Articles | Volume 20, issue 16
https://doi.org/10.5194/bg-20-3491-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3491-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The contrasted phytoplankton dynamics across a frontal system in the southwestern Mediterranean Sea
Roxane Tzortzis
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Andrea M. Doglioli
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Monique Messié
Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
Stéphanie Barrillon
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Anne A. Petrenko
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Lloyd Izard
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN, Paris, France
Yuan Zhao
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
Francesco d'Ovidio
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN, Paris, France
Franck Dumas
SHOM, Service Hydrographique et Océanographique de la Marine, 13 Rue de Châtellier, CS592803, 29228 Brest, CEDEX 2, France
Gérald Gregori
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Related authors
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Alexandre Barboni, Solange Coadou-Chaventon, Alexandre Stegner, Briac Le Vu, and Franck Dumas
Ocean Sci., 19, 229–250, https://doi.org/10.5194/os-19-229-2023, https://doi.org/10.5194/os-19-229-2023, 2023
Short summary
Short summary
Mesoscale eddies are ubiquitous turbulent structures in the ocean, influencing the upper mixed layer. The mixed layer is the ocean surface layer mixed through air–sea exchanges. Using Argo profiling floats inside large Mediterranean anticyclones, we investigate the induced winter mixed-layer depth anomalies. Mixed-layer depth was observed to be greatly influenced by the eddy preexisting subsurface structure to which it possibly connects and can also create double-core anticyclones.
Sébastien Petton, Valérie Garnier, Matthieu Caillaud, Laurent Debreu, and Franck Dumas
Geosci. Model Dev., 16, 1191–1211, https://doi.org/10.5194/gmd-16-1191-2023, https://doi.org/10.5194/gmd-16-1191-2023, 2023
Short summary
Short summary
The nesting AGRIF library is implemented in the MARS3D hydrodynamic model, a semi-implicit, free-surface numerical model which uses a time scheme as an alternating-direction implicit (ADI) algorithm. Two applications at the regional and coastal scale are introduced. We compare the two-nesting approach to the classic offline one-way approach, based on an in situ dataset. This method is an efficient means to significantly improve the physical hydrodynamics and unravel ecological challenges.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Pierre Garreau, Franck Dumas, Stéphanie Louazel, Stéphanie Correard, Solenn Fercocq, Marc Le Menn, Alain Serpette, Valérie Garnier, Alexandre Stegner, Briac Le Vu, Andrea Doglioli, and Gerald Gregori
Earth Syst. Sci. Data, 12, 441–456, https://doi.org/10.5194/essd-12-441-2020, https://doi.org/10.5194/essd-12-441-2020, 2020
Short summary
Short summary
The oceanic circulation is composed of the main currents, of large eddies and meanders, and of fine motions at a scale of about a few hundreds of metres, rarely observed in situ. PROTEVS-MED experiments were devoted to very high resolution observations of water properties (temperature and salinity) and currents, thanks to an undulating trawled vehicle revealing a patchy, stirred and energetic ocean in the first 400 m depth. These fine-scale dynamics drive the plankton and air–sea exchanges.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Simon Barbot, Anne Petrenko, and Christophe Maes
Biogeosciences, 15, 4103–4124, https://doi.org/10.5194/bg-15-4103-2018, https://doi.org/10.5194/bg-15-4103-2018, 2018
Short summary
Short summary
In the context of the OUTPACE cruise and THOT project in the western South Pacific Ocean, we use individual float trajectories in order to understand the intermediate-flow dynamics, from 300 to 1000 m depth. We highlight two main features: exchanges of water between parallel jets entering the Coral Sea through eddies and intermediate-wave influence of the currents in the frontal area connecting the Antarctic intermediate water (AAIW) and North Pacific deep water (NPDW) masses.
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018, https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Short summary
Oceanographic campaigns to measure biogeochemical processes popularly deploy drifters with onboard incubations to stay in a single body of water. Here, we aggregate physical data taken during such a cruise, OUTPACE, to independently test in a new approach whether the drifter really stayed in what can be considered a single biological or chemical environment. This study concludes that future campaigns would benefit from similar data collection and analysis to validate their sampling strategy.
Pierre Marrec, Gérald Grégori, Andrea M. Doglioli, Mathilde Dugenne, Alice Della Penna, Nagib Bhairy, Thierry Cariou, Sandra Hélias Nunige, Soumaya Lahbib, Gilles Rougier, Thibaut Wagener, and Melilotus Thyssen
Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, https://doi.org/10.5194/bg-15-1579-2018, 2018
Short summary
Short summary
The objective of this study was to better understand the variability of the phytoplankton community structure in small physical structures at the surface of the ocean. After identifying such a structure in the Mediterranean Sea, we deployed cutting-edge physical and biological sensors in order to observe at a high frequency the dynamics of this structure. From these observations we described the variations of the phytoplankton community structure and how the physics controls this variability.
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-557, https://doi.org/10.5194/bg-2017-557, 2018
Revised manuscript not accepted
Short summary
Short summary
The Melanesian archipelago waters between 160° E and 170° W are characterized by a significant N2 fixation rates and an excess of particulate organic nitrogen compared to the canonical ratio of Redfield and a positive N*. We hypothesize that the southern branch of the subtropical gyre is probably the main vector of excess nitrogen transport in the thermocline waters showing an influence of nitrogen fixation occurring in the western tropical in a large part of the South Pacific.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, and Thierry Moutin
Biogeosciences, 14, 3471–3486, https://doi.org/10.5194/bg-14-3471-2017, https://doi.org/10.5194/bg-14-3471-2017, 2017
Short summary
Short summary
A surface summer plankton bloom in the western tropical South Pacific was sampled during the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise. We characterize the bloom's properties and the circulation responsible for its evolution. Nitrogen fixation helped sustain the bloom, and larger-scale flows, rather than the smaller ones, explain its movements. Future studies of blooms in this region can make use of these findings to track the horizontal export of plankton production.
Thierry Moutin, Andrea Michelangelo Doglioli, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, https://doi.org/10.5194/bg-14-3207-2017, 2017
Short summary
Short summary
The overall goal of OUTPACE was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L’Atalante and involved 60 scientists. The transect covered ~4 000 km from the western part of the Melanesian archipelago to the western boundary of the gyre.
Xue Chen, Wuchang Zhang, Michel Denis, Yuan Zhao, Lingfeng Huang, Zengjie Jiang, and Tian Xiao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-665, https://doi.org/10.5194/bg-2015-665, 2016
Manuscript not accepted for further review
Short summary
Short summary
We documented the distributions of environmental variables and abundances and biomasses of MFW components. Cluster analysis leaded to distinguish Inner Bay and Outer Bay clusters at each season. We confirmed the existence of a strong relationship among all MFW components and established upper and lower empirical linear boundaries for all the MFW component relationships with HP. Our study showed that the normalisation method could be used in marine area to study the microbial food web structure.
F. d'Ovidio, A. Della Penna, T. W. Trull, F. Nencioli, M.-I. Pujol, M.-H. Rio, Y.-H. Park, C. Cotté, M. Zhou, and S. Blain
Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, https://doi.org/10.5194/bg-12-5567-2015, 2015
Short summary
Short summary
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. In this spatiotemporal domain, mesoscale variability can mask climatological contrasts. Here we propose the use of multisatellite-based Lagrangian diagnostics to solve this issue.
F. Quéroué, G. Sarthou, H. F. Planquette, E. Bucciarelli, F. Chever, P. van der Merwe, D. Lannuzel, A. T. Townsend, M. Cheize, S. Blain, F. d'Ovidio, and A. R. Bowie
Biogeosciences, 12, 3869–3883, https://doi.org/10.5194/bg-12-3869-2015, https://doi.org/10.5194/bg-12-3869-2015, 2015
Short summary
Short summary
Dissolved Fe (dFe) concentrations were measured in the vicinity of the Kerguelen Islands. Direct island runoff, glacial melting, and resuspended sediments were identified as important inputs of dFe that could potentially fertilise the northern part of the plateau. Overall, heterogeneous sources of Fe over and off the plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.
V. Sanial, P. van Beek, B. Lansard, M. Souhaut, E. Kestenare, F. d'Ovidio, M. Zhou, and S. Blain
Biogeosciences, 12, 1415–1430, https://doi.org/10.5194/bg-12-1415-2015, https://doi.org/10.5194/bg-12-1415-2015, 2015
Short summary
Short summary
We investigated the origin and mechanisms of the natural iron fertilization that sustains a phytoplankton bloom downstream of the Kerguelen Islands. We used radium isotopes to trace the fate of shelf waters that may transport iron and other micronutrients towards offshore waters. We show that shelf waters are rapidly transferred offshore and may be transported across the polar front (PF). The PF may thus not be a strong physical barrier for chemical elements released by the shelf sediments.
C. Lo Monaco, N. Metzl, F. D'Ovidio, J. Llort, and C. Ridame
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-17543-2014, https://doi.org/10.5194/bgd-11-17543-2014, 2014
Revised manuscript has not been submitted
M. Zhou, Y. Zhu, F. d'Ovidio, Y.-H. Park, I. Durand, E. Kestenare, V. Sanial, P. Van-Beek, B. Queguiner, F. Carlotti, and S. Blain
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-6845-2014, https://doi.org/10.5194/bgd-11-6845-2014, 2014
Revised manuscript has not been submitted
Related subject area
Biogeophysics: Physical - Biological Coupling
Impact of livestock activity on near-surface ground temperatures in Mongolia
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Source-to-Sink Pathways of Dissolved Organic Carbon in the River-Estuary-Ocean Continuum: A Modeling Investigation
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts
Differential feeding habits of the shallow-water hydrothermal vent crab Xenograpsus testudinatus correlate with their resident vent types at a scale of meters
Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region
Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model
Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange
Phytoplankton reaction to an intense storm in the north-western Mediterranean Sea
Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites
Reply to Lars Olof Björn's comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by Michaelian and Simeonov (2015)
Modelling submerged biofouled microplastics and their vertical trajectories
A Bayesian sequential updating approach to predict phenology of silage maize
Using an oceanographic model to investigate the mystery of the missing puerulus
Climate pathways behind phytoplankton-induced atmospheric warming
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Grazing behavior and winter phytoplankton accumulation
Episodic subduction patches in the western North Pacific identified from BGC-Argo float data
Do Loop Current eddies stimulate productivity in the Gulf of Mexico?
Quasi-tropical cyclone caused anomalous autumn coccolithophore bloom in the Black Sea
Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain
Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season
Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing
Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds
Root uptake under mismatched distributions of water and nutrients in the root zone
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems
Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air
Linking tundra vegetation, snow, soil temperature, and permafrost
Drivers of the spatial phytoplankton gradient in estuarine–coastal systems: generic implications of a case study in a Dutch tidal bay
Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary
Dissolved inorganic nitrogen and particulate organic nitrogen budget in the Yucatán shelf: driving mechanisms through a physical–biogeochemical coupled model
Basal thermal regime affects the biogeochemistry of subglacial systems
Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model
Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream
Stand age and species composition effects on surface albedo in a mixedwood boreal forest
Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling
Tidal and seasonal forcing of dissolved nutrient fluxes in reef communities
Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth
Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal
Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014
Longitudinal contrast in turbulence along a ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes
Ideas and perspectives: Strengthening the biogeosciences in environmental research networks
Imprint of Southern Ocean mesoscale eddies on chlorophyll
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)
OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy
Robin B. Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1790, https://doi.org/10.5194/egusphere-2024-1790, 2024
Short summary
Short summary
Intense grazing at grassland sites removes vegetation, reduces the snow cover, and inhibits litter layers from forming. Grazed sites generally have a larger annual ground surface temperature amplitude than ungrazed sites, but the net effect depends on effects in the transitional seasons. Our results also suggest that seasonal use of pastures can reduce ground temperatures, which can be a strategy to protect currently degrading grassland permafrost.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2024-2, https://doi.org/10.5194/bg-2024-2, 2024
Revised manuscript accepted for BG
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for costal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics-biogeochemistry model. Results showed a transition from sink to source of DOC in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023, https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Short summary
The global ocean is losing oxygen due to warming. The Indian Ocean, however, is gaining oxygen in large parts of the basin, and its naturally occurring oxygen minimum zone is not expanding. This rather unexpected response is explained by the unique ocean circulation of the Indian Ocean, which is bounded by a continent to the north but connected to the Pacific Ocean by the Indonesian Throughflow.
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023, https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
Short summary
Using a numerical model, we revealed that a large proportion of nutrients in a semi-enclosed sea (Seto Inland Sea, Japan) comes from the Pacific Ocean and supports about half of the phytoplankton growth in the sea. Such results imply that the human-made management of nutrient load from land needs to consider the presence of oceanic nutrients, which act as a background concentration and are not controlled by human activities.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Jing-Ying Wu, Siou-Yan Lin, Jung-Fu Huang, Chen-Tung Arthur Chen, Jia-Jang Hung, Shao-Hung Peng, and Li-Lian Liu
Biogeosciences, 20, 2693–2706, https://doi.org/10.5194/bg-20-2693-2023, https://doi.org/10.5194/bg-20-2693-2023, 2023
Short summary
Short summary
The shallow-water hydrothermal vents off the Kueishan Island, Taiwan, have the most extreme records of pH values (1.52), temperatures (116 °C), and H2S concentrations (172.4 mmol mol−1) in the world. White and yellow vents differ in the color and physical and chemical characteristics of emitted plumes. We found that the feeding habits of the endemic vent crabs (Xenograpsus testudinatus) are adapted to their resident vent types at a distance of 100 m, and the trans-vent movement is uncommon.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Cédric Bacour, Natasha MacBean, Frédéric Chevallier, Sébastien Léonard, Ernest N. Koffi, and Philippe Peylin
Biogeosciences, 20, 1089–1111, https://doi.org/10.5194/bg-20-1089-2023, https://doi.org/10.5194/bg-20-1089-2023, 2023
Short summary
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021, https://doi.org/10.5194/bg-18-5903-2021, 2021
Short summary
Short summary
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations. The analysis showed that ecosystem vulnerability is caused by several varying combinations of both drivers during the yearly cycle. The approach presented here helps to provide insights on the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Sergey V. Stanichny, Elena A. Kubryakova, and Arseny A. Kubryakov
Biogeosciences, 18, 3173–3188, https://doi.org/10.5194/bg-18-3173-2021, https://doi.org/10.5194/bg-18-3173-2021, 2021
Short summary
Short summary
In this paper, we show that the short-term impact of tropical cyclones can trigger the intense, long-term bloom of coccolithophores, which are major marine calcifiers playing an important role in the balance and fluxes of inorganic carbon in the ocean. In our paper, we describe the evolution of and physical reasons for such an unusual bloom observed in autumn 2005 in the Black Sea on the basis of satellite data.
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021, https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Short summary
The sowing date is key to the surface biophysical processes in the winter dormancy period. The climate effect of the sowing date shift is therefore very interesting and may contribute to the mitigation of climate change. An earlier sowing date always had a higher LAI but a higher temperature in the dormancy period and a lower temperature in the growth period. The main reason was the relative contributions of the surface albedo and energy partitioning processes.
Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen
Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, https://doi.org/10.5194/bg-18-1577-2021, 2021
Short summary
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Jing Yan, Nathaniel A. Bogie, and Teamrat A. Ghezzehei
Biogeosciences, 17, 6377–6392, https://doi.org/10.5194/bg-17-6377-2020, https://doi.org/10.5194/bg-17-6377-2020, 2020
Short summary
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Amandine Erktan, Matthias C. Rillig, Andrea Carminati, Alexandre Jousset, and Stefan Scheu
Biogeosciences, 17, 4961–4980, https://doi.org/10.5194/bg-17-4961-2020, https://doi.org/10.5194/bg-17-4961-2020, 2020
Short summary
Short summary
Soil aggregation is crucial for soil functioning. While the role of bacteria and fungi in soil aggregation is well established, how predators feeding on microbes modify soil aggregation has hardly been investigated. We showed for the first time that protists modify soil aggregation, presumably through changes in the production of bacterial mucilage, and that collembolans reduce soil aggregation, presumably by reducing the abundance of saprotrophic fungi.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sheila N. Estrada-Allis, Julio Sheinbaum Pardo, Joao M. Azevedo Correia de Souza, Cecilia Elizabeth Enríquez Ortiz, Ismael Mariño Tapia, and Jorge A. Herrera-Silveira
Biogeosciences, 17, 1087–1111, https://doi.org/10.5194/bg-17-1087-2020, https://doi.org/10.5194/bg-17-1087-2020, 2020
Short summary
Short summary
Continental shelves are the most productive areas in the ocean and can have an important impact on the nutrient cycle as well as the climate system. The one in Yucatán is the largest shelf in the Gulf of Mexico. However, its nutrient budget remains unidentifiable. Here we propose not only a general nutrient budget for the Yucatán Shelf but also the physical processes responsible for its pathway modulation through a physical–biogeochemical coupled model of the whole Gulf of Mexico.
Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker
Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, https://doi.org/10.5194/bg-17-963-2020, 2020
Short summary
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Audrey Delpech, Anna Conchon, Olivier Titaud, and Patrick Lehodey
Biogeosciences, 17, 833–850, https://doi.org/10.5194/bg-17-833-2020, https://doi.org/10.5194/bg-17-833-2020, 2020
Short summary
Short summary
Micronekton is an important, yet poorly known, component of the trophic chain, which partly contributes to the storage of CO2 in the deep ocean thanks to biomass vertical migrations. In this study, we characterize the ideal sampling regions to estimate the amount of biomass that undergoes theses migrations. We find that observations made in warm, nondynamic and productive waters reduce the error of the estimation by 20 %. This result should likely serve for future in situ network deployment.
Filippos Tagklis, Takamitsu Ito, and Annalisa Bracco
Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020, https://doi.org/10.5194/bg-17-231-2020, 2020
Short summary
Short summary
Deoxygenation of the oceans is potentially one of the most severe ecosystem stressors resulting from global warming given the high sensitivity of dissolved oxygen to ocean temperatures. Climate models suggest that despite the thermodynamic tendency of the oceans to lose oxygen, certain regions experience significant changes in the biologically driven O2 consumption, resulting in a resistance against deoxygenation. Overturning circulation changes are responsible for such a behavior.
Mohammad Abdul Halim, Han Y. H. Chen, and Sean C. Thomas
Biogeosciences, 16, 4357–4375, https://doi.org/10.5194/bg-16-4357-2019, https://doi.org/10.5194/bg-16-4357-2019, 2019
Short summary
Short summary
Using field data collected over 4 years across a range of stand ages, we investigated how seasonal surface albedo in boreal forest varies with stand age, stand structure, and composition. Our results indicate that successional change in species composition is a key driver of age–related patterns in albedo, with hardwood species associated with higher albedo. The patterns described have important implications for both climate modeling and
climate–smartboreal forest management.
Paul A. Moore, Maxwell C. Lukenbach, Dan K. Thompson, Nick Kettridge, Gustaf Granath, and James M. Waddington
Biogeosciences, 16, 3491–3506, https://doi.org/10.5194/bg-16-3491-2019, https://doi.org/10.5194/bg-16-3491-2019, 2019
Short summary
Short summary
Using very-high-resolution digital elevation models (DEMs), we assessed the basic structure and microtopographic variability of hummock–hollow plots at boreal and hemi-boreal sites primarily in North America. Using a simple model of peatland biogeochemical function, our results suggest that both surface heating and moss productivity may not be adequately resolved in models which only consider idealized hummock–hollow units.
Renee K. Gruber, Ryan J. Lowe, and James L. Falter
Biogeosciences, 16, 1921–1935, https://doi.org/10.5194/bg-16-1921-2019, https://doi.org/10.5194/bg-16-1921-2019, 2019
Short summary
Short summary
Researchers from the University of Western Australia's Oceans Institute are studying large tides (up to 12 m range) that occur in the Kimberley region of Australia. These tides flush coral reefs with water rich in nutrients, which supports the growth of reef organisms. In this paper, we show how tidal cycles and seasons control nutrient availability on reefs. This study is among the first published accounts of reefs and water quality data in the remote and pristine Kimberley region.
Sergey A. Marakushev and Ol'ga V. Belonogova
Biogeosciences, 16, 1817–1828, https://doi.org/10.5194/bg-16-1817-2019, https://doi.org/10.5194/bg-16-1817-2019, 2019
Short summary
Short summary
Among the existing theories of the autotrophic origin of life, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable to development of primary methanotroph.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018, https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Short summary
To investigate how grazing alters litter composition, quality and decomposition, we collected litter from grazing (GP) and grazing exclusion paddocks (GEP) and incubated them in situ and across sites. Grazing increased litter N and grazing exclusion increased litter mass of palatable species and promoted SOC. Litter decomposed faster in GP and N was opposite. Site environment had more impact on litter decomposition. Results may be helpful in developing strategies to restore degraded grasslands.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018, https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Short summary
Oceanographic campaigns to measure biogeochemical processes popularly deploy drifters with onboard incubations to stay in a single body of water. Here, we aggregate physical data taken during such a cruise, OUTPACE, to independently test in a new approach whether the drifter really stayed in what can be considered a single biological or chemical environment. This study concludes that future campaigns would benefit from similar data collection and analysis to validate their sampling strategy.
Cited articles
Allen, J. T., Brown, L., Sanders, R., Mark Moore, C., Mus-
tard, A., Fielding, S., Lucas, M., Rixen, M., Savidge, G., Hen-
son, S., and Mayor, D.:
Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic, Nature, 437, 728–732, https://doi.org/10.1038/nature03948, 2005. a
Baklouti, M., Faure, V., Pawlowski, L., and Sciandra, A.:
Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (Eco3M) dedicated to biogeochemical modelling, Prog. Oceanogr., 71, 34–58, https://doi.org/10.1016/j.pocean.2006.05.003, 2006. a
Balbín, R., Flexas, M. d. M., López-Jurado, J. L., Pe na, M., Amores, A., and Alemany, F.:
Vertical velocities and biological consequences at a front detected at the Balearic Sea, Cont. Shelf. Res., 47, 28–41, https://doi.org/10.1016/j.csr.2012.06.008, 2012. a, b
Balbín, R., López-Jurado, J. L., Flexas, M., Reglero, P., Vélez-Velchí, P., González-Pola, C., Rodríguez, J. M., García, A., and Alemany, F.:
Interannual variability of the early summer circulation around the Balearic Islands: driving factors and potential effects on the marine ecosystem, J. Marine Syst., 138, 70–81, https://doi.org/10.1016/j.jmarsys.2013.07.004, 2014. a, b
Barceló-Llull, B., Pascual, A., Ruiz, S., Escudier, R., Torner, M., and Tintoré, J.:
Temporal and spatial hydrodynamic variability in the Mallorca channel (western Mediterranean Sea) from 8 years of underwater glider data, J. Geophys. Res.-Oceans, 124, 2769–2786, https://doi.org/10.1029/2018JC014636, 2019. a, b
Berthelot, H., Duhamel, S., L'helguen, S., Maguer, J.-F., Wang, S., Cetinić, I., and Cassar, N.:
NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton, ISME J., 13, 651–662, https://doi.org/10.1038/s41396-018-0285-8, 2019. a
Bethoux, J.:
Oxygen consumption, new production, vertical advection and environmental evolution in the Mediterranean Sea, Deep-Sea Res., 36, 769–781, https://doi.org/10.1016/0198-0149(89)90150-7, 1989. a, b
Bonnet, S., Berthelot, H., Turk-Kubo, K., Cornet-Barthaux, V., Fawcett, S., Berman-Frank, I., Barani, A., Grégori, G., Dekaezemacker, J., Benavides, M., and Capone, D. G.:
Diazotroph derived nitrogen supports diatom growth in the South West Pacific: A quantitative study using nanoSIMS, Limnol. Oceanogr., 61, 1549–1562, https://doi.org/10.1002/lno.10300, 2016. a
Boyd, P. and Newton, P.:
Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?, Deep-Sea Res. Pt. I, 46, 63–91, https://doi.org/10.1016/S0967-0637(98)00066-1, 1999. a
Brunet, C., Casotti, R., Vantrepotte, V., Corato, F., and Conversano, F.:
Picophytoplankton diversity and photoacclimation in the Strait of Sicily (Mediterranean Sea) in summer. I. Mesoscale variations, Aquat. Microb. Ecol., 44, 127–141, https://doi.org/10.3354/ame044127, 2006. a
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A.:
Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes, J. Phys. Oceanogr., 38, 44–64, https://doi.org/10.1175/2007JPO3672.1, 2008a. a
Capet, X., Mcwilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.:
Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests, J. Phys. Oceanogr., 38, 29–43, https://doi.org/10.1175/2007JPO3671.1, 2008b. a
Cerino, F., Aubry, F. B., Coppola, J., La Ferla, R., Maimone, G., Socal, G., and Totti, C.:
Spatial and temporal variability of pico-, nano-and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea), Cont. Shelf Res., 44, 94–105, https://doi.org/10.1016/j.csr.2011.06.006, 2012. a
Claustre, H., Kerhervé, P., Marty, J. C., Prieur, L., Videau, C., and Hecq, J.-H.:
Phytoplankton dynamics associated with a geostrophic front: ecological and biogeochemical implications, J. Mar. Res., 52, 711–742, https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=3110&context=journal_of_marine_research, 1994. a
Clayton, S., Nagai, T., and Follows, M. J.:
Fine scale phytoplankton community structure across the Kuroshio Front, J. Plankton Res., 36, 1017–1030, https://doi.org/10.1093/plankt/fbu020, 2014. a
Clayton, S., Lin, Y.-C., Follows, M. J., and Worden, A. Z.:
Co-existence of distinct Ostreococcus ecotypes at an oceanic front, Limnol. Oceanogr., 62, 75–88, https://doi.org/10.1002/lno.10373, 2017. a
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G., and Tintoré, J.:
Glider and satellite high resolution monitoring of a mesoscale eddy in the algerian basin: Effects on the mixed layer depth and biochemistry, J. Marine Syst., 162, 73–88, https://doi.org/10.1016/j.jmarsys.2015.12.004, 2016. a
Cullen, J. J., Geider, R., Ishizaka, J., Kiefer, D., Marra, J., Sakshaug, E., and Raven, J.:
Towards a general description of phytoplankton growth for biogeochemical models, in: Towards a model of ocean biogeochemical processes, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-84602-1_7, pp. 153–176, 1993. a
De La Rocha, C. L. and Passow, U.:
Factors influencing the sinking of POC and the efficiency of the biological carbon pump, Deep-Sea Res. Pt. II, 54, 639–658, https://doi.org/10.1016/j.dsr2.2007.01.004, 2007. a
Dubelaar, G. and Gerritzen, P.:
CytoBuoy: a step forward towards using flow cytometry in operational oceanography, Sci. Mar., 64, 255–265, https://doi.org/10.3989/scimar.2000.64n2255, 2000. a
Dubelaar, G. B. and Jonker, R. R.:
Flow cytometry as a tool for the study of phytoplankton, Sci. Mar., 64, 135–156, https://doi.org/10.3989/scimar.2000.64n2135, 2000. a
Dubelaar, G. B., Gerritzen, P. L., Beeker, A. E., Jonker, R. R., and Tangen, K.:
Design and first results of CytoBuoy: A wireless flow cytometer for in situ analysis of marine and fresh waters, Cytometry, 37, 247–254, https://doi.org/10.1002/(SICI)1097-0320(19991201)37:4<247::AID-CYTO1>3.0.CO;2-9, 1999. a
Dugenne, M., Thyssen, M., Nerini, D., Mante, C., Poggiale, J.-C., Garcia, N., Garcia, F., and Grégori, G. J.:
Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach, Front. Microbiol., 5, 485, https://doi.org/10.3389/fmicb.2014.00485, 2014. a, b, c, d
Dumas, F.:
PROTEVSMED_SWOT_2018_LEG1 cruise, RV Beautemps-Beaupré, https://doi.org/10.17183/protevsmed_swot_2018_leg1, 2018. a, b
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.:
Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation, Limnol. Oceanogr., 60, 540–552, https://doi.org/10.1002/lno.10033, 2015. a
El Hourany, R., Abboud-abi Saab, M., Faour, G., Mejia, C., Crépon, M., and Thiria, S.:
Phytoplankton diversity in the Mediterranean Sea from satellite data using self-organizing maps, J. Geophys. Res.-Oceans, 124, 5827–5843, https://doi.org/10.1029/2019JC015131, 2019. a
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998. a, b, c
Foladori, P., Quaranta, A., and Ziglio, G.:
Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume, Water Res., 42, 3757–3766, https://doi.org/10.1016/j.watres.2008.06.026, 2008. a
Fontana, S., Thomas, M. K., Moldoveanu, M., Spaak, P., and Pomati, F.:
Individual-level trait diversity predicts phytoplankton community properties better than species richness or evenness, ISME J., 12, 356–366, https://doi.org/10.1038/ismej.2017.160, 2018. a
Fowler, B. L., Neubert, M. G., Hunter-Cevera, K. R., Olson, R. J., Shalapyonok, A., Solow, A. R., and Sosik, H. M.:
Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf, P. Natl. Acad. Sci. USA, 117, 12215–12221, https://doi.org/10.1073/pnas.1918439117, 2020. a
Garreau, P., Dumas, F., Louazel, S., Correard, S., Fercocq, S., Le Menn, M., Serpette, A., Garnier, V., Stegner, A., Le Vu, B., Doglioli, A., and Gregori, G.:
PROTEVS-MED field experiments: very high resolution hydrographic surveys in the Western Mediterranean Sea, Earth Syst. Sci. Data, 12, 441–456, https://doi.org/10.5194/essd-12-441-2020, 2020. a
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O'Neill, L. W.:
Satellite observations of mesoscale eddy-induced Ekman pumping, J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1, 2015. a
Geider, R., MacIntyre, H., and Kana, T.:
Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature, Mar. Ecol. Prog. Ser., 148, 187–200, https://doi.org/10.3354/meps148187, 1997. a
Geyer, C. J.:
Practical markov chain monte carlo, Stat. Sci., 7, 473–483, 1992. a
Giordani, H., Prieur, L., and Caniaux, G.:
Advanced insights into sources of vertical velocity in the ocean, Ocean Dynam., 56, 513–524, https://doi.org/10.1007/s10236-005-0050-1, 2006. a
Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M., and Gorskya, G.:
Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis, Limnol. Oceanogr., 54, 1951–1963, https://doi.org/10.4319/lo.2009.54.6.1951, 2009. a
Hashihama, F., Saito, H., Kodama, T., Yasui-Tamura, S., Kanda, J., Tanita, I., Ogawa, H., Woodward, E. M. S., Boyd, P. W., and Furuya, K.:
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters, Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, 2021. a
Hilligsøe, K. M., Richardson, K., Bendtsen, J., Sørensen, L.-L., Nielsen, T. G., and Lyngsgaard, M. M.:
Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux, Deep-Sea Res. Pt. I, 58, 826–838, https://doi.org/10.1016/j.dsr.2011.06.004, 2011. a
Huisman, J.:
Population dynamics of light-limited phytoplankton: microcosm experiments, Ecology, 80, 202–210, https://doi.org/10.1890/0012-9658(1999)080[0202:PDOLLP]2.0.CO;2, 1999. a
Hunter-Cevera, K. R., Neubert, M. G., Solow, A. R., Olson, R. J., Shalapyonok, A., and Sosik, H. M.:
Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter, P. Natl. Acad. Sci. USA, 111, 9852–9857, https://doi.org/10.1073/pnas.1321421111, 2014. a
Jacquet, S., Prieur, L., Nival, P., and Vaulot, D.:
Structure and variability of the microbial community associated to the Alboran Sea frontal system (Western Mediterranean) in winter, J. Oceanogr. Research and data, 3, 47–75, https://hal.inrae.fr/hal-02656403 (last access: 17 August 2023), 2010. a
Jenkin, P. M.:
Oxygen production by the diatom Coscinodiscus excentricus Ehr. in relation to submarine illumination in the English Channel, J. Mar. Biol. Assoc. UK, 22, 301–343, https://doi.org/10.1017/S0025315400012030, 1937. a
Kiørboe, T.:
Turbulence, phytoplankton cell size, and the structure of pelagic food webs, Adv. Mar. Biol., 29, 1–72, https://doi.org/10.1016/S0065-2881(08)60129-7, 1993. a
Koch, A. L., Robertson, B. R., and Button, D. K.:
Deduction of the cell volume and mass from forward scatter intensity of bacteria analyzed by flow cytometry, J. Microbiol. Meth., 27, 49–61, https://doi.org/10.1016/0167-7012(96)00928-1, 1996. a
Le Moal, M., Collin, H., and Biegala, I. C.:
Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: a dominance of rhizobia, Biogeosciences, 8, 827–840, https://doi.org/10.5194/bg-8-827-2011, 2011. a
Lévy, M., Klein, P., and Treguier, A.-M.:
Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime, J. Mar. Res., 59, 535–565, https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=3400&context=journal_of_marine_research, 2001. a
Lévy, M., Franks, P., and Smith, K.:
The role of submesoscale currents in structuring marine ecosystems, Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3, 2018. a
MacIntyre, H. L., Kana, T. M., and Geider, R. J.:
The effect of water motion on short-term rates of photosynthesis by marine phytoplankton, Trends Plant Sci., 5, 12–17, https://doi.org/10.1016/S1360-1385(99)01504-6, 2000. a
Mahadevan, A.:
The impact of submesoscale physics on primary productivity of plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a, b
Mahadevan, A. and Tandon, A.:
An analysis of mechanisms for submesoscale vertical motion at ocean fronts, Ocean Model., 14, 241–256, https://doi.org/10.1016/j.ocemod.2006.05.006, 2006. a
Mara nón, E.:
Cell size as a key determinant of phytoplankton metabolism and community structure, Annu. Rev. Mar. Sci., 7, 241–264, https://doi.org/10.1146/annurev-marine-010814-015955, 2015. a
Mara nón, E., Cermeno, P., Latasa, M., and Tadonléké, R. D.:
Temperature, resources, and phytoplankton size structure in the ocean, Limnol. Oceanogr., 57, 1266–1278, https://doi.org/10.4319/lo.2012.57.5.1266, 2012. a
Marrec, P., Grégori, G., Doglioli, A. M., Dugenne, M., Della Penna, A., Bhairy, N., Cariou, T., Hélias Nunige, S., Lahbib, S., Rougier, G., Wagener, T., and Thyssen, M.:
Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea, Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, 2018. a, b, c, d
Marshall, S. M. and Orr, A.:
The photosynthesis of diatom cultures in the sea, J. Mar. Biol. Assoc. UK, 15, 321–360, https://doi.org/10.1017/S0025315400055703, 1928. a
Martin, A. P. and Richards, K. J.:
Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt. II, 48, 757–773, https://doi.org/10.1016/S0967-0645(00)00096-5, 2001. a
Marty, J.-C., Chiavérini, J., Pizay, M.-D., and Avril, B.:
Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999), Deep-Sea Res. Pt. II, 49, 1965–1985, https://doi.org/10.1016/S0967-0645(02)00022-X, 2002. a
McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., and Barker, P. M.:
A global algorithm for estimating Absolute Salinity, Ocean Sci., 8, 1123–1134, https://doi.org/10.5194/os-8-1123-2012, 2012. a
McGillicuddy, J. D. J.:
Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale, Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606, 2016. a, b
McGillicuddy, J. D. J., Robinson, A., Siegel, D., Jannasch, H., Johnson, R., Dickey, T., McNeil, J., Michaels, A., and Knap, A.:
Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, 394, 263–266, https://doi.org/10.1038/28367, 1998. a
McGillicuddy, J. D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.:
Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007. a
McWilliams, J. C.:
Submesoscale currents in the ocean, P. Roy. Soc. A-Math. Phy., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016. a
Mena, C., Reglero, P., Ferriol, P., Torres, A. P., Aparicio-González, A., Balbín, R., Santiago, R., Moyà, G., Alemany, F., and Agawin, N. S.:
Prokaryotic picoplankton spatial distribution during summer in a haline front in the Balearic Sea, Western Mediterranean, Hydrobiologia, 779, 243–257, https://doi.org/10.1007/s10750-016-2825-4, 2016. a
Millot, C.:
Circulation in the western Mediterranean Sea, J. Marine Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999. a, b, c
Millot, C. and Taupier-Letage, I.:
Circulation in the Mediterranean Sea, in: The Mediterranean Sea, edited by: Saliot, A., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/b107143, pp. 29–66, 2005. a
Millot, C., Candela, J., Fuda, J.-L., and Tber, Y.:
Large warming and salinification of the Mediterranean outflow due to changes in its composition, Deep-Sea Res. Pt. I, 53, 656–666, https://doi.org/10.1016/j.dsr.2005.12.017, 2006. a, b
Moutin, T., Van Wambeke, F., and Prieur, L.:
Introduction to the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment, Biogeosciences, 9, 3817–3825, https://doi.org/10.5194/bg-9-3817-2012, 2012. a
Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L., and Pilcher, D.:
Phytoplankton size impact on export flux in the global ocean, Global Biogeochem. Cy., 30, 1542–1562, https://doi.org/10.1002/2015GB005355, 2016. a
Navarro, G., Alvain, S., Vantrepotte, V., and Huertas, I. E.:
Identification of dominant phytoplankton functional types in the Mediterranean Sea based on a regionalized remote sensing approach, Remote Sens. Environ., 152, 557–575, https://doi.org/10.1016/j.rse.2014.06.029, 2014. a
Neal, R. M.:
Probabilistic inference using Markov chain Monte Carlo methods, Department of Computer Science, University of Toronto Toronto, ON, Canada, 1993. a
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre, B., Poulain, P.-M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T., Mahadevan, A., and Tintoré, J.:
A multiplatform experiment to unravel meso-and submesoscale processes in an intense front (AlborEx), Front. Mar. Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017. a
Petrenko, A. A., Doglioli, A. M., Nencioli, F., Kersalé, M., Hu, Z., and d'Ovidio, F.:
A review of the LATEX project: mesoscale to submesoscale processes in a coastal environment, Ocean Dynam., 67, 513–533, https://doi.org/10.1007/s10236-017-1040-9, 2017. a
Pidcock, R. E., Martin, A. P., Painter, S. C., Allen, J. T., Srokosz, M. A., Forryan, A., Stinchcombe, M., and Smeed, D. A.:
Quantifying mesoscale-driven nitrate supply: A case study, Global Biogeochem. Cy., 30, 1206–1223, https://doi.org/10.1002/2016GB005383, 2016. a
Pilo, G. S., Oke, P. R., Coleman, R., Rykova, T., and Ridgway, K.:
Patterns of vertical velocity induced by eddy distortion in an ocean model, J. Geophys. Res.-Oceans, 123, 2274–2292, https://doi.org/10.1002/2017JC013298, 2018. a
Qasim, S., Bhattathiri, P., and Devassy, V.:
The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton, Mar. Biol., 12, 200–206, https://doi.org/10.1007/BF00346767, 1972. a
Reynolds, C. S.:
The ecology of phytoplankton, Cambridge University Press, New York, USA, ISBN 10 0-521-60519-9, 2006. a
Ribalet, F., Marchetti, A., Hubbard, K. A., Brown, K., Durkin, C. A., Morales, R., Robert, M., Swalwell, J. E., Tortell, P. D., and Armbrust, E. V.:
Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters, P. Natl. Acad. Sci. USA, 107, 16571–16576, https://doi.org/10.1073/pnas.1005638107, 2010. a, b
Schroeder, K., Gasparini, G., Borghini, M., Cerrati, G., and Delfanti, R.:
Biogeochemical tracers and fluxes in the Western Mediterranean Sea, spring 2005, J. Marine Syst., 80, 8–24, https://doi.org/10.1016/j.jmarsys.2009.08.002, 2010. a, b
Shcherbina, A. Y., Sundermeyer, M. A., Kunze, E., D’Asaro, E., Badin, G., Birch, D., Brunner-Suzuki, A.-M. E., Callies, J., Kuebel Cervantes, B. T., Claret, M., Concannon, B., Early, J., Ferrari, R., Goodman, L., Harcourt, R. R., Klymak, J. M., Lee, C. M., Lelong, M.-P., Levine, M. D., Lien, R.-C., Mahadevan, A., McWilliams, J. C., Molemaker, M. J., Mukherjee, S., Nash, J. D., Özgökmen, T., Pierce, S. D., Ramachandran, S., Samelson, R. M., Sanford, T. B., Shearman, R. K., Skyllingstad, E. D., Smith, K. S., Tandon, A., Taylor, J. R., Terray, E. A., Thomas, L. N., and Ledwell, J. R.:
The LatMix summer campaign: Submesoscale stirring in the upper ocean, B. Am. Meteorol. Soc., 96, 1257–1279, https://doi.org/10.1175/BAMS-D-14-00015.1, 2015. a
Sieburth, J. M., Smetacek, V., and Lenz, J.:
Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23, 1256–1263, https://doi.org/10.4319/lo.1978.23.6.1256, 1978. a
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.:
Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010. a, b
Sterner, R. W. and Hessen, D. O.:
Algal nutrient limitation and the nutrition of aquatic herbivores, Annu. Rev. Ecol. Syst., 25, 1–29, https://doi.org/10.1146/annurev.es.25.110194.000245, 1994. a
Talmy, D., Blackford, J., Hardman-Mountford, N. J., Polimene, L., Follows, M. J., and Geider, R. J.:
Flexible C:N ratio enhances metabolism of large phytoplankton when resource supply is intermittent, Biogeosciences, 11, 4881–4895, https://doi.org/10.5194/bg-11-4881-2014, 2014. a
Thyssen, M., Tarran, G. A., Zubkov, M. V., Holland, R. J., Grégori, G., Burkill, P. H., and Denis, M.:
The emergence of automated high-frequency flow cytometry: revealing temporal and spatial phytoplankton variability, J. Plankton Res., 30, 333–343, https://doi.org/10.1093/plankt/fbn005, 2008. a, b
Thyssen, M., Grégori, G., Créach, V., Lahbib, S., Dugenne,
M., Aardema, H., Artigas, L.-F., Huang, B., Barani, A.,
Beaugeard, L., Bellaaj-Zouari, A., Beran, A., Casotti, R., Del Amo, Y., Denis, M., Dubelaar, J. B. D., Endres, S., Haraguchi, L., Karlson, B., Lambert, C., Louchart, A., Marie, D., Moncoiffé, G., Pecqueur, D., Ribalet, F., Rijkeboer, M., Silovic, T., Silva, R., Marro, S., Sosik, H. M., Sourisseau, M., Tarran, G., Van Oostende, N., Zhao, L., and Zheng, S.:
Interoperable vocabulary for marine microbial flow cytometry, Front. Mar. Sci., 9, 975877, https://doi.org/10.3389/fmars.2022.975877, 2022. a
Tzortzis, R., Doglioli, A. M., Barrillon, S., Petrenko, A. A., d'Ovidio, F., Izard, L., Thyssen, M., Pascual, A., Barceló-Llull, B., Cyr, F., Tedetti, M., Bhairy, N., Garreau, P., Dumas, F., and Gregori, G.:
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea, Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, 2021. a, b, c, d, e, f, g
Watson, A. J., Robinson, C., Robinson, J., Williams, P. l. B., and Fasham, M.:
Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic, Nature, 350, 50–53, https://doi.org/10.1038/350050a0, 1991. a
Winder, M. and Cloern, J. E.:
The annual cycles of phytoplankton biomass, Philos. T. R. Soc. B, 365, 3215–3226, https://doi.org/10.1098/rstb.2010.0125, 2010. a
Worden, A. Z. and Binder, B. J.:
Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments, Aquat. Microb. Ecol., 30, 159–174, https://doi.org/10.3354/ame030159, 2003. a
Zhang, Y., Jiao, N., and Hong, N.:
Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans, Deep-Sea Res. Pt. II, 55, 1605–1614, https://doi.org/10.1016/j.dsr2.2008.04.014, 2008. a
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
We studied a finescale frontal structure in order to highlight its influence on the dynamics and...
Altmetrics
Final-revised paper
Preprint