barnes, M. L., Farella, M. M., Scott, R. L., Moore, D. J. P., Ponce-Campos,
G. E., Biederman, J. A., MacBean, N., Litvak, M. E., and Breshears, D. D.:
Improved dryland carbon flux predictions with explicit consideration of
water-carbon coupling, Commun. Earth Environ., 2, 1–9,
https://doi.org/10.1038/s43247-021-00308-2, 2021.
Borchert, R., Calle, Z., Strahler, A. H., Baertschi, A., Magill, R. E.,
Broadhead, J. S., Kamau, J., Njoroge, J., and Muthuri, C.: Insolation and
photoperiodic control of tree development near the equator, New Phytol.,
205, 7–13, 2015.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.:
Toward a metabolic theory of ecology, Ecology, 85, 1771–1789, 2004.
Chan, T., Ross, H., Hoverman, S., and Powell, B.: Participatory development
of a Bayesian network model for catchment-based water resource management,
Water Resour. Res., 46, W07544, https://doi.org/10.1029/2009WR008848, 2010.
Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek,
P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., and Hobbie,
S. E.: Consequences of changing biodiversity, Nature, 405, 234–242, 2000.
Cui, P. and Athey, S.: Stable learning establishes some common ground
between causal inference and machine learning, Nat. Mach. Intell., 4, 110–115,
https://doi.org/10.1038/s42256-022-00445-z, 2022.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.
Diaz, S. and Cabido, M.: Plant functional types and ecosystem function in
relation to global change, J. Veg. Sci., 8, 463–474,
https://doi.org/10.2307/3237198, 1997.
Enquist, B. J., Economo, E. P., Huxman, T. E., Allen, A. P., Ignace, D. D.,
and Gillooly, J. F.: Scaling metabolism from organisms to ecosystems,
Nature, 423, 639–642, 2003.
Flanagan, L. B. and Johnson, B. G.: Interacting effects of temperature, soil
moisture and plant biomass production on ecosystem respiration in a northern
temperate grassland, Agr. Forest Meteorol., 130, 237–253,
2005.
Flechard, C. R., Ibrom, A., Skiba, U. M., de Vries, W., van Oijen, M., Cameron, D. R., Dise, N. B., Korhonen, J. F. J., Buchmann, N., Legout, A., Simpson, D., Sanz, M. J., Aubinet, M., Loustau, D., Montagnani, L., Neirynck, J., Janssens, I. A., Pihlatie, M., Kiese, R., Siemens, J., Francez, A.-J., Augustin, J., Varlagin, A., Olejnik, J., Juszczak, R., Aurela, M., Berveiller, D., Chojnicki, B. H., Dämmgen, U., Delpierre, N., Djuricic, V., Drewer, J., Dufrêne, E., Eugster, W., Fauvel, Y., Fowler, D., Frumau, A., Granier, A., Gross, P., Hamon, Y., Helfter, C., Hensen, A., Horváth, L., Kitzler, B., Kruijt, B., Kutsch, W. L., Lobo-do-Vale, R., Lohila, A., Longdoz, B., Marek, M. V., Matteucci, G., Mitosinkova, M., Moreaux, V., Neftel, A., Ourcival, J.-M., Pilegaard, K., Pita, G., Sanz, F., Schjoerring, J. K., Sebastià, M.-T., Tang, Y. S., Uggerud, H., Urbaniak, M., van Dijk, N., Vesala, T., Vidic, S., Vincke, C., Weidinger, T., Zechmeister-Boltenstern, S., Butterbach-Bahl, K., Nemitz, E., and Sutton, M. A.: Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling, Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, 2020.
Fleischer, K., Wårlind, D., Van der Molen, M. K., Rebel, K. T., Arneth,
A., Erisman, J. W., Wassen, M. J., Smith, B., Gough, C. M., and Margolis, H.
A.: Low historical nitrogen deposition effect on carbon sequestration in the
boreal zone, J. Geophys. Res.-Biogeo., 120,
2542–2561, 2015.
Friedman, N., Geiger, D., and Goldszmidt, M.: Bayesian network classifiers,
Mach. Learn., 29, 131–163, 1997.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479, 2019.
Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P.
M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., and Raymond, P. A.:
The impacts of climate change on ecosystem structure and function, Front. Ecol. Environ., 11, 474–482, 2013.
de Groot, R. S., Wilson, M. A., and Boumans, R. M. J.: A typology for the
classification, description and valuation of ecosystem functions, goods and
services, Ecol. Econ., 41, 393–408,
https://doi.org/10.1016/S0921-8009(02)00089-7, 2002.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Model., 135, 147–186, 2000.
Günter, S., Stimm, B., Cabrera, M., Diaz, M. L., Lojan, M., Ordonez, E.,
Richter, M., and Weber, M.: Tree phenology in montane forests of southern
Ecuador can be explained by precipitation, radiation and photoperiodic
control, J. Trop. Ecol., 24, 247–258, 2008.
Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M.,
Seneviratne, S. I., and Frankenberg, C.: Soil moisture–atmosphere feedback
dominates land carbon uptake variability, Nature, 592, 65–69,
https://doi.org/10.1038/s41586-021-03325-5, 2021.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J.,
Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A.
J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,
J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Keshtkar, A. R., Salajegheh, A., Sadoddin, A., and Allan, M. G.: Application
of Bayesian networks for sustainability assessment in catchment modeling and
management (Case study: The Hablehrood river catchment), Ecol.
Model., 268, 48–54, 2013.
Koch, G. W., Sillett, S. C., Jennings, G. M., and Davis, S. D.: The limits
to tree height, Nature, 428, 851–854, 2004.
Konings, A., Williams, A., and Gentine, P.: Sensitivity of grassland
productivity to aridity controlled by stomatal and xylem regulation, Nat.
Geosci., 10, 284–288, 2017.
Lansu, E. M., van Heerwaarden, C., Stegehuis, A. I., and Teuling, A. J.:
Atmospheric aridity and apparent soil moisture drought in European forest
during heat waves, Geophys. Res. Lett., 47, e2020GL087091, https://doi.org/10.1029/2020GL087091, 2020.
Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., and Li, X.:
Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem
fluxes, Agr. Forest Meteorol., 278, 107642,
https://doi.org/10.1016/j.agrformet.2019.107642, 2019.
Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S.
I.: Soil moisture dominates dryness stress on ecosystem production globally,
Nat. Commun., 11, 1–9, 2020.
Liu, Q., Fu, Y. H., Zeng, Z., Huang, M., Li, X., and Piao, S.: Temperature,
precipitation, and insolation effects on autumn vegetation phenology in
temperate China, Glob. Change Biol., 22, 644–655,
https://doi.org/10.1111/gcb.13081, 2016.
Luo, Y., Peng, J., and Ma, J.: When causal inference meets deep learning,
Nat. Mach. Intell., 2, 426–427, https://doi.org/10.1038/s42256-020-0218-x,
2020.
Madani, N., Kimball, J. S., Ballantyne, A. P., Affleck, D. L. R., van
Bodegom, P. M., Reich, P. B., Kattge, J., Sala, A., Nazeri, M., Jones, M.
O., Zhao, M., and Running, S. W.: Future global productivity will be
affected by plant trait response to climate, Sci. Rep.-UK, 8, 2870,
https://doi.org/10.1038/s41598-018-21172-9, 2018.
Manning, P., Van Der Plas, F., Soliveres, S., Allan, E., Maestre, F. T.,
Mace, G., Whittingham, M. J., and Fischer, M.: Redefining ecosystem
multifunctionality, Nat. Ecol. Evol., 2, 427–436, 2018.
Marcot, B. G.: Metrics for evaluating performance and uncertainty of
Bayesian network models, Ecol. Model., 230, 50–62, 2012.
Marcot, B. G. and Hanea, A. M.: What is an optimal value of k in k-fold
cross-validation in discrete Bayesian network analysis?, Comput. Stat., 36,
2009–2031, https://doi.org/10.1007/s00180-020-00999-9, 2021.
Marcot, B. G. and Penman, T. D.: Advances in Bayesian network modelling:
Integration of modelling technologies, Environ. Modell.
Softw., 111, 386–393, 2019.
Migliavacca, M. and Musavi, T.: Reproducible Workflow: The three major axes
of terrestrial ecosystem function, Zenodo, https://doi.org/10.5281/zenodo.5153538,
2021.
Migliavacca, M., Reichstein, M., Richardson, A. D., Colombo, R., Sutton, M.
A., Lasslop, G., Tomelleri, E., Wohlfahrt, G., Carvalhais, N., and Cescatti,
A.: Semiempirical modeling of abiotic and biotic factors controlling
ecosystem respiration across eddy covariance sites, Glob. Change Biol.,
17, 390–409, 2011.
Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J.,
Baldocchi, D. D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson,
K., Bahn, M., Black, T. A., Blanken, P. D., Bonal, D., Buchmann, N.,
Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J.,
Cleverly, J., Cremonese, E., Desai, A. R., El-Madany, T. S., Farella, M. M.,
Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M.,
Gomarasca, U., Gough, C. M., Göckede, M., Ibrom, A., Ikawa, H.,
Janssens, I. A., Jung, M., Kattge, J., Keenan, T. F., Knohl, A., Kobayashi,
H., Kraemer, G., Law, B. E., Liddell, M. J., Ma, X., Mammarella, I.,
Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno, D.
E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R. P.,
Reich, P. B., Rossini, M., Rotenberg, E., Scott, R. L., Stahl, C., Weber,
U., Wohlfahrt, G., Wolf, S., Wright, I. J., Yakir, D., Zaehle, S., and
Reichstein, M.: The three major axes of terrestrial ecosystem function,
Nature, 598, 468–472, https://doi.org/10.1038/s41586-021-03939-9, 2021.
Milns, I., Beale, C. M., and Smith, V. A.: Revealing ecological networks
using Bayesian network inference algorithms, Ecology, 91, 1892–1899,
https://doi.org/10.1890/09-0731.1, 2010.
Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W.,
Zanne, A. E., Pitman, A., Hemmings, F. A., and Leishman, M. R.: Global
patterns in plant height, J. Ecol., 97, 923–932, 2009.
Monteith, J. L.: Solar radiation and productivity in tropical ecosystems,
J. Appl. Ecol., 9, 747–766, 1972.
Moon, T. K.: The expectation-maximization algorithm, IEEE Signal Proc.
Mag., 13, 47–60, 1996.
Musavi, T., Mahecha, M. D., Migliavacca, M., Reichstein, M., van de Weg, M.
J., van Bodegom, P. M., Bahn, M., Wirth, C., Reich, P. B., and Schrodt, F.:
The imprint of plants on ecosystem functioning: A data-driven approach,
Int. J. Appl. Earth Obs., 43,
119–131, 2015.
Musavi, T., Migliavacca, M., van de Weg, M. J., Kattge, J., Wohlfahrt, G.,
van Bodegom, P. M., Reichstein, M., Bahn, M., Carrara, A., and Domingues, T.
F.: Potential and limitations of inferring ecosystem photosynthetic capacity
from leaf functional traits, Ecol. Evol., 6, 7352–7366, 2016.
Myers-Smith, I. H., Thomas, H. J. D., and Bjorkman, A. D.: Plant traits
inform predictions of tundra responses to global change, New Phytol.,
221, 1742–1748, https://doi.org/10.1111/nph.15592, 2019.
Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M., and Jung, M.: Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns, Biogeosciences, 15, 2433–2447, https://doi.org/10.5194/bg-15-2433-2018, 2018.
Nojavan A., F., Qian, S. S., and Stow, C. A.: Comparative analysis of
discretization methods in Bayesian networks, Environ. Modell.
Softw., 87, 64–71, https://doi.org/10.1016/j.envsoft.2016.10.007, 2017.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and the ONEFlux
processing pipeline for eddy covariance data, Sci. Data, 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020.
Patanè, C.: Leaf Area Index, Leaf Transpiration and Stomatal Conductance
as Affected by Soil Water Deficit and VPD in Processing Tomato in Semi Arid
Mediterranean Climate, J. Agron. Crop Sci., 197, 165–176,
https://doi.org/10.1111/j.1439-037X.2010.00454.x, 2011.
Pearl, J.: Bayesian netwcrks: A model cf self-activated memory for
evidential reasoning, in: Proceedings of the 7th Conference of the Cognitive
Science Society, University of California, Irvine, CA, USA, 15–17, 1985.
Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S.,
Peñuelas, J., Belelli Marchesini, L., Blanken, P. D., Buchmann, N., and
Chen, J.: Covariations between plant functional traits emerge from
constraining parameterization of a terrestrial biosphere model, Global
Ecol. Biogeogr., 28, 1351–1365, 2019.
Piedallu, C. and Gégout, J.-C.: Multiscale computation of solar
radiation for predictive vegetation modelling, Ann. For. Sci., 64,
899–909, 2007.
Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., and Hart, B. T.:
Parameterisation and evaluation of a Bayesian network for use in an
ecological risk assessment, Environ. Modell. Softw., 22,
1140–1152, https://doi.org/10.1016/j.envsoft.2006.03.006, 2007.
Ramazi, P., Kunegel-Lion, M., Greiner, R., and Lewis, M. A.: Exploiting the
full potential of Bayesian networks in predictive ecology, Meth.
Ecol. Evol., 12, 135–149,
https://doi.org/10.1111/2041-210X.13509, 2021.
Reich, P. B. and Oleksyn, J.: Global patterns of plant leaf N and P in
relation to temperature and latitude, P. Natl. Acad.
Sci. USA, 101, 11001–11006, 2004.
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.:
Linking plant and ecosystem functional biogeography, P.
Natl. Acad. Sci. USA, 111, 13697–13702,
https://doi.org/10.1073/pnas.1216065111, 2014.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Ryan, M. G. and Yoder, B. J.: Hydraulic limits to tree height and tree
growth, Bioscience, 47, 235–242, 1997.
Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M.,
Heinke, J., Joshi, J., and Thonicke, K.: Resilience of Amazon forests
emerges from plant trait diversity, Nat. Clim. Change, 6, 1032–1036,
https://doi.org/10.1038/nclimate3109, 2016.
Santiago, L. S. and Mulkey, S. S.: Leaf productivity along a precipitation
gradient in lowland Panama: patterns from leaf to ecosystem, Trees, 19,
349–356, https://doi.org/10.1007/s00468-004-0389-9, 2005.
Shi, H., Luo, G., Zheng, H., Chen, C., Bai, J., Liu, T., Ochege, F. U., and
De Maeyer, P.: Coupling the water-energy-food-ecology nexus into a Bayesian
network for water resources analysis and management in the Syr Darya River
basin, J. Hydrol., 581, 124387,
https://doi.org/10.1016/j.jhydrol.2019.124387, 2020.
Shi, H., Luo, G., Zheng, H., Chen, C., Hellwich, O., Bai, J., Liu, T., Liu, S., Xue, J., Cai, P., He, H., Ochege, F. U., Van de Voorde, T., and de Maeyer, P.: A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins, Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, 2021a.
Shi, H., Pan, Q., Luo, G., Hellwich, O., Chen, C., Voorde, T. V. de, Kurban,
A., De Maeyer, P., and Wu, S.: Analysis of the Impacts of Environmental
Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains
with Satellite Remote Sensing Data, Remote Sens., 13, 4709,
https://doi.org/10.3390/rs13224709, 2021b.
Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis, Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, 2022a.
Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation, Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, 2022b.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A.:
Conditional variable importance for random forests, BMC Bioinformatics, 9,
307, https://doi.org/10.1186/1471-2105-9-307, 2008.
Toloşi, L. and Lengauer, T.: Classification with correlated features:
unreliability of feature ranking and solutions, Bioinformatics, 27,
1986–1994, https://doi.org/10.1093/bioinformatics/btr300, 2011.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Trifonova, N., Kenny, A., Maxwell, D., Duplisea, D., Fernandes, J., and
Tucker, A.: Spatio-temporal Bayesian network models with latent variables
for revealing trophic dynamics and functional networks in fisheries ecology,
Ecol. Inform., 30, 142–158,
https://doi.org/10.1016/j.ecoinf.2015.10.003, 2015.
Wagner, F. H., Hérault, B., Rossi, V., Hilker, T., Maeda, E. E.,
Sanchez, A., Lyapustin, A. I., Galvão, L. S., Wang, Y., and Aragão,
L. E.: Climate drivers of the Amazon forest greening, PLoS One, 12,
e0180932, https://doi.org/10.1371/journal.pone.0180932, 2017.
Wang, Z., Zhu, D., Wang, X., Zhang, Y., and Peng, S.: Regressions
underestimate the direct effect of soil moisture on land carbon sink
variability, Glob. Change Biol., 28, 7161–7163, https://doi.org/10.1111/gcb.16422, 2022.
Weih, M. and Karlsson, P. S.: Growth response of Mountain birch to air and
soil temperature: is increasing leaf-nitrogen content an acclimation to
lower air temperature?, New Phytol., 150, 147–155,
https://doi.org/10.1046/j.1469-8137.2001.00078.x, 2001.
Wen, X.-F., Yu, G.-R., Sun, X.-M., Li, Q.-K., Liu, Y.-F., Zhang, L.-M., Ren,
C.-Y., Fu, Y.-L., and Li, Z.-Q.: Soil moisture effect on the temperature
dependence of ecosystem respiration in a subtropical Pinus plantation of
southeastern China, Agr. Forest Meteorol., 137, 166–175,
https://doi.org/10.1016/j.agrformet.2006.02.005, 2006.
Wever, L. A., Flanagan, L. B., and Carlson, P. J.: Seasonal and interannual
variation in evapotranspiration, energy balance and surface conductance in a
northern temperate grassland, Agr. Forest Meteorol., 112,
31–49, https://doi.org/10.1016/S0168-1923(02)00041-2, 2002.
Wright, I. J. and Westoby, M.: Leaves at low versus high rainfall:
coordination of structure, lifespan and physiology, New Phytol., 155,
403–416, 2002.
Xu, L., Baldocchi, D. D., and Tang, J.: How soil moisture, rain pulses, and
growth alter the response of ecosystem respiration to temperature, Global
Biogeochem. Cy., 18, GB4002, https://doi.org/10.1029/2004GB002281, 2004.
Xu, S., McVicar, T. R., Li, L., Yu, Z., Jiang, P., Zhang, Y., Ban, Z., Xing,
W., Dong, N., Zhang, H., and Zhang, M.: Globally assessing the hysteresis
between sub-diurnal actual evaporation and vapor pressure deficit at the
ecosystem scale: Patterns and mechanisms, Agr. Forest
Meteorol., 323, 109085, https://doi.org/10.1016/j.agrformet.2022.109085,
2022.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu,
Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S.,
Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S.,
Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased
atmospheric vapor pressure deficit reduces global vegetation growth, Sci.
Adv., 5, eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zhou, S., Yu, B., Huang, Y., and Wang, G.: The effect of vapor pressure
deficit on water use efficiency at the subdaily time scale, Geophys.
Res. Lett., 41, 5005–5013, https://doi.org/10.1002/2014GL060741,
2014.
Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann,
S., Lorenz, R., Seneviratne, S. I., and Gentine, P.: Land–atmosphere
feedbacks exacerbate concurrent soil drought and atmospheric aridity,
P. Natl. Acad. Sci. USA, 116, 18848–18853, 2019.
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
In studies on the relationship between ecosystem functions and climate and plant traits,...
Altmetrics
Final-revised paper
Preprint