Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost degradation and nitrogen cycling in Arctic rivers: insights from stable nitrogen isotope studies
Adam Francis
CORRESPONDING AUTHOR
School of Geosciences, University of Edinburgh, Edinburgh, UK
Raja S. Ganeshram
School of Geosciences, University of Edinburgh, Edinburgh, UK
Robyn E. Tuerena
Scottish Association for Marine Science, Oban, UK
Robert G. M. Spencer
Department of Earth, Ocean & Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Robert M. Holmes
Woodwell Climate Research Center, Falmouth, Massachusetts, USA
Jennifer A. Rogers
Department of Earth, Ocean & Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Claire Mahaffey
Department of Earth, Ocean and Ecological Sciences, University of
Liverpool, UK
Related authors
No articles found.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
Biogeosciences, 22, 4865–4883, https://doi.org/10.5194/bg-22-4865-2025, https://doi.org/10.5194/bg-22-4865-2025, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers and isolate the possible effect on phytoplankton community composition under a high-emissions scenario.
Clément Duvert, Vanessa Solano, Dioni I. Cendón, Francesco Ulloa-Cedamanos, Liza K. McDonough, Robert G. M. Spencer, Niels C. Munksgaard, Lindsay B. Hutley, Jean-Sébastien Moquet, and David E. Butman
EGUsphere, https://doi.org/10.5194/egusphere-2025-1600, https://doi.org/10.5194/egusphere-2025-1600, 2025
Short summary
Short summary
This study examines the age and composition of carbon in tropical streams. We find that dissolved organic carbon (DOC) is centuries to millennia old, while dissolved inorganic carbon (DIC) is consistently younger, indicating a decoupling between the two. DOC age varies seasonally, with rainforest streams exporting younger DOC during high flow, while agricultural streams mobilise older DOC. Our results suggest land conversion alters carbon export, potentially worsening with climate change.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025, https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Short summary
This study provides the first evidence for biogeochemical cycling of supraglacial dissolved organic matter (DOM) in meltwater flowing through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microbes and solar radiation to alter the DOM in glacial meltwaters. This is important as supraglacial meltwaters deliver DOM to downstream aquatic environments.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
Cited articles
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim. Ac., 94, 217–237, https://doi.org/10.1016/J.GCA.2012.07.015, 2012.
Anisimov, O. and Reneva, S.: Permafrost and changing climate: the Russian
perspective, Ambio, 35, 169–175, https://doi.org/10.1579/0044-7447(2006)35[169:pacctr]2.0.co;2, .
Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke,
C., Schirrmeister, L., Pfeiffer, E.-M., and Kutzback, L.: Permafrost thaw
and liberation of inorganic nitrogen in Eastern Siberia, Permafrost Perigl., 28, 605–618, https://doi.org/10.1002/ppp.1958, 2017.
Berhe, A. A., Harte, J., Harden, J. W., and Torn, M. S.: The Significance of the
Erosion-induced Terrestrial Carbon Sink, BioScience, Narnia, 57, 337–346, https://doi.org/10.1641/B570408, 2007.
Botrel, M., Bristow, L. A., Altabet, M. A., Gregory-Eaves, I., and Maranger, R.:
Assimilation and nitrification in pelagic waters: insights using dual
nitrate stable isotopes (δ15N, δ18O) in a shallow lake,
Biogeochemistry, Springer International Publishing, 135, 221–237,
https://doi.org/10.1007/s10533-017-0369-y, 2017.
Brabets, T., Wang, B., and Meade, R.: Environmental and Hydrologic Overview
of the Yukon River Basin, Alaska and Canada Water-Resources Investigations
Report 99-4204, Anchorage,
https://pubs.usgs.gov/wri/wri994204/pdf/wri994204.pdf (last access: 4 June 2019), 2000.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, Circum-Pacific
Map, https://doi.org/10.3133/cp45, 1997.
Buchwald, C. and Casciotti, K. L.: Oxygen isotopic fractionation and
exchange during bacterial nitrite oxidation, Limnol. Oceanogr.,
55, 1064–1074, https://doi.org/10.4319/lo.2010.55.3.1064, 2010.
Casciotti, K. L., Sigman, D. M., Galanter Hastings, M., Böhlke, J. K.,
and Kilkert, A.: Measurement of the Oxygen Isotopic Composition of Nitrate in
Seawater and Freshwater Using the Denitrifier Method, American Chemical
Society, https://doi.org/10.1021/AC020113W, 2002.
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., and Westermann, S.: An observation-based constraint on permafrost loss as a
function of global warming, Nat. Clim. Change, 7, 340–344,
https://doi.org/10.1038/nclimate3262, 2017.
Drake, T. W., Guillemette, F., Hemingway, J. D., Chanton, J. P., Podgorski,
D. C., Zimov, N. S., and Spencer, R. G. M.: The Ephemeral Signature of
Permafrost Carbon in an Arctic Fluvial Network, J. Geophys. Res.-Biogeo., 123, 1475–1485, https://doi.org/10.1029/2017JG004311,
2018.
Feng, D., Gleason, C. J., Lin, P., Yang, X., Pan, M., and Ishitsuka, Y.: Recent
changes to Arctic river discharge, Nat. Commun., 12, 6917, https://doi.org/10.1038/s41467-021-27228-1, 2021.
Francis, A., Ganeshram, R., Tuerena, R., Spencer, R. G. M., Holmes, R. M., Rogers, J. A., and Mahaffey, C.: Nitrogen isotope measurements from Arctic rivers and permafrost degradation sites, February 2017–September 2018, NERC EDS British Oceanographic Data Centre NOC, [data set], https://doi.org/10.5285/e777252b-b44a-7978-e053-6c86abc0d89f, 2022.
Frey, K. E., McClelland, J. W., Holmes, R. M., and Smith, L. G.: Impacts of
climate warming and permafrost thaw on the riverine transport of nitrogen
and phosphorus to the Kara Sea, J. Geophys. Res.-Biogeo., 112, 4–58, https://doi.org/10.1029/2006JG0003692, 2007.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol. Proc., 23, 169–182, https://doi.org/10.1002/hyp.7196, 2009.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401, https://doi.org/10.1029/2004GL022025, 2005.
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49,
1763–1773, https://doi.org/10.4319/LO.2004.49.5.1763, 2004.
Harms, T. K.: Permafrost thaw and a changing nitrogen cycle,
https://www.lter.uaf.edu/sympo/2013/FRI-1045_Harms.pdf (last access: 27 August 2019), 2013.
Hassol, S.: Impacts of a warming Arctic: Arctic Climate Impact Assessment,
Cambridge University Press,
https://www.amap.no/documents/doc/impacts-of-a-warming-arctic-2004/786 (last access: 22 November 2019), 2004.
Heikoop, J. M., Throckmorton, H. M., Newman, B. D., Perkins, G. B., Iversen,
C. M., Roy Chowdhury, T., Romanovsky, V., Graham, D. E., Norby, R. J.,
Wilson, C. J., and Wullschleger, S. D.: Isotopic identification of soil and
permafrost nitrate sources in an Arctic tundra ecosystem, J. Geophys. Res.-Biogeo., 120, 1000–1017, https://doi.org/10.1002/2014JG002883, 2015.
Holmes, R. M., Peterson, B. J., Gordeev, V. v., Zhulidov, A. v., Meybeck,
M., Lammers, R. B., and Vörösmarty, C. J.: Flux of nutrients from
Russian rivers to the Arctic Ocean: Can we establish a baseline against
which to judge future changes?, Water Resour. Res., 36, 2309–2320,
https://doi.org/10.1029/2000WR900099, 2000.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. v., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coasts,
35, 369–382, https://doi.org/10.1007/S12237-011-9386-6, 2012.
Holmes, R. M., McClelland, J. W., Tank, S. E., Spencer, R. G. M., and
Shiklomanov, A. I.: Arctic Great Rivers Observatory, Water Quality Dataset, [data set],
https://www.arcticgreatrivers.org/data (last access: 25 July 2019), 2021.
Hubberten, H. W., Andreev, A., Astakhov, V. I., Demidov, I., Dowdeswell, J.
A., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Jakobsson, M., Kuzmina,
S., Larsen, E., Lunkka, J. P., Lyså, A., Mangerud, J., Möller, P.,
Saarnisto, M., Schirrmeister, L., Sher, A. V., Siegert, C., and Svendsen, J. I.:
The periglacial climate and environment in northern Eurasia during the Last
Glaciation, Quat. Sci. Rev., 23, 1333–1357, https://doi.org/10.1016/J.QUASCIREV.2003.12.012, 2004.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M.,
MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B.,
Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland
carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117,
20438–20446, https://doi.org/10.1073/PNAS.1916387117, 2020.
Janjua, M. Y. and Tallman, R. F.: A mass-balanced Ecopath model of Great
Slave Lake to support an ecosystem approach to fisheries management:
Preliminary results, Canadian Technical Report of Fisheries and Aquatic
Sciences, Winnipeg, https://pdfs.semanticscholar.org/f34d/8748a5885b2a1b4a50edfbe01f97f4c5dbfe.pdf (last access: 27 August 2019),
2015.
Jones, J. B., Petrone, K. C., Finlay, J. C., Hinzman, L. D., and Bolton, W.
R.: Nitrogen loss from watersheds of interior Alaska underlain with
discontinuous permafrost, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL021734, 2005.
Knapp, A. N., Sigman, D. M., and Lipschultz, F.: N isotopic composition of
dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series
Study site, Global Biogeochem. Cy., 19, 1–15, https://doi.org/10.1029/2004GB002320, 2005.
Loranty, M. M., Berner, L. T., Taber, E. D., Kropp, H., Natali, S. M.,
Alexander, H. D., Davydov, S. P., and Zimov, N. S.: Understory vegetation
mediates permafrost active layer dynamics and carbon dioxide fluxes in
open-canopy larch forests of northeastern Siberia, PLOS ONE, 13,
e0194014, https://doi.org/10.1371/JOURNAL.PONE.0194014, 2018.
McLean, R., Oswood, M. W., Irons III, J. G., and McDowell, W. H.: The
effect of permafrost on stream biogeochemistry: A case study of two streams
in the Alaskan (U.S.A.) taiga, Biogeochemistry, 47, 237–265,
https://doi.org/10.1023/A:1006142604714, 1999.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S.,
Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and
lability of dissolved organic matter in Siberia's Kolyma River basin,
J. Geophys. Res.-Biogeo., 117, 1028, https://doi.org/10.1029/2011JG001798, 2012.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic
isotope fractionation: Some principles; illustration for the denitrification
and nitrification processes, Plant Soil, 62, 413–430, https://doi.org/10.1007/BF02374138, 1981.
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and Wood, E. F.: A pan-arctic evaluation of changes in river discharge during
the latter half of the 20th century, Geophys. Res. Lett., 33, 1–4,
https://doi.org/10.1029/2006GL025753, 2006.
McCrackin, M. L., Harrison, J. A., and Compton, J. E.: Factors influencing
export of dissolved inorganic nitrogen by major rivers: A new, seasonal,
spatially explicit, global model, Global Biogeochem. Cy.,
28, 269–285, https://doi.org/10.1002/2013GB004723, 2014.
McIlvin, M. R. and Casciotti, K. L.: Technical Updates to the Bacterial
Method for Nitrate Isotopic Analyses, Anal. Chem., 83, 1850–1856, https://doi.org/10.1021/ac1028984, 2011.
Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., Hinkel, K. M., Walker, D.
A., and Bockheim, J. G.: Estimating active-layer thickness over a large
region: Kuparuk river basin, Alaska, U.S.A, Arctic Alpine Res.,
29, 367–378, https://doi.org/10.2307/1551985, 1997.
NOAA: Next Steps in Arctic Governance, Council of Councils,
https://councilofcouncils.cfr.org/global-memos/next-steps-arctic-governance (last access: 5 September 2019),
2014.
NSIDC: Climate and Frozen Ground – National Snow and Ice Data Center,
https://nsidc.org/cryosphere/frozenground/climate.html, (last access: 5 September 2019), 2018.
O'Donnell, J. A., Aiken, G. R., Swanson, D. K., Panda, S., Butler, K. D., and Baltensperger, A. P.: Dissolved organic matter composition of Arctic
rivers: Linking permafrost and parent material to riverine carbon, Global Biogeochem. Cy., 30, 1811–1826, https://doi.org/10.1002/2016GB005482, 2016.
Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C.
J., Lammers, R. B., Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf,
S.: Increasing river discharge to the Arctic Ocean, Science, 298,
2171–2173, https://doi.org/10.1126/SCIENCE.1077445, 2002.
Repo, M. E., Susiluoto, S., Lind, S. E., Jokinen, S., Elsakov, V., Biasi,
C., Virtanen, T., and Martikainen, P. J.: LargeN2O emissions from
cryoturbated peat soil in tundra, Nat. Geosci., 2,
189–192, https://doi.org/10.1038/ngeo434, 2009.
Schirrmeister, L., Kunitsky, V., Grosse, G., Wetterich, S., Meyer, H.,
Schwamborn, G., Babiy, O., Derevyagin, A., and Siegert, C.: Sedimentary
characteristics and origin of the Late Pleistocene Ice Complex on north-east
Siberian Arctic coastal lowlands and islands – A review, Quat.
Int., 241, 3–25, https://doi.org/10.1016/J.QUAINT.2010.04.004, 2011.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability
of Permafrost Carbon to Climate Change: Implications for the Global Carbon
Cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T. E.: The effect of permafrost thaw on old carbon release
and net carbon exchange from tundra, Nature, 459,
556–559, https://doi.org/10.1038/nature08031, 2009.
Shiklomanov, A. I., Yakovleva, T. I., Lammers, R. B., Karasev, I. Ph.,
Vörösmarty, C. J., and Linder, E.: Cold region river discharge
uncertainty-estimates from large Russian rivers, J. Hydrol., 326,
231–256, https://doi.org/10.1016/j.jhydrol.2005.10.037, 2006.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the nitrogen isotopic
analysis of nitrate in seawater and freshwater, Anal. Chem.,
73, 4145–4153, https://doi.org/10.1021/AC010088E, 2001.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane,
G., and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of
nitrate along the eastern North Pacific margin, Global Biogeochem. Cy., 19, 1–14, https://doi.org/10.1029/2005GB002458, 2005.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D.
M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of
deep nitrate as a constraint on the cycle and budget of oceanic fixed
nitrogen, Deep Sea Res. Pt. I, 56,
1419–1439, https://doi.org/10.1016/J.DSR.2009.04.007, 2009.
Sigman, D. M. and Casciotti, K. L.: Nitrogen Isotopes In The Ocean, Enc. Ocean Sci., 2001, 1884–1894, https://doi.org/10.1006/rwos.2001.0172, 2001.
Sipler, R. E. and Bronk, D. A.: Dynamics of Dissolved Organic Nitrogen,
Biogeochemistry of Marine Dissolved Organic Matter, Academic Press,
127–232, https://doi.org/10.1016/B978-0-12-405940-5.00004-2, 2015.
Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C.,
Holmes, R. M., Zimov, N., and Stubbins, A.: Detecting the signature of
permafrost thaw in Arctic rivers, Geophys. Res. Lett., 42,
2830–2835, https://doi.org/10.1002/2015GL063498, 2015.
Streletskiy, D., Anisimov, O., and Vasiliev, A.: Permafrost Degradation, Snow
and Ice-Related Hazards, Risks Disast., 10, 303–344, 2015.
Struck, U.: On The Use of Stable Nitrogen Isotopes in Present and Past Anoxic Environments, edited by: Altenbach, A., Bernhard, J., and Seckbach, J., Anoxia, Cellular Origin, Life in Extreme Habitats and Astrobiology, 21, Springer, 497–513, Dordrecht, 2012 https://doi.org/10.1007/978-94-007-1896-8_26, 2012.
Swart, P., Evans, S. and Capo, T.: The Origin of Nitrogen Isotope Values in
Algae, Miami,
https://floridadep.gov/rcp/coral/documents/lbsp-project-32a-origin-nitrogen-isotope-values-algae (last access: 18 September 2019), 2008.
Tank, S. E., Manizza, M., Holmes, R. M., McClelland, J. W., and Peterson,
B. J.: The Processing and Impact of Dissolved Riverine Nitrogen in the
Arctic Ocean, Estuar. Coasts, 35, 401–415, https://doi.org/10.1007/S12237-011-9417-3, 2012.
Thibodeau, B., Miyajima, T., Tayasu, I., Wyatt, A. S. J., Watanabe, A.:
Morimoto, N., Yoshimizu, C., and Nagata, T., Heterogeneous dissolved
organic nitrogen supply over a coral reef: First evidence from nitrogen
stable isotope ratios, Coral Reefs, 32, 1103–1110, https://doi.org/10.1007/S00338-013-1070-9, 2013.
Thibodeau, B., Bauch, D., and Voss, M.: Nitrogen dynamic in Eurasian coastal
Arctic ecosystem: Insight from nitrogen isotope, Global Biogeochem. Cy., 31, 836–849, https://doi.org/10.1002/2016GB005593, 2017.
Tye, A. M. and Heaton, T. H. E.: Chemical and isotopic characteristics of
weathering and nitrogen release in non-glacial drainage waters on Arctic
tundra, Geochim. Cosmochim. Ac., 71, 4188–4205, https://doi.org/10.1016/j.gca.2007.06.040, 2007.
UNFCCC: Adoption of the Paris Agreement,
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (last access: 2 September 2019), 2015.
Vasil'chuk, Y. K., Vasil'chuk, A. C., Rank, D., Kutschera, W., and Kim, J.
C.: Radiocarbon Dating of δ18O-δD Plots in Late Pleistocene
Ice-Wedges of the Duvanny Yar (Lower Kolyma River, Northern Yakutia),
Radiocarbon, 43, 541–553, https://doi.org/10.1017/S0033822200041199, 2001.
Van Everdingen, R. O.: Multi-language glossary of permafrost and related
ground-ice terms: in Chinese, English, French, German, Icelandic, Italian,
Norwegian, Polish, Romanian, Russian, Spanish, and Swedish, Calgary: Arctic
Institute of North America, 1, p. 78, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 28 October 2022),
1998.
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczyński,
M., Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T. R.,
Tahvanainen, T., Martikainen, P. J., and Biasi, C.: Increased nitrous oxide
emissions from Arctic peatlands after permafrost thaw, P. Natl. Acad. Sci. USA, 114,
6238–6243, https://doi.org/10.1073/PNAS.1702902114, 2017.
Vonk, J. E., Sanchez-Garca, L., van Dongen, B. E., Alling, V., Kosmach, D.,
Charkin, A., Semiletov, I. P., Dudarev, O. v., Shakhova, N., Roos, P.,
Eglinton, T. I., Andersson, A., and Gustafsson, A.: Activation of old
carbon by erosion of coastal and subsea permafrost in Arctic Siberia, Nature
489, 137–140, https://doi.org/10.1038/nature11392, 2012.
Vonk, J. E., Mann, P. J., Dowdy, K. L., Davydova, A., Davydov, S. P., Zimov,
N., Spencer, R. G. M., Bulygina, E. B., Eglinton, T. I., and Holmes, R. M.:
Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge
thaw, Environ. Res. Lett., 8, 035023, https://doi.org/10.1088/1748-9326/8/3/035023, 2013.
Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M.,
Schade, J., Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T.
I., and Holmes, R. M.: High biolability of ancient permafrost carbon upon
thaw, Geophys. Res. Lett., 40, 2689–2693, https://doi.org/10.1002/GRL.50348, 2013.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream
discharge from permafrost thawing in the Yukon River basin: Potential
impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007.
Wankel, S. D., Kendall, C., Pennington, J. T., Chavez, F. P., Paytan, A.,
Wankel, C.:, Kendall, C., Pennington, J. T., Chavez, F. P., and Paytan,
A.: Nitrification in the euphotic zone as evidenced by nitrate dual isotopic
composition: Observations from Monterey Bay, California, Global
Biogeochem. Cy., 21, GB2009, https://doi.org/10.1029/2006GB002723, 2007.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.:
Updates to instrumentation and protocols for isotopic analysis of nitrate by
the denitrifier method, Rapid Commun. Mass Spec., 30,
1365–1383, https://doi.org/10.1002/RCM.7570, 2016.
Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland,
J. W., Song, W., Raymond, P. A., and Gustafsson, Ö.: Rivers across the
Siberian Arctic unearth the patterns of carbon release from thawing
permafrost, P. Natl. Acad. Sci. USA, 116, 10280–10285, https://doi.org/10.1073/PNAS.1811797116, 2019.
Yi, Y., Gibson, J. J., Cooper, L. W., Hélie, J. F., Birks, S. J.,
McClelland, J. W., Holmes, R. M., and Peterson, B. J.: Isotopic signals
(18O, 2H, 3H) of six major rivers draining the pan-Arctic watershed, Global
Biogeochem. Cy., 26, GB1027, https://doi.org/10.1029/2011GB004159, 2012.
Co-editor-in-chief
Vast areas of permafrost are being degraded by climate change, which can release substantial quantities of nutrients into rivers and the ocean. This study shows how nitrogen isotopes can be used to determine how climate change affects the fluxes of nitrogen to the Arctic Ocean through permafrost melt.
Vast areas of permafrost are being degraded by climate change, which can release substantial...
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Climate change is causing extensive permafrost degradation and nutrient releases into rivers...
Altmetrics
Final-revised paper
Preprint